超声波对金属凝固特性及组织影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统导入方式的超声波处理虽然能够显著改善金属凝固组织和强化金属材料性能,但是由于存在诸多缺点,比如容易卷入夹杂物、对于高温合金的操作困难等,使得该技术在工业应用上有很大的难度。本文采用自主研发的“自吸式变幅杆”超声侧部导入技术,解决了超声波导入难题,并研究了该超声处理技术对铝基和铁基合金凝固特性、组织和性能的影响,探讨了其中的基础理论问题。
     为了探索超声波侧部导入处理工艺的可行性,本文首先采用此技术处理了低熔点亚共晶A1-7.3%Si合金,系统研究了此工艺对合金凝固特性和组织的影响。采用微分热分析方法对合金的凝固初始温度、共晶反应温度和时间进行了分析。研究表明,200W超声波处理对熔体的凝固初始温度影响小,随着输入的超声波功率进一步提高到600W后,合金的凝固初始温度发生大幅度降低,对应于宏观组织细化和初生α相形貌的显著改善。超声波功率从0W变化到700W时,平均晶粒尺寸与输入的超声波功率呈负指数递减规律。本文考察了超声波处理对材料力学性能的影响,结果表明超声波处理提高了该合金的抗拉强度和延伸率。
     为了探讨超声波处理对高熔点合金的影响,本文选用成分简单的二元铁碳合金(T10钢)为研究材料,结合超声波侧部导入工艺分析超声波对高熔点合金凝固特性和组织的影响。微分热分析结果表明,功率小于300W时,超声波处理对凝固初始温度基本没有影响。随着输入功率的提高,凝固初始温度逐渐降低。组织结果显示,随着超声波功率的提高T10钢晶粒细化程度越发明显,分布更加均匀。力学性能测试结果显示,超声波处理后试样抗拉强度增大,延伸率提高。断口扫描结果表明,超声波处理使断口的断裂特征由典型的脆性断裂逐渐转变为准解理断裂。
     在上述研究基础上,结合企业需求,深入研究了不同超声波功率处理对1Cr18Ni9Ti奥氏体不锈钢凝固过程、组织及性能的影响。微分热分析显示,随着超声波处理功率的增大,熔体的凝固初始温度逐渐降低,凝固时间缩短,包晶反应温度也随着超声波功率的提高而降低,而且包晶反应前期近平衡凝固时间随着功率的提高大大缩短。通过数学分析定量的得到超声波处理过程凝固初始温度与功率的关系。随后采用EBSD电子背散射衍射技术对晶界和晶粒内部缺陷进行分析。结果表明,超声波处理增加了组织中的晶界、亚晶界面积和位错密度,并且随着输入功率的提高,凝固组织发生由柱状晶向等轴晶的转变。功率从0W到700W,输入功率与奥氏体相含量呈线性递增关系,700W超声波处理时组织近似为全奥氏体。分析了超声波处理对奥氏体不锈钢微观组织的影响。结果显示,随着超声波功率的提高发生了柱状枝晶向等轴晶或球形晶的转变,相应的二次枝晶臂间距变小。通过EDS能谱技术测试了不锈钢中主要元素在不同位置的分布,结果表明施加超声波加速了固/液界面前沿的溶质扩散,减小溶质富集边界层厚度,从而降低了合金元素偏析。力学性能测试结果表明,超声波处理对不锈钢试样的延伸率影响不大,但能显著提高合金抗拉强度。对合金抗拉强度沿着超声波传播距离上的衰减进行分析,表明合金抗拉强度与传播距离呈负指数递减关系。抗腐蚀性测试显示超声波处理提高了奥氏体不锈钢的抗腐蚀性能。
     结合凝固理论和声学理论,对超声波处理细化机理进行了系统分析。分析表明空化气泡在膨胀过程导致微区过冷和气泡闭合形成的高压提高了合金形核速率,使组织细化。而气泡闭合形成的强冲击力造成的型壁晶粒剥落、超声波处理后熔体内热起伏造成枝晶臂颈部熔断也有效地促进了凝固组织的进一步细化。分析了超声波作用对金属理论结晶温度的影响,推导出了超声波处理下合金理论结晶温度与超声波功率的数学关系式,并根据实验所测的金属凝固初始温度,得到超声波处理后合金过冷度增大。结合牛顿冷却模型和流体学理论,推导了超声波处理条件下金属冷却速率与超声波功率和处理时间的关系。
     建立了凝固熔体中的超声波传播过程的“衰减模型”,探讨了超声波衰减与传播距离和熔体实时温度的数学关系。采用自主研发的超声波衰减测试设备采集了亚共晶A1-7.3%Si合金凝固过程中不同温度和传播距离下的衰减值,得到衰减分布函数。通过实验数据对“衰减”模型进行验证,表明理论模型和实验结果相符。
It is well known that ultrasonic treatment can refine solidification structure effectively and strengthen mechanical properties of metals. However, due to some disadvantages of the traditional ultrasonic treatment process, such as inclusion immixture, difficult manipulation to high-melting metals and so on, the application of ultrasonic treatment in the industry field has great difficulties.A novel ultrasonic treatment process, i.e. ultrasonic side-introduced technology with "self-attraction amplitude rod" is developed to solve the problems of traditional ultrasonic treatment and extend its applications. The aim of this work is to systemically investigate its application to metal solidification.
     In order to investigate the feasibility of side-introduced ultrasonic treatment, we examined the effects of ultrasonic treatment on solidification characteristics and structure of low-melting A1-7.3%Si alloy. Differential heat analysis method is selected for measuring solidification initial temperature, eutectic reaction temperature and time of A1-7.3%Si alloy during solidification. The experimental results show that solidification initial temperature of the melt has few changes until the inputting ultrasonic power reaches 600W. With the further increase of ultrasonic power, solidification initial temperature is decreased, causing grain refinement and morphology development of primaryαphase. From 0W to 700W, average grain size can be expressed as the negative exponential of ultrasonic power. Mechanical tests show that both tensile strength and elongation percentage are enhanced.
     Next, we evaluate the contribution of ultrasonic treatment on solidification characteristics and structure of high-melting T10 steel. Results of differential heat analysis show that once the ultrasonic power is beyond 300W, solidification initial temperature decreases with the increment of ultrasonic power. Microstructure study of T10 steel reveals that ultrasonic treatment results in drastic refinement of grain with more uniform distribution. The significant structure variation obviously has an effect on mechanical properties. Mechanical test demonstrates that ultrasonic treatment can improve both tensile strength and ductility remarkably. Furthermore, fracture characteristics of samples are transformed from brittle fracture to quasi-cleavage fracture.
     Based on the above investigation, we investigate the effect of ultrasonic treatment on solidification characteristics, structure and properties of 1Crl 8Ni9Ti austenite stainless steel so as to meet the demand of the industry field. The differential heat analysis suggests that the solidification initial temperature decreases and solidification time shortens with the application of ultrasonic during solidification. The application of ultrasonic treatment on 1Crl 8Ni9Ti also makes the peritectic reaction temperature decrease. The relation between solidification initial temperature and ultrasonic power is quantitatively determinate. Analsis results of EBSD show that with the increase of ultrasonic power, important structure changes occur with the equiaxed grain being substituted for column one. Moreover, not only the area of grain and subgrain boundary, but also the dislocation density increases. From 0W to 700W, austenite content is ratio to linear increase of ultrasonic power. When the power is 700W, the structure is almost austenite phase. Meanwhile, the investigation of the effect of ultrasonic treatment on rnicrostructure of 1Crl 8Ni9Ti is carried out. Ultrasonic treatment plays the role in the columnequiaxed dendrite transformation. According to EDS results, we exhibit the distribution of main elements in different positions. It is further revealed that ultrasonic substantially suppressed the zonal segregation of Cr and Ni due to the acceleration of solute diffusion in the front of solid/liquid surface, which leads to the decrease of solute boundary layer thickness. The experimental results of mechanical properties indicate that the ultrasonic treatment improves tensile strength remarkably and slightly increases elongation percentage of 1CrlSNi9Ti austenite stainless steel. Tensile strength can be expressed as the negative exponential of propagation distance of ultrasonic. In addition, the stainless steel has better corrosion resistance after ultrasonic treatments.
     On the basis of the solidification and acoustic theory, the refinement mechanism of ultrasonic treatment during solidification is discussed. It is indicated that micro-area supercooling during cavitation bubble expansion and high pressure induced by bubble close give rise to the increase of nucleation rate of melts, causing the refinement of structure. In addition, shock force generated by cavitation bubble and heat pulse caused by ultrasonic also make great contributions to improve dendrite morphology and refinement structure. The effect of ultrasonic treatment on theory crystallization temperature of the metal is studied. Calculation shows that theory crystallization temperature rises after the application of ultrasonic treatment. According to the experimental results of solidification initial temperature, it can be concluded that ultrasonic treatment causes the increase of degree of supercooling. By means of Newton cooling model and fluidics, we analyze the relation between cooling rate and ultrasonic power.
     Attenuation model of ultrasonic propagated into the liquid metal is built to reveal the mathematic relation among ultrasonic attenuation, propagation distance and melt temperature. Meanwhile, in virtue of self-developed attenuation-testing device, we collect ultrasonic attenuation of Al-7.3%Si alloy with different propagation distances during solidification and fit the function of attenuation distribution of the alloy. Verification between the experiment results and the theory model shows that they are in good agrerment with each other.
引文
[1] 李春峰.高能率成形技术[M].国防工业出版社,2001.
    [2] 王天民.生态环境材料[M].天津大学出版社,2000.
    [3] 刘江龙.环境材料导论[M].冶金工业出版社,1999.
    [4] 周尧和,孙宝德.生态材料学[M].冶金工业出版社,2001.
    [5] 郝维昌,王天民.钢铁材料的环境负荷评价[M].冶金工业出版社,2001.
    [6] O.V. Abramov. Ultrasound in liquid and solid metals [M]. CRC Press, 1994.
    [7] G. Marcel. Electromagnetic processing of liquid materials in Europe [J]. ISIJ International, 1990, 30: 1-7.
    [8] H.K. Moffatt, W.R. Proctor. Metallurgical application of magnetohydrod-ynamics [C]. Proceedings of a symposium of the international union of theoretical and applied mechanics. Metal Society, 1984: 346-349.
    [9] 张伟强.金属电磁凝固原理与技术[M].冶金工业出版社,2004.
    [10] H. Conrad. Effects of electric current on solid state phase transformations in metals [J]. Materials Science and Engineering A, 2000, 287: 227-237.
    [11] S. Asai. Recent development and prospect of electromagnetic processing of materials [J]. Science and Technology of Advanced Materials, 2000, 1: 191-200.
    [12] 韩至成.电磁冶金学[M].冶金工业出版社,2001.
    [13] 傅恒志,张军.电磁流体力学与材料工程[C].中国科学技术前沿论文集,2000:186-224.
    [14] C.C. Koch. Experimental evidence for magnetic or electric field effects on phase transformations [J]. Materials Science and Engineering A, 2000, 287: 213-218.
    [15] 李廷举,金俊泽.材料电磁加工的现状与未来展望[J].材料导报,2000,14:12-19.
    [16] O.V. Abramov. Action of high intensity ultrasonic on solidifying metals [J]. Ultrasonics, 1987, 25: 73-77.
    [17] S.Z. Hao, B. Gao, A. Wu, et al. Surface modification of steels and magnesium alloy by high current pulsed electron beam [J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 240:646-652
    [18] A.V. Granato. Eighth international conference on internal friction and ultrasonic attenuation in solids [C]. France: Les Editions de Physique, 1986.
    [19] P. Emmanuel. Ultrasonic instruments and devices: reference for modem instmrnentation techniques [M]. San Diego: Academic press, 1999.
    [20] E.G. Richardson. Ultrasonic physics [M]. Amsterdam: Elsevier press, 1962.
    [21] B. Hamonic, J.N. Decarpigny. Power sonic and ultrasonic transducers design: proceedings of the international workshop [C]. Springer-Verlag, 1988.
    [22] C. Crawford, E.L. Alan. Ultrasonic engineering: with particular reference to high power applications [M]. Butterworths, 1955.
    [23] M.G. Silk. Ultrasonic transducers for nondestructive testing [M]. Bristol: Adam Hilger Ltd., 1984.
    [24] Y. Kikuchi. Ultrasonic transducers [M]. Tokyo: Corona Pub. Co., 1969.
    [25] C. Lynnworth, C. Lawrence. Ultrasonic measurements for process control: theory, techniques, applications [M]. Boston: Academic Press, 1989.
    [26] R. Goldman. Ultrasonic technology [M]. New York: Reinhold, 1962.
    [27] H. Kikura, G. Yamanaka, M. Aritomi. Effect of measurement volume size on turbulent flow measurement using ultrasonic doppler method [J]. Experiments in Fluids, 2004, 36: 187-196.
    [28] G. Behme, T. Hesjedal. Influence of ultrasonic surface acoustic waves on local friction studied by lateral force microscopy [J]. Materials Science & Processing, 2000, 70: 361-363.
    [29] G. Alfonsi, S. Brambilla, D. Chiuch. The use of an ultrasonic doppler velocimeter in turbulent pipe flow [J]. Experiments in Fluids, 2003, 35: 553-559.
    [30] L.D. Rozenberg. Physical principles of ultrasonic technology [M]. New York: Plenum, 1973.
    [31] Japan Society of Applied Physics. Proceedings of 5~(th) syposium on ultrasonic electronics [C]. Tokyo: Japanese Journal of Applied Physics, 1985.
    [32] J.C. Machado, J.S. Valente. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics [J]. Ultrasonics, 2003, 41: 605-613.
    [33] A. Kumar, T. Jayakumar, R. Baldev, et al. Characterization of solutionizing behavior in VT14 titanium alloy using ultrasonic velocity and attenuation measurements [J]. Materials Science and Engineering A, 2003,360: 58-64.
    [34] J.L. Laborde, A. Hita, J.P. Caltagirone, et al. Fluid dynamics phenomena induced by power ultrasounds [J]. Ultrasonics, 2000,38:297-300.
    [35] X. Jian, Q. Han. Effect of power ultrasound on grain refinement of magnesium AM60B alloy [C]. Magnesium Technology, 2006:103-107.
    [36] H.Y. Feng, L. Ke, W. Jun, et al. Effect of high-intensity ultrasonic on the microstructure and grain refinement of Al-5Ti-1B master alloy [J]. Journal of Materials Sciencen and Engineering A, 2005,85: 8-14.
    [37] C. Jeng, R. Chen. The study of metal-water interface and the acoustic cavitation. Proceeding of 13th International Conference on Dielectric Liquids [C]. Japan: Nara, 1999: 20-25.
    [38] L. Junwen, T. Momono. Effect of ultrasonic output power on refining the crystal structures of ingots and its experimental simulation [J]. Journal of Materials Science & Technology, 2005,21:47-52.
    [39] H.B. Zhang, Q.J. Zhai, F.P. Qi, et al. Effect of side transmission of power ultrasonic on structure of AZ81 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2004,14: 302-305.
    [40] L.S. Fan, G.Q. Yang, D.J. Lee, et al. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions [J]. Chemical Engineering Science, 1999, 54:4681-4709.
    [41] J.L. Laborde, A.Hita, A.Gerard. Fluid dynamics phenomena induced by power ultrasounds [J]. Ultrasonics, 2000,38:297-300.
    [42] G. Madelin, D. Grucker, J.M. Franconi, et al. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation [J]. Ultrasonics, 2006,44: 272-278.
    [43] S. Echert, G. Gerbeth, V.L. Melnik. Velocity measurements at high temperatures by ultraound doppler velocimetry using an acoustic wave guide [J]. Experiments In Fluids, 2003,35: 381-388.
    [44] R.S. Juang, S.H. Lin, C.H. Cheng. Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound [J]. Ultrasonics Sonochemistry, 2006, 13:251-260.
    [45] E. Stride, N. Saffari. The potential for thermal damage posed by microbubble ultrasound contrast agents [J]. Ultrasonics, 2004, 42: 907-913.
    [46] E. Konofagou, J. Thierman, K. Hynynen. The use of ultrasound-stimulated acoustic emission in the monitoring of modulus changes with temperature [J]. Ultrasonics, 2003, 41: 337-345.
    [47] I. Moisy, F. Bisel, F. Genvo, et al. Preliminary results on the effect of power ultrasound on nitrogen oxide and dioxide atmosphere in nitric acid solutions [J]. Ultrasonics Sonochemistry, 2001, 8: 175-181.
    [48] T. Sigve. On some nonlinear effects in ultrasonic fields [J]. Ultrasonics, 2000, 38: 278-283.
    [49] K. Josef. Ultrasonic testing of materials [M]. New York: Springer-Verlag, 1983.
    [50] A.E. Crawford. Ultrasonic engineering: with particular reference to high power applications [M]. London, 1955.
    [51] T.P. Philippidis, D.G. Aggelis. Experimental study of wave dispersion and attenuation in concrete [J]. Utrasonics, 2005, 43: 584-595.
    [52] 金长善.超声工程[M].哈尔滨工业大学出版社,1989.
    [53] W. Benoit, G. Gremaud. The 7~(th) international conference on internal friction and ultrasonic attenuation in solids [C]. Paris: Societe Francaise de Physique, 1981.
    [54] M. Ichihara, H. Ohkunitani, I. Yoshiaki, et al. Dynamics of bubble oscillation and wave propagation in viscoelastic liquids [J]. Journal of Volcanology and Geothermal Research, 2004, 129: 37-60.
    [55] J.F. Chaix, V. Gamier, G. Corneloup. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation [J]. Ultrasonics, 2006, 44: 200-210.
    [56] M.S. Chandra. Non-linear ultrasonics to determine molecular properties of pure liquids [J]. Ultrasonics, 1995, 33: 155-159.
    [57] A. Marcelo, J.C. Duarte, C.A. Wagner. A method to identify acoustic reverberation in multilayered homogeneous media [J]. Ultrasonics, 2004, 41: 683-698.
    [58] R. Long, M. Lowe, P. Cawley. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes [J]. Ultrasonics, 2003, 41: 509-519.
    [59] C. Aristégui, M.S. Lowe, P. Cawle. Guided waves in fluid-filled pipes surrounded by different fluids [J]. Ultrasonics, 2001, 39: 367-375.
    [60] S. Lu, A. Hellawell. Modification and refinement of cast A1-Si alloys [J]. Light Metals, 1995: 989-993.
    [61] S.J. Kowalski. Ultrasonic waves in diluted and densified suspensions [J]. Ultrasonics, 2004, 43: 101-111.
    [62] G. Guidaralli, F. Craciun, C. Galassi, et al. Ultrasonic characterisation of solid-liquid suspensions [J]. Ultrasonics, 1998, 36: 467-470.
    [63] 高守雷.功率超声对金属凝固组织的影响[D].硕士论文,2003.
    [64] 张海波.功率超声对AZ81镁合金凝固组织的影响[D].硕士论文,2004.
    [65] V.O. Abramov, B.B Straumal, W. Gust. Hypereutectic A1-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment [J]. Materials & Design, 1997, 18: 321-326.
    [66] 翟启杰,龚永勇,戚飞鹏.改善金属凝固组织的功率超声导入[P].ZL 03 1 41467.2.2005.
    [67] G.I. Eskin, L. Lutrasonic. Treatment of light alloy metals [M]. Amsterdam: Gordon & Breach, 1998.
    [68] G. Brodova, P.S. Popel. Liquid metal processing [M]. New York: Taylor & Francis, 2002.
    [69] G.N. Edouard. Some aspects of ultrasonic testing of composite [J]. Composite Structures, 2000, 48: 151-155.
    [70] V.I. Dobatkin, G.I. Eskin. The effect of high intensity ultrasound on the phase interface in metals [M]. Moscow, 1986.
    [71] G.I. Eskin, P. Yu, G.S. Makarov. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic A1-Si alloys [J]. Materials Science Forum, 1997, 242: 65-70.
    [72] G.N. Kozhemyakin. Influence of ultrasonic vibration on the growth of InSb crystals [J]. Journal of Crystal Growth, 1995, 149: 266-268.
    [73] F.P. Qi, H.B. Zhang, Q.J. Zhai. Microstructure refinement of Sn-Sb peritectic alloy under high-intensity ultrasound treatment [J]. Journal of Shanghai University, 2005, 9: 74-77.
    [74] V. Abramov, V. Bulgakov, F. Sommer. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator [J]. Materials Letters, 1998, 42: 27-34.
    [75] C.K. Jen, H. Soda, Y.S. Liu, et al. Acoustic characterization of metals with columnar grains [J]. Ultrasonics, 1995, 33: 181-186.
    [76] L. Moraru. Fourier thermal analysis of solidification kinetics in molten aluminium and in presence of ultrasonic field [J]. Journal of Physics, 2000, 50:1125-1131.
    [77] X. Jian, H. Xu, Q. Han. Effect of power ultrasound on solidification of aluminum A356 alloy [J]. Materials Letters, 2005, 59: 190-193.
    [78] C.L. Xu, Q. Han. Effect of ultrasonic vibration on unmixed zone formation [J]. Scripta Materialia, 2006, 55: 975-978.
    [79] X. Jian, T.T. Meek, Q. Han. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration [J]. Scripta Materialia, 2006, 54: 893-896.
    [80] H.B. Xu, T.T. Meek, Q. Han. Degassing of molten aluminum A356 alloy using ultrasonic vibration [J]. Materials Letters, 2004, 58: 3669-3673.
    [81] 冯端,师昌绪,刘治国.材料科学导论—融贯的论述[M].化学工业出版社,2002.
    [82] 肖纪美.材料学的方法论[M].冶金工业出版社,1994.
    [83] F.肯尼斯.世界钢铁[M].辽宁人民出版社,1979.
    [84] 冶金工业部情报研究总所技术经济室.国内外钢铁统计:1949-1989[M].冶金工业出版社,1981.
    [85] O.E. Mattiat. Ultrasonic transducer materials [M]. New York: Plenum Press, 1971.
    [86] Z. Keshavarz, M.R. Barnett. EBSD analysis of deformation modes in Mg—3AI—1Zn [J]. Scripta Materialia, 2006, 55:915-918.
    [87] C. Ferry, F.J. Humphreys. Onset of abnormal subgrain growth in cold rolled {1 1 0} oriented copper single crystals [J]. Materials Science and Engineering A, 2006, 435-436: 447-452.
    [88] 张寿禄.电子背散射衍射技术及其应用[J].电子显微学报,2002,5:703-704.
    [89] 陈绍楷,李晴宇,苗壮.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程,2004,35:500-504.
    [90] S. Courtas, M. Grégoire, X. Federspiel, et al. Electron backscattered diffraction (EBSD) use and applications in newest technologies development [J]. Microelectronics and Reliability, 2006, 46: 1530-1535.
    [91] HKL Technology Group. 2003 EBSD applications catalogue [M]. Denmark: HKL Technology, 2003.
    [92] 姚启均.金属力学性能实验新旧标准对比手册[M].兵器工业出版,1992.
    [93] 工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金[M].中国标准出版社,1989.
    [94] 林钢,林慧国,赵玉涛.铝合金应用手册[M].机械工业出版社,2006.
    [95] (美)蒙多尔福.铝合金的组织与性能[M].冶金工业出版,1988.
    [96] L. Lu, A.K. Dahle. Effects of combined additions of Sr and A1TiB grain refiners in hypoeutectic Al- Si foundry alloys [J]. Materials Science and Engineering A, 2006, 435-436: 288-296.
    [97] M.D. Cameron, K.D. Arne, A. John. Taylor three-dimensional analysis of eutectic grains in hypoeutectic Al - Si alloys [J]. Materials Science and Engineering A, 2005, 392: 440-448.
    [98] R. Alireza, M. Kenji, N. Toshiyuki. Investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 5: 1477-1484.
    [99] X. Chen, H. Geng, Y.X. Li. Study on the eutectic modification level of Al-7Si alloy by computer aided recognition of thermal analysis cooling curves [J]. Materials Science and Engineering A, 2006, 419: 283-289.
    [100] M.J. Oliveira, L.F. Malheiros, C.A.S. Ribeiro. Evaluation of the heat of solidification of cast irons from continuous cooling curves [J]. Journal of Materials Processing Technology, 1999, 92-93: 25-30.
    [101] T. Sato, K. Ikawa. Discontinuity of temperature distribution due to phase transformations during the cooling of alloys [J]. Acta Metallurgica, 1983, 31: 731-741.
    [102] (英)G.J.戴维斯.凝固与铸造[M].机械工业出版,1983.
    [103] 上海交通大学铸造教研组.现代铸造测试技术[M].上海科学技术文献出版社,1983.
    [104] 同济大学数学教研室.高等数学(第三版,上册)[M].高等教育出版社,1988.
    [105] L. Heusler, W. Schneider. Influence of alloying dements on the thermal analysis results of Al - Si cast alloys [J]. Journal of Light Metals, 2002, 2: 17-26.
    [106] D. Apdian, G.K. Sigworth, K.R. Whaler. Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis [J]. AFS Transactions, 1984, 4: 297-307.
    [107] R. Morando, H. Biloni, G.S. Cole, et al. Development of macrostructure in ingots of increasing size [J]. Metallurgical and Materials Transactions A, 1970, 5:1407-1412.
    [108] 北方交通大学材料系.金属材料学[M].中国铁道出版社,1983.
    [109] (法)亨利,(德)豪斯特曼.宏观断口学及显微断口学[M].机械工业出版社,1990.
    [110] 崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社,1998.
    [111] 丁力.功率超声对Sn-Sb合金和钢凝固组织的影响[D].硕士论文,2005.
    [112] 浙江大学.钢铁材料及其热处理工艺[M].上海科学技术出版社,1978.
    [113] 章守华,吴承建.钢铁材料学[M].冶金工业出版社,1992.
    [114] 王仰舒.钢铁材料[M].世界图书出版公司,1990.
    [115] 陆问礼.钢铁分析[M].浙江大学出版社,1991.
    [116] 盖勒,周倜武,丁立铭.工具钢[M].国防工业出版社,1983.
    [117] 虞莲莲,曾正明.实用钢铁材料手册[M].机械工业出版社,2001.
    [118] 崔忠圻.金属学与热处理[M].机械工业出版社,1992.
    [119] 曲卫涛.铸造工艺学[M].西北工业大学出版社,1994.
    [120] J.A. Gallego, L.E. Segura, G.R. Corral. A power ultrasonic technology for deliquoring [J]. Ultrasonics, 2003, 41: 255-259.
    [121] 刘萍.冷却速度对Mg_2Si增强过共晶AI-Si合金组织与性能的影响[J].铸造技术,2006.27:715-719.
    [122] M.R. Amin, A. Mahajan. Modeling of turbulent heat transfer during the solidification process of continuous castings [J]. Journal of Materials Processing Technology, 2006, 174: 155-166.
    [123] J. Koke, M. Modigell. Flow behaviour of semi-solid metal alloys [J]. Journal of Non-Newtonian Fluid Mechanics, 2003, 112: 141-160.
    [124] F.劳斯特克.金相组织解说[M].上海科学技术出版社,1884.
    [125] A. Gachagan, D. Speirs. The design of a high power ultrasonic test cell using finite element modelling techniques [J]. Ultrasonics, 2003, 41: 283-288.
    [126] J. Jiménez-Femandez, A. Crespo. Bubble oscillation and inertial cavitation in viscoelastic fluids [J]. Ultrasonics, 2005, 43:643-651.
    [127] 赵嘉蓉,赵刚.金属塑性加工的冶金学基础[M].冶金工业出版社,1995.
    [128] 梁光启,林子为.工程材料学[M].上海科学技术出版社,1987.
    [129] 周美玲,谢建新.材料工程基础[M].北京工业大学出版社,2001.
    [130] Y. Wu, S.K. Hang. Microstructural refinement and improvement of mechanical properties and oxidation resistance in EPM TiAl-based intermetallics with yttrium addition [J]. Acta Materialia, 2002, 50: 1479-1493.
    [131] 张少棠.不锈钢[M].中国标准出版社,2001.
    [132] (美)唐纳德.皮克纳.不锈钢手册[M].机械工业出版社,1987.
    [133] 赵发忠.世界不锈钢的发展和我国不锈钢生产前景的分析[J].特殊钢,1996,17:30-32.
    [134] 程晓农,戴起勋.奥氏体钢设计与控制[M].国防工业出版社,2005.
    [135] K. Rajasekhar, C.S. Harendranath, R. Raman, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study [J]. Materials Characterization, 1997, 38: 53-65.
    [136] 萧纪美.不锈钢的金属学问题[M].冶金工业出版社,1983.
    [137] 陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].机械工业出版社,1997.
    [138] A. Ohno, T. Motegi, T. Shimizu. Formation of equiaxed crystals in ammonium chloride-water model and Al alloy ingots by electromagnetic stirring [J]. Journal of the Japan Institute of Metals, 1982, 46: 554-563.
    [139] G.P. Huffman, F.E. Huggins. Physics in the steel industry [C]. Schwevr F. C. AIP. Conference, New York, 1982:149-201.
    [140] L.H. Schwartz. Applications of m6ssbauer spectroscopy [M]. New York: Academic Press, 1976.
    [141] H.H. Zhang, M.A. Hang, S.U. Zhang, et al. Quantitative mossbauer study on retained austenite and carbide in high speed steel [J]. Chinese Journal Metafial Science and Technology, 1992, 8: 284-288.
    [142] 陆世英.不锈钢[M].原子能出版社,1995.
    [143] 黄喜琥,吴剑.耐腐蚀铸锻材料应用手册[M].机械工业出版社,1991.
    [144] 陈德和.不锈钢的性能与组织[M].机械工业出版社,1977.
    [145] 廖恒成.近共晶Al-Si合金组织细化与力学性能研究[D].东南大学博士学位论文,2000.
    [146] 胡汉起.金属凝固原理[M].冶金工业出版社,1985.
    [147] 大野笃美.金属凝固[M].机械工业出版社,1983.
    [148] 杨明波,潘复生,丁培道.1Cr18Ni9Ti不锈钢双辊薄带的铸态组织特征研究[J].机械工程材料,2005,29:7-9.
    [149] 王迪.钢中微量元素的偏析与晶界脆化[M].冶金工业出版社,1985.
    [150] 刘毅.金属学与热处理[M].冶金工业出版社,1996.
    [151] 李荣德,孙玉霞.凝固参数对ZA27合金二次枝晶间距及抗拉强度的影响[J].材料科学与工艺,2001,9:199-202.
    [152] R.E. Green. Ultrasonic investigation of mechanical properties [M]. New York: Academic Press, 1973.
    [153] 冈毅民.中国不锈钢腐蚀手册[M].冶金工业出版社,1992.
    [154] 张振杰.奥氏体不锈钢应力腐蚀破裂探讨[J].石油化工腐蚀与防护,2006,23:48-50.
    [155] 岳睿,潘祖军,李艳.不锈钢的腐蚀分析[J].金属世界,2006,3:28-29.
    [156] 路世英.腐蚀与防护手册[M].化学工业出版社,1990.
    [157] 王于林.工程材料学[M].航空工业出版社,1992.
    [158] 王家炘,黄积荣,林建生.金属的凝固及其控制[M].机械工业出版社,1983.
    [159] F. Kurz. Fundamentals of solidification [M]. Transaction of Technology Publications, 1989.
    [160] T.G. Leighton. Bubble population phenomena in acoustic cavitation [J]. Ultrasonics Sonochemistry, 1995, 2: 1233-1237.
    [161] C. Virone, H.J.M. Kramer, G.M.V. Rosmalen, et al. Primary nucleation induced by ultrasonic cavitation [J]. Journal of Crystal Growth, 2006, 294: 9-15.
    [162] M. Sivakumar, A. Towata, K. Yasui, et al. A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals [J]. Current Applied Physics, 2006, 6:591-593.
    [163] 冯端.金属物理学[M].科学出版社,1990.
    [164] 冯若.超声手册[M].南京大学出版社,1999.
    [165] E.A. Brujan. A first-order model for bubble dynamics in a compressible viscoelastic liquid [J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84: 83-103.
    [166] J. Eveline. Nonmonotonic behavior of the maximum collapse pressure in a cavitation bubble [J]. 1EEE Transactions on Ultrasonics, 1999, 36: 561-564.
    [167] E. Maisonhaute, P.C. White, R.G. Compton. Surface acoustic cavitation understood via nonesecond electrochemistry [J]. Journal of Chemical Physics, 2001, 105: 12087-12091.
    [168] S.M. Vijayan, R. Sander. Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor [J]. Ultrasonics, 2000, 38: 666-670.
    [169] C.P. Cleofé, G. Christian, V. Christian, et al. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field [J]. Ultrasonics Sonochemistry, 2005, 12: 79-84.
    [170] 周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社,1998.
    [171] V.M. Glazov, V.B. Koltsov. Variation of the short-range order structure in a tellurium melt near the melting temperature [J]. Journal of Chemical Physics, 1981, 55: 2759-2764.
    [172] D.J. Li, J.T. Wang, B.Z. Ding. Thermodynamic analysis of pressure-quenching process [J]. Scripta Metallurgica et Materialia, 1993, 28: 1083-1088.
    [173] D.J. Li, J.T. Wang, B.Z. Ding. The amorphization of the Cd-Sb system by high pressure [J]. Scripta Metallurgica et Materialia, 1992, 26: 621-622.
    [174] A. Borgenstan, M. Hillert. Activation energy for isothermal martensite in ferrous alloys [J]. Acta Materialia, 1997, 45:651-662.
    [175] M.C. Flemings. Solidification processing [M]. New York: McGraw-Hill book Company, 1974.
    [176] J. Wannasin, R.A. Martinez, M.C. Flemings. Grain refinement of an aluminum alloy by introducing gas bubbles during solidification [J]. Scripta Materialia, 2006, 55:115-118.
    [177] 应崇福.超声学[M].科学出版社,1990.
    [178] Y. Zhao, Y.H. Liang, Q.D. Qin, et al. Effect of mechanical vibration on the microstrue, impact toughness and thermal fatigue behavior of cast hot working die steel [J]. ISIJ International, 2004, 44:1167-1172.
    [179] K. Biswas, R. Hermann, J. Das, et al. Tailoring the microstructure and mechanical properties of Ti-Al alloy using a novel electromagnetic stirring method [J]. Scripta Materialia, 2006, 55:1143-1146.
    [180] C.D. Yim, K.S. Shin. Changes in microstructure and hardness of rheocast AZ91HP magnesium alloy with stirring conditions [J]. Materials Science and Engineering A, 2005, 395: 226-232.
    [181] D. Brabazon, D.J. Browne, A.J. Carr. Mechanical stir casting of aluminum alloys from the mushy state: process, microstructure and mechanical properties [J]. Materials Science and Engineering A, 2002, 326: 370-381.
    [182] T. Li, X. Lin, W. Huang. Morphological evolution during solidification under stirring [J]. Acta Materialia, 2006, 54:4815 - 4824.
    [183] 荆天辅.材料热力学与动力学[M].哈尔滨工业大学出版社,2003.
    [184] B.G. Pollet, J.P. Lorimer, D.J. Walton. The effect of ultrasound upon the oxidation of thiosulphate on stainless steel and platinum electrodes [J]. Ultrasonics Sonochemistry, 2002, 9: 267-274.
    [185] S. Komarov, M. Hirasawa. Enhancement of gas phase heat transfer by acoustic field application [J]. Ultrasonics, 2003, 41: 289-293.
    [186] D.皮茨,L.西索姆.传热学[M].美国:麦格劳—希尔教育出版社,2002.
    [187] M. Romdhhane, C. Gourdon, G. Casamatta. Development of a thermoelectric sensor for ultrasonic intensity measurement [J]. Ultrasonics, 1995, 33: 139-147.
    [188] 杜功焕,朱哲民,龚秀芬.声学基础(下册)[M].上海科学技术出版社,1981.
    [189] 杜功焕,朱哲民龚秀芬.声学基础(上册)[M].上海科学技术出版社,1981.
    [190] International Organization for Standardization. Acoustics [M]. Switzerland: ISO, 1985.
    [191] 李庆春.铸件形成理论基础[M].机械工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700