石油钻机电动绞车特性分析及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过调研,掌握了国内外石油钻机绞车的发展现状与趋势,对现有在用电驱动钻机绞车进行了结构分析,了解了其优缺点,为进行新型钻机绞车设计奠定了基础。与传统机械钻机绞车和直流电驱动钻机绞车相比,由于交流变频电驱动钻机绞车有着非常明显的优势和非常高的技术性能,当今石油钻机绞车正在向着交流变频电驱动方向发展。
     针对我国传统绞车存在着传动复杂、效率低、送钻不均匀、钻压不稳定等缺点,本文设计了一种新型电机直驱单轴绞车结构型式:JC30DB-WZ型交流变频电驱动单轴绞车,可满足恒扭矩、恒功率等多种工况要求。通过对滚筒和滚筒轴的刚度和结构强度进行ANSYS有限元分析,确保了设计可靠性。该绞车采用两台大功率、低速、大扭矩变频电机从滚筒轴两端直接驱动滚筒,形成电机外置与滚筒一体化单轴绞车结构型式,去掉了大型齿轮减速箱、离合器等传动部件,电磁涡流刹车或水刹车等辅助刹车不复存在,具有结构简单新颖、调速范围宽、适应能力强等优点。技术参数符合SY/T5532-2002《石油钻机用绞车》标准要求,可广泛适用于国内外3000米交流变频电动钻机。
     为深入研究钻机起升系统的动态特性,本文结合钻井工艺及钻机工作过程,对钻机起升系统运动学和动力学进行了理论分析。建立了考虑钢丝绳和井架弹性的起升系统力学模型,对该微分方程组进行了理论求解;采用传递函数的方法,进行Simulink仿真,得到了起升系统的振动频率、系统的响应和大钩的动载系数,并分析了大钩位移波动和加速度波动特性。然后结合实际的钻具组合和JC30DB-WZ型交流变频电驱动绞车的工作特性,在考虑钻柱与井壁摩擦阻力情况下,通过编程得到微分方程初值问题的数值解,并对求解结果进行了详细分析,得到了考虑摩擦阻力情况下的动载系数。分别对初速为零和初速不为零的两种工况进行了讨论,为提高绞车控制精度提供了依据。为进一步深入研究钻柱与井壁摩擦阻力对起升系统的影响,在同时考虑电机特性和摩擦阻力的情况下,本文采用了ADAMS仿真软件,对JC30DB-WZ型交流变频电驱动单轴绞车起升系统进行了仿真计算与分析。结果表明:钻机在起升过程中存在着动载,动载系数随着起升条件的变化而改变;由于钻柱下放到井底,在起升过程中,钻柱与井壁产生摩擦,使得起升过程的平稳性变差;不考虑钻柱与井壁摩擦时,起升的不稳定系数为1%左右;当考虑钻柱与井壁摩擦产生随机载荷后,加剧了起升过程的不平稳性,使得大钩动载荷增加,滚筒与大钩速度呈现出明显的不均匀性。为降低起升时的动载系数,可采用控制电机特性的方法减少起升动载荷。
     基于JC30DB-WZ型交流变频单轴绞车,设计完成了与绞车一体化的自动送钻传动系统,当正常钻进需要使用自动送钻时,可以通过自动送钻中辅助电机、减速器经小齿轮直接驱动大齿轮,带动滚筒工作,从而悬提钻具,控制钻压,实现自动送钻;当绞车主电机出现故障需要使用应急功能时,系统可以上提井下钻具,防止井下可能发生的各种事故。
     针对石油钻机自动送钻过程控制中存在着复杂、非线性、不确定性系统的问题,设计完成了基于模糊控制的计算机恒钻压控制系统,该系统采用双环路控制结构,内部将反映钻速的测速编码器信号进行反馈构成局部负反馈回路,外部将钻压测量信号进行反馈构成另一路负反馈回路。在控制算法上采用了模糊控制思想。另外,初步探讨了非线性粒子滤波技术在自动送钻方面的应用,并对钻头钻进速度进行预估计。
     通过现场实时采集钻机实际钻井过程中相关参数,从工程实验角度分析了这种钻机的实际起升特性、井架的起升动载、起升系统的固有频率、绞车扭矩与转速特性等,通过与前面理论分析和仿真结果相比较,结果表明试验研究结果与理论研究结果还是比较吻合的,从而进一步丰富、完善理论研究结果。
The development status and trend of oil drilling rig and electrically-driven drawworks home and abroad were mastered through research. Structural analysis was carried out on electrically-driven drawworks at work, and their advantages and disadvantages were found out in order to design new electrically-driven drawworks for drilling rig. Compared with traditional mechanical drilling rig and direct current driven drilling rig, AC variable-frequency electrically-driven drilling rig and drawworks have extremely obvious advantages and high technical performance. As a result, oil drilling rig and drawworks are increasingly developing heading AC variable-frequency electro-drive nowadays.
     Aimed at the shortcomings of our traditional drawworks such as complexity in transmission, low precision in control, trouble in maintenance, low efficiency in transmission, asymmetry in bit feed, instability in bit weight, a new type of drawworks structural model was designed: model JC30DB-WZ single shaft drawworks of AC variable-frequency motor direct-drive , which can fulfill the multi-working condition requirement such as constant torque and permanent power. The design reliability was assured through ANSYS finite element analysis of the Stiffness and Strength of roller and roller shaft. In this drawworks, the roller is directly driven through shaft couplings by two special AC variable-frequency electric motors which are of high-power, low speed and great torque, without the supplemental parts of large gear reducer casing and large clutch, etc. Auxiliary brakes such as eddy current brake and hydraulic brake no longer exist, forming a single shaft roller drawworks model with motor out-laid and roller integrative. This model has advantages of structural novelty, wide timing range, high precision, and strong adaptability. Its technical performance and parameters can meet the standard of SY/T5532-2002“the drawworks used on oil drilling rig”. It can satisfy the drilling operation request of model ZJ30/1700DB drilling rig, and can be widely used in matching of 3000 meters AC variable-frequency drilling rig home and abroad.
     Combining Drilling technology and working process of drilling rig, the kinematics and dynamics processes analysis were carried out on drilling rig hoisting. Influential Factors on control performances of AC variable-frequency electrically-driven drawworks were found out, which can create the theory foundation for making our own AC variable-frequency drawworks control system.
     The simulation software ADAMS was used to calculate and analyze model JC30DB-WZ AC variable-frequency electrically-driven drawworks hoisting system. Results show: dynamic force exits during hoisting; the dynamic force coefficient changes when hoisting conditions change; the stability becomes worse during hoisting because of the friction between drillstring and wellpore; instability coefficient is about 1% without the consideration of the friction; after considering the random load the instability during the hoisting is increased, such increasing the load of the hook and unbalancing the velocity of roller and hook. Besides, different combination of drilling tools will affect the friction of drillstring. In order to reduce the dynamic force coefficient, we can use the method of control the characteristics of the motor. In fact, decreasing the starting current can efficiently reduce the dynamic force during hoisting.
     The development status and trend of automatic bit feed system home and abroad were analyzed, as well as the latest research result and the problems during design and use processes. Automatic bit feed system and control methods based on motor auxiliary and drawworks mainframe integrative were offered. Using fuzzy control theory, problems in control the complex, nonlinear, uncertain system were solved. All these problems are rather difficult to solve during automatic bit feed in oil drilling rig. The technical performance and reliability of drawworks on drilling rig were greatly improved by intellectualized control using computer.
     Through the related parameter acquired in the field while drilling, from project experiment angle, the actual performance of the rig hoisting system, the dynamic load of the derrick, the natural frequency, and the torque and rotate speed of the drawworks have been analysed. By contrast with the results of testing and theory research , the result shows that the test research result and theoretical research result still coincide fairly, which further perfects and enrich the theoretical result.
引文
[1] 陈如恒.我国钻井装备的技术进展——系列专题之五.石油矿场机械,2004;33(6):1~16;
    [2] 李继志等.石油钻采设备及工艺概论.山东东营:石油大学出版社,1995;
    [3] 胡辛禾.美国钻井设备开发新动态.石油机械,第 12 期,2000;
    [4] 郭公喜等.发展电驱动钻机势在必行.石油矿场机械第 26 卷第 5 期.1997
    [5] 马小亮.大功率交——交变频调速及矢量控制技术.北京:机械工业出版社,1999;
    [6] 张连山,刘永红.国外顶驱 AC 变频驱动的应用与发展.石油机械,第 26 卷第 5期,1998;
    [7] 赵来军等.变频调速技术在智能化抽油机系统中的应用.石油机械,第 26 卷第2 期,1998;
    [8] 康涛,张军等.钻机电传动控制系统国产化现状与发展.电气传动自动化,第22 卷第 6 期,2000;
    [9] Varco M/D Totco,Technical Bulletin:Electronic driller,June2000:19-22;
    [10] Dasgupta.K,Mukherjee.A,Maiti.R.Estimation of Critical System Parameters That Affect Orbit Motor Performance-combining Simulation and Experiments.Journal of Manufacturing Science and Engineering,Transactions of the ASME,v121 n2 1999,300-306;
    [11] 张连山.国外石油钻机新型单轴齿轮传动绞车.石油机械,第 28 卷第 8 期,2000;
    [12] 高向前.世界第一台 5000 马力绞车.国外石油机械,第 9 卷第 3 期,1998;
    [13] 秋丽.新型液压驱动齿轮绞车.石油机械,第 28 卷第 10 期,2000;
    [14] 宜文.世界第一台特大功率绞车问世.石油机械,第 26 卷第 2 期,1998;
    [15] 张连山.国外石油钻机技术发展趋势.国外石油机械,第 7 卷第 2 期,1996;
    [16] 张连山.国外现代石油钻井装备.国外石油机械,第 2 期,1998;
    [17] 杨汉立.国内外石油钻机现状及我国钻机发展探讨.石油机械,2003;31(7):59~63;
    [18] 舒远彬.国内石油钻机技术发展趋势探讨.石油矿场机械,第 27 卷第 1 期,1998;
    [19] 马家骥.我国石油钻机的发展与对策.石油机械,第 5 期,2001;
    [20] 王进全.关于我国石油钻机技术的现状及其研发思考.石油机械,2006;34(1):7~11
    [21] 毛征宇,胡燕平.防爆液压提升机提升速度的电液比例控制系统.矿山机械,第 2 期,2001;
    [22] 赵志魁,黄永宣.微机控制线缆自动排线系统探讨.焦作工学院学报,第 8 期,1996;
    [23] 陶永华,尹怡欣,葛芦生.新型 PID 控制及其应用.北京:机械工业出版社,2001;
    [24] 安建钧,王建宏.ZJ40DBS 变频钻机电传动系统.电器传动自动化,第 24 卷第2 期,2002;
    [25] 张连山.国外自动送钻装置的现状与发展,国外石油机械,第 7 卷第 1 期,1996;
    [26] 安建钧.变频调速恒钻压自动送钻系统.石油机械,2006;34(11):30~34;
    [27] 王兵,高明.绞车电控自动送钻装置离合器形式的探讨.石油机械,2006;34(9):108~110
    [28] 牟翠芝,徐兰,张斌.ADE-I 型自动送钻装置.石油矿场机械,第 5 期,1999;
    [29] 曾广锡.国外钻机自动送钻装置的现状及其在我国的发展前景.石油钻采机械,第 2 期,1985;
    [30] 张连山.钻头自动给进器工作原理与美国三种钻头自动给进器对比分析.石油钻采机械通讯,第 2 期,1980;
    [31] 王克雄,瞿应虎,李观荣.微机自控钻进系统的一些技术问题.石油矿场机械,第 1 期,1995;
    [32] 牛勇.自动钻井装置的理论验正.国外石油机械,第 4 期,1995;
    [33] 曾广锡.气动自动送钻装置.石油机械,第 8 期,1986;
    [34] 杨海波,王洪英.大庆油田自动化钻井技术可行性研究.石油钻探技术,2005;33(2):23~25;
    [35] 史玉升.盘式刹车自动送钻技术.石油机械,第 4 期,1999;
    [36] National Service Manual Model No.6-B Micrometric Drilling Control Armco Steel Corporation;
    [37] Automated Rigs are Coming,Ocean industry.(Aug.1982);
    [38] Crosby,G.E.Automatic Drilling in Mature Stage,Petroleum Engineer,Nov.1970,p.66-73;
    [39] R.Lasara.Automatic Rig Drills faster,safer.World 0il,1987,Jul.47-49;
    [40] 章卫国,卢京潮,吴方向.先进控制理论与方法导论.西北工业大学出版社,2000;
    [41] 苏自武,杨甘生,陈礼仪.利用人工神经网络原理对钻井中钻速的预测.探矿工程(岩土钻掘工程),2005;48(1):48~50
    [42] 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1996;
    [43] 王耀南.智能控制系统—模糊逻辑·专家系统·神经网络控制,长沙:湖南大学出版社,1996
    [44] 李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998;
    [45] 汪树青.先进控制技术及应用.北京:化学工业出版社,2001;
    [46] W.F.Xie,A.B.Rad,and Y.K.Wong.Evaluation of a Hybrid Fuzzy Internal Model Control,Control and Computer,Vol.25,No.3,1997;
    [47] D.A.Rutherford and GC.Blore:The Implementation of Fuzzy Algorithm for Control in Proc.IEEE,Vo1.64,No.4,19;
    [48] Psaltis D.A.et al.Neural Controllers.Proc.IEEE ICNN,San Diego,1987:551-558;
    [49] Strm K.J. Anton J.J. Arzen K.E. Expert Control.Automatic,1986,22(3):16-21;
    [50] Austrom K.J.Directions in intelligent control.In:Plenary Session IFAC InternationalSymposium,ITAC 91,1991:15-17;
    [51] FuK.S. Linear Control Systems and Intelligent Control System:An Intersection of Artificial Intelligence and Automatic Control.IEEE Trans.1971,AC-16 (1):70-72;
    [52] 陶永华,尹怡欣等.新型 PID 控制及其应用.北京:机械工业出版社,1998;
    [53] 史维样,唐建中等.近代机电控制工程.北京:机械工业出版社,1998;
    [54] 何玉彬,徐立勤等.电液伺服协调加载系统的神经网络自学习 PSD 控制.机床与液压,第 3 期,1998;
    [55] Tan.K.K,Lee.T.H,Wang.Q.G.Enhanced Automatic Tuning Procedure for Process Control of PI/PID Controllers.AlChE Journal,42(9),2555-2562,1996;
    [56] D . Caputo . Control the Flow and You Control the speed.Hydraulics&Pneumatics.2000.6;
    [57] The Satellite Automatic Drilling Control System.Martin-Decker Company.
    [58] Alexander Seranens.H∞ Control for Suppressing Stick-Slip in Oil Well Drillings,IEEE Control System Magazine,19-30,1998;
    [59] Graham C.Goodwin,Stefan F.Graebe,Mario E.Salgablo.CONTROL SYSTEM DESIGN,Tsinghua University Press;
    [60] J.Marsik,V.Strejc.Application of Identification-free Algorithms for Adaptive Control,Automatic,Vol.25,No.2,p.273-277,1989;
    [61] Zadeh L.A.Fuzy Sets.Information and control,1965,(8):330-353;
    [62] Boyadjeff,G.I.The Application of Robotics to the Drilling Process,paper SPE 17232 Presented at the 1988 IADC/SPE Drilling Conference , Dallas , Texas ,Feb.28-Mar.2;
    [63] 张连山.石油钻机绞车的设计与计算.石油机械,第 25 卷第 9 期,1997;
    [64] 陈如恒,沈家骏.钻井机械的设计计算.北京:石油工业出版社,1995;
    [65] 杨敏嘉,常玉连.石油钻采设备系统设计.北京:石油工业出版社,2000;
    [66] 张阳春等.国内外石油钻采设备技术水平分析.北京:石油工业出版社,2001;
    [67] 陈如恒.钻井机械的设计计算.北京:石油工业出版社,1995;
    [68] 朱云祖等译.自动化钻井技术译文集.北京:石油工业出版社,1993 年;
    [69] GE Drilling Motors.GE Drilling Equipment.2002;
    [70] Gery Ryan,Jim Reynolds,Ferrier Raitt:New Technology Extend Reach of Stepouts,Petroleum Engineer International,November,1995:29-34;
    [71] Stark,C.L.,and Bergen,J.K.A Smart Computer Helps Solve Drilling Problems,World Oil,Jun.1985,p.184-187;
    [72] 苏彦民.交流调速的控制策略.北京:机械工业出版社,2001;
    [73] 李华德等.交流调速控制系统.北京:电子工业出版社,2003;
    [74] 黄俊,王兆安.电力电子变流技术.北京:机械工业出版社,1993;
    [75] K . M . Tsang . Adaptive Control of Power Converters With Fuzzy Logic Enhancement.Control and Computer,Vol.25,1997,No.2,37-41;
    [76] S.R.Bowes.Advanced regular-sampled PWM control techniques for drives and static power converters.IEEE Trans.on,1995,vol.42(4):367-373;
    [77] Rr.wu,S.B.Dewan,and G.R.Slemon.APWMAC-to-DC converter with fixed switching frequency.IEEE Tran.on IA,1990,26 (5);
    [78] Sedrak,Daniel.Closed-loop Electronic Valving and the Application of Variable Voltage Variable Frequency in Hydraulics.Elevator World v47 n9 1999
    [79] 樊启蕴,李维明等.用盘式刹车取代带刹车的分析与建议.石油机械,第 2 卷第 8 期,1994;
    [80] 高向前,齐明侠等.2000 米钻机液控盘式刹车的设计.石油机械,第 21 卷第 5期,1993;
    [81] 张嗣伟,樊启蕴.关于发展我国钻机盘式刹车技术的几点认识.石油机械,第28 卷第 1 期,2000;
    [82] Varco,Technical Bulletin:Automated hoisting system,June2000:7-12;
    [83] Varco's Automated Hoisting System Introduction.VARCO.2002;
    [84] S.Poli,F.Donati,D.Ragnitz,etc.Advanced Tools for Advanced Wells:Rotary Closed-Loop Drilling System-Results of Prototype Field Testing . SPEDrilling&Completion,Vol.13,1998,No.21,67-72;
    [85] Airflex clutches,brackets,rotor seals and quick release valves for oil and gas applications Eaton Investments Co.,Ltd;
    [86] Reinhold,WB.,and C1ose,D.A.:Drilling Optimization-The Driller’s Role,SPE Drilling&Completion,Vol.12,No.1,5-12,1997;
    [87] 楼顺天,胡昌华,张伟.基于 MATLAB 的系统分析与设计——模糊系统.西安:西安电子科技大学出版社,2001;
    [88] 尚涛,石端伟,安宁,张季义.工程计算可视化与 MATLAB 实现.武汉:武汉大学出版社,2002;
    [89] 刘航等.MATLAB 在模糊控制系统设计与仿真中的应用.计算机应用研究,第1 期,2001
    [90] 朱小平,朱良英,职黎光.钻机自动送钻模拟实验装置加载系统的研究.石油机械,第 10 期,2002;
    [91] 王克雄等.微机自控钻进系统的一些技术问题,石油矿场机械,第 24 卷第 1 期,1995;
    [92] 史玉升.自动送钻过程安全监控系统设计与计算机仿真.石油机械,第 3 期,1999;
    [93] 史玉升.基于神经网络的自动送钻过程安全监控.石油矿场机械,第 3 期,1999;
    [94] 吴伟,赵玉龙,林廷析等.自动送钻模拟加载实验的自适应模糊控制.西安石油学院学报(自然科学版),第 9 期,2001;
    [95] 王晓华,林立.钻机盘式刹车自动送钻的模糊控制研究.制造业自动化,2000;22(5):52~54;
    [96] 何克忠等编著.计算机控制系统,北京:清华大学出版社,1998;
    [97] 杨天怡等编著.微型计算机控制技术.重庆:重庆大学出版社,1996;
    [98] 冯勇编.现代计算机控制系统.哈尔滨:哈尔滨工业大学出版社,1997;
    [99] 骆涵秀,李世伦,朱捷等.机电控制.杭州:浙江大学出版社,1994;
    [100] 郭宗仁.可编程序控制器及其通讯网络技术.北京:人民邮电出版社,1999;
    [101] 蒋静坪.计算机实时控制系统.杭州:浙江大学出版社,1992;
    [102] 朱彤,任庆昌.PID——模糊控制的探讨.电气传动自动化,第 6 期,2002;
    [103] 杨秀媛,董征,唐宝.基于模糊聚类分析的无功电压控制分区.中国电机工程学报,2006;26(22):6~10;
    [104] Deur Josko,Peric Nedjeljko.Analysis of Speed control System for Electrical Drives with Elastic Transmission . IEEE International Symposium on Industrial Electronics.1999.2;
    [105] Imamura,Takashi,Kuroiwa,Tetsuya,Terashima,Kazuhiko,Takemoto,Hidehiro.Design and Tension Control of Filament Winding System.Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.1999.2;
    [106] Ken Elmer.Dr Keith Henthorn,Dr Peter Slellern.Self Heating Effects on the Dynamics of a Proportional Control valve.Measurement & Control.May 1998;
    [107] Schel , T . S . A method for Closed Loop Automatic Tuning of PID Controlers.Automatica.28(3),1992;
    [108] Astrom.K.J,Hagglund.T,and Wallenborg.A.Automatic Tuning of Digital Controllers with Applications to HVAC Plants.Automatica 29(5),1333-1343,1993;
    [109] 王以法.人工智能钻井实时控制专家系统研究.石油学报,第 22 卷第 2 期 2001;
    [110] 刘曙光,魏俊民,竺志超.模糊控制技术.北京:中国纺织出版社,2001;
    [111] 章卫国,杨向忠.模糊控制理论与应用.西安:西北工业大学出版社,1999;
    [112] 王大庆,黄勇等.一类模型参考模糊自适应控制器的研究.机床与液压,第 5期,2001;
    [113] 李艳等.模糊控制在电气传动中的运用现状及前景.电气传动,第 2 期,1997;
    [114] 朱小平.钻机自动送钻系统模糊最优控制.石油矿场机械,2004;33(2):22~24;
    [115] 张国山,郑明建.石油钻机主电动机自动送钻系统的设计方案.石油机械,2003;31(5):14~18;
    [116] 张红杰,李爱中.一种具有自学习功能模糊控制器的设计与实现,北方交通大学学报,第 21 卷第 6 期,1997;
    [117] 李江成.大功率双电机拖动系统模糊控制算法的研究.工业控制与应用,2006;25(10):34~37;
    [118] T.W.Vanech.Fuzzy Guidance Controller for an Autonomous Boat,IEEE Control System Magazine,43-51,1997;
    [119] 闻新,周露,李东江等.Matlab 模糊逻辑工具箱的分析和应用.北京:科学出版社,2001;
    [120] 史玉升.基于人工神经网络的钻压优化模型的建模方法.地球科学——中国地质大学学报,第 24 卷第 4 期,1999;
    [121] 金晓明,荣冈.自适应模糊控制的新进展,信息与控制,第 25 卷第 4 期,1996;
    [122] WANG Yaonan.An Adaptive Control Using Fuzzy Logic Neural Network and Its Application,Control Theory and Application,Vol 12,No.4,437-444,1995;
    [123] Saridis G.N.Self-organizing control of stochastic systems.New York:Marsel Dekker,1977.1-20;
    [124] Saridis G.N.Toward the realization of intelligent control.Proc.of the IEEE,1979,67(8):1115-1133;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700