流体阻尼器特性及其对整星隔振性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整星隔振技术是利用隔振器改造或替代原有星箭适配器,有效改善卫星在发射过程中的动力学环境的一种方法。这里,星箭适配器(也称卫星支架)是连接卫星和运载火箭的部段。其中以流体阻尼器为阻尼元件搭建多作动器隔振平台是实现整星隔振技术的一种重要方式。与其它阻尼形式相比,流体阻尼具有工作变形小,但可提供较大作动力的特点,并且其隔振系统的阻尼和刚度可以相互独立。为了给流体阻尼器及隔振平台的设计及应用提供参考依据,本文以流体阻尼器为研究对象,结合其在多作动器隔振平台中的应用,对影响流体阻尼器隔振特性的非线性因素进行了深入的理论分析和实验研究。
     本文首先通过研究流体阻尼的形成机制,建立流体阻尼力的函数表达式。并结合整星隔振平台对作动器的要求,设计了几种不同结构形式的流体阻尼隔振器,对它们进行相应的理论分析和实验验证。
     针对实验验证时活塞式流体阻尼器在不同激励幅值条件下出现明显不同的隔振特性的现象,提出用双线性滞后模型描述阻尼器中存在的摩擦力,建立单个阻尼器的非线性动力学方程,并利用谐波平衡法分析摩擦力对隔振性能的影响。然后分别在采用两参数作动器模型和三参数作动器模型的基础上考虑单个作动器上的摩擦力作用,建立隔振平台的非线性动力学模型并进行分析。结果表明,无论单个隔振器,还是隔振平台,由于摩擦力作用,均存在粘着和滑动两种状态,当激励幅值较小时,摩擦力表现为刚度,使系统共振频率提高,隔振带宽减小。
     对波纹管式流体阻尼器进行实验验证,结果发现阻尼器具有两自由度系统的特征。因此提出考虑流体附加质量的作用,并计入流体的二次非线性阻尼,建立阻尼器的两自由度模型,较好的解释了实验现象。由此建立相应的八作动器隔振平台的动力学模型,并讨论流体质量和非线性阻尼对隔振性能的影响。结果表明,当阻尼值较小时,流体质量的作用不可忽视,阻尼器在高频段会出现明显的共振,从而降低隔振效果;当阻尼较大时,流体质量作用可以被忽略,系统可简化为单自由度三参数模型。
     流体阻尼的主要特征是能量转换和能量耗散。根据流体的粘温特性,考虑流体温度与阻尼力之间的相互作用,在动力学方程的基础上附加流体阻尼器的热平衡方程,建立流体阻尼器的热动力学模型。并采用短时傅立叶变换对该时变非线性系统进行时频分析,讨论粘性发热对隔振性能的影响。结果发现,随着时间推移,系统温度升高,阻尼降低,隔振特性发生改变,共振频率及共振峰值发生变化,直到系统达到动平衡状态。
     在实际工况中,多种非线性因素相互耦合,同时发生作用,因此最后分析了同时考虑流体粘性发热和摩擦力作用的隔振器模型,结果发现当存在摩擦力时,粘性发热作用的影响可以忽略。对波纹管式流体阻尼器,在两自由度模型基础上同时考虑粘性发热作用,建立热动力学模型。结果发现,当阻尼值较小时,粘性发热作用影响可忽略;但是当阻尼较大时,粘性发热对隔振性能存在影响,其趋势与单自由度三参数模型相同。
Compared to other damping, the fluid damping provides a higher load capacity with a smaller displacement. And the stiffness and damping coefficient of the isolator are completely independent. The idea of Whole-Spacecraft Vibration Isolation (WSVI) is to put an isolator into or use it to replace a payload attach fitting, which is a section connecting the launch vehicle and the spacecraft, and can effectively improve the dynamic environment of the satellite. The Multi-Actuator Vibration Isolation Platform (MVIP), in which the fluid damper is selected as actuator, is an important method of WSVI. To provide the references to the design of the fluid damper and platform, in this dissertation, based on the fluid damper and its application in MVIP, the nonlinear elements which affect the characteristics of the fluid damper are investigated both theoretically and experimentally.
     With the research of the mechanism of fluid damping, the expression of the fluid damping force is established. And to meet the requirement on the actuator of MVIP, some types of the fluid damper is designed, analyzed and tested.
     During the experiment of fluid damper with a piston, we found that the performance of damper is different with different excitation amplitude. Based on the bi-linear hysteresis model which is used to describe the friction force in the damper, the nonlinear dynamic equation of the damper is established and solved by the harmonic balance method. And the effect of the friction on the performance of the damper is investigated. Moreover, considering the effect of the friction, the nonlinear dynamic models of an MVIP with eight actuators (OVIP) are established with two kinds of the passive actuator: the two-parameter model and the three-parameter model. The results show that no matter what in single damper, or OVIP, the friction interface has two states: sticking and slipping. Under the small excitation amplitude, the friction force behaves as spring and causes a shift of resonant frequency.
     From the experiment of the fluid damper with bellows, it is found that the characteristic of the damper behaves as a two degree-of-freedom system. So a two degree-of-freedom model, which accounts for the mass and the nonlinear damping of the fluid, is established. Furthermore, the dynamic equation of the OVIP which is composed of this type of damper is developed. And the effect of the fluid mass and the nonlinear damping on the performance of the isolator is discussed. The results indicate that when the damping is small, the effect of the fluid mass must be taken into account, which will cause a resonance in high frequencies and thus reduce the performance of vibration isolation. If the damping is large enough, the effect of the fluid mass can be negligible and the model of damper can be simplified as the three-parameter model.
     The energy transformation and heat exchange are the major characteristics of a fluid damping. Based on the temperature-viscosity characteristics of the fluid, the interaction effect of the fluid damping force and the fluid temperature is studied. And the thermodynamic equation of the damper, which includes a heat balance equation, is established. The Short Time Fourier Transform is applied to analyze the dynamic performance in the time and frequency domain for dealing with the time variance and the nonlinearity of the system induced by the effect of viscous heating. It is found that with the past of the time, the temperature of the damper increased, and thus resulted in a shift of the resonance frequency and the changes of the resonance amplitude, until the system reaches a dynamic balance.
     In the actual condition, many nonlinear factors operate simultaneously and couple with each other. So the combining effect of viscous heating and friction force in the damper with a piston is investigated. And it is concluded from the numerical results that when the friction force is taken into account, the effect of the viscous heating on the performance of vibration isolation can be negligible. In consideration of the effect of the viscous heating, the thermodynamic model of the damper with bellows is developed based on the two degrees-of-freedom system. Analysis shows that with a small damping coefficient, the effect of the viscous heating can be neglected. But in the condition of a large damping coefficient, the effect of viscous heating must be taken into account. In addition, the property of system is same as the condition of the single degree-of-freedom.
引文
1 P. Wilke, C. Johnson, P. Grosserode. Whole-Spacecraft Vibration Isolation for Broadband Attenuation. Aerospace Conference Proceeding. IEEE, 2000, 4: 315~321
    2 赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨. 航天器工程. 2001, 10(3):30~37
    3 A. S. Bicos, C. Johnson, L. P. Davis. Need for and Benefits of Launch Vibration Isolation. SPIE Proceedings, 1997, 3045: 14~19.
    4 张阿舟.实用振动工程(2)—振动控制与设计.航空工业出版社, 1997: 1~10
    5 D. Sciulli. Dynamics and Control for Vibration Isolation Design. Dissertation of Virginia Polytechnic Institute. 1997: 1~8
    6 D. Sciulli, D. J. Inman. Isolation Design for Systems with Flexible Base and Equipment. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3327: 378~386
    7 D. Sciulli, D. J. Inman. Isolation Design for a Flexible System. Journal of Sound and Vibration. 1998, 216(2): 251~267
    8 X. Huang, S. J. Elliott and M. J. Brennan. Active Isolation of a Flexible Structure from Base Vibration. Journal of Sound and Vibration. 2003, 263: 357~376
    9 B. Bavindra, A. K. Mallik. Performance of Non-Linear Vibration Isolators under Harmonic Excitation. Journal of Sound and Vibration. 1994, 170(3): 325~337
    10 J. A. Harris. Design Principles for Vibration Isolation and Damping with Elastomers Including Nonlinearity. Rubber Chemistry and Technology. 1989, 62: 515~528
    11 C. L. Kirk. Non-Linear Random Vibration Isolators. Journal of Sound and Vibration. 1988, 124: 157~182
    12 W. H. Lin, A. K. Chopra. Earthquake Response of Elastic SDF Systems with Non-Linear Fluid Viscous Dampers. Earthquake Engineering and Structure Dynamics. 2002, 31: 1623~1642
    13 王毅,朱礼文,王明宇等.大型运载火箭动力学关键技术及其进展综述. 导弹与航天运载技术. 2000, 243(1): 29~37
    14 W. M. Haddad, A. Razavi, D. C. Hyland. Active Vibration Isolation of Multi-Degree of Freedom Systems. Proceedings of the American Control Conference, 1997: 3537~3541
    15 M. Schmid, P. Varga. Analysis of Vibration-Isolating System for Scaning Tunneling Microscopes. Ultramicroscopy. 1992, 42-44:1610~1615
    16 陈玉强.双层隔振系统振动主动控制技术研究. 哈尔滨工程大学工学博士学位论文. 2002: 34~45
    17 J. Spanos, Z. Rahman, G. Blackwood. A Soft 6-Axis Active Vibration Isolator. Proceedings of the American Control Conference. 1995, 1:412~416
    18 T. Fujita, T. Honma, H. Kondo, T. Kobayashi, et al. Active 6-DOF Microvibration Control System Using Giant Magnetostrictive Actuator. Trans. Japan Soc. Mech. Eng. 1996: 55~61
    19 Z. Geng, S. H. Leonard. Six-Degree-of-Freedom Active Vibration Isolation Using a Steward Platform Mechanism. Journal of Robotic Systems. 1993, (10): 725~744
    20 A. B. Alam, F. Gandhi, K. W. Wang. An Improved Constrained Layer Damping Treatment Design for High Damping and Low Interlaminar Stresses. Proceedings of SPIE-In Smart Structures and Material 2000: Damping and Isolation. 2000, 3989: 2~13
    21 R. B. Malla, H. R. A Jahromi, M. L. Accorsi. Passive Vibration Suppression in Truss-Type Structures with Tubular Members. Journal of Spacecraft and Rockets. 2000, 37(1): 86~92
    22 C. D. Johnson, D. A. Kienholz. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers. AIAA Journal. 1982, 20(9): 1284~1290
    23 C. W. Bert, J. D. Ray. Vibrations of Orthotropic Sandwich Conical Shells with Free Edges. Int. J. Mech. Sci. 1969, 11: 767~779
    24 杜华军,黄文虎,邹振祝.航天支架结构的被动振动控制.应用力学学报. 2002, 19(3): 10~13
    25 杜华军,于百胜,郑钢铁,黄文虎.蜂窝锥壳卫星适配器约束阻尼层振动抑制分析.应用力学学报. 2003, 20(3): 5~8
    26 杜华军.基于约束阻尼的蜂窝锥壳卫星适配器振动抑制研究. 哈尔滨工业大学博士论文. 2003
    27 A. Rittweger, J. Albus, E. Hornung. Passive Damping Devices for Aerospace Structures. Acta Astronautica. 2002, 50(10): 597~608
    28 L. P. Davis, B. J. Workman, E. H. Anderson. Design of a D-Strut? and Its Application Results in the JPL, MIT and LARC Test Beds. American Institute of Aeronautics and Astronautics Structural Dynamics Meeting. Dallas, Texas. 1992: 1~10
    29 P. Davis, T. Allen, J.Vise. A Launch Isolation System for the Shuttle Resupplied Hubble Space Telescope Solar Array. 63rd Shock and Vibration Symposium, Las Cruces, NM, 1992: 1~10
    30 C. H. 汉森, S. D. 斯奈德.仪垂杰 译.噪声和振动的主动控制.科学出版社, 2002: 759~833
    31 R. C. Fenn, J. R. Downer, V. Gondhalekar, et al. An Active Magnetic Suspension for Space-Based Microgravity isolation. ASME Publication NCA. 1990, (8): 49~56
    32 R. S. Sharp, S. A. Hassan. On the Performance Capabilities of Active Automobile Suspension Systems of Limited Bandwidth. Vehicle System Dynamics. 1987, 16: 213~225
    33 C. E. Kaplow, J. R. Velman. Active Local Vibration Isolation Applied to a Flexible Space Telescope. Journal of Guidance and Control. 1980, (3): 227~233
    34 K. Sang-Myeong, S. J. Elliott, M. J. Brennan. Decentralized Control for Multichannel Active Vibration Isolation. IEEE Transactions on Control Systems Technology. 2001, 9: 93~100
    35 丁文镜. 减振理论. 清华大学出版社, 1988: 286~306
    36 徐庆善. 隔振技术的进展与动态, 机械强度. 1994, 16: 37~41
    37 G. W Bohannan, V. H. Schmidt, R. J. Conant, et al. Piezoelectric Polymer Actuators in a Vibration Isolation Application. Proceedings of SPIE-The International Society for Optical Engineering. 2000, 3987: 331~342
    38 S. Saadat, J. Salichs, M. Noori, et al. An Overview of Vibration and Seismic Applications of NiTi Shape Memory Alloy. Smart Materials and Structures. 2002, 11: 218~224
    39 K. Nagaya. Analysis of a High Tc Superconducting Levitation System with Vibration Isolation Control. IEEE Transactions on Magnetics. 1996, 32: 445~452
    40 K. G. Ahn, H. J. Pahk, M. Y. Jung, et al. A Hybrid-Type Active Vibration Isolation System Using Neural Networks. Journal of Sound and Vibration. 1996, 192(4): 793~805
    41 K. Mizutani, Y. Fujita, H. Ohmori. Hybrid Control System for Microvibration Isolation. International Workshop on Advanced Motion Control, AMC. 1996, 2: 577~582
    42 E. Flint, M. Evert, E. Anderson, et al. Active/Passive Counter-Force Vibration Control and Isolation Systems. IEEE Aerospace Conference Proceedings. 2000, 4: 285~298
    43 J. Sullivan, Z. Rahman, R. Cobb, et al. Closed-Loop Performance of a Vibration Isolation and Suppression System. Proceeding of the American Control Conference, Albuquerque, New Mexico. 1997, (6): 3974~3978
    44 H. Z. Fei, G. T. Zheng, Z. G. Liu. An Investigation into Active Vibration Isolation Based on Predictive Control - Part I: Energy Source Control. Journal of Sound and Vibration. 2006, 296 (1-2): 195~208
    45 戴德沛主编. 阻尼技术的工程应用. 清华大学出版社, 1991: 5~20
    46 G. A. Lesieutre, K. Govindswammy. Finite Element Modeling of Frequency-Dependent and Temperature-Dependent Dynamic Behavior of Viscoelastic Materials in Simple Shear. International Journal of Solids Structures. 1996, 33(3): 419~432
    47 W. Yaming. Modeling, Analysis and Comparative Study of Several Seismic Passive Protective Systems for Structures. Master Thesis. Rice University. 1997
    48 舒歌群,苏炎玲,吕兴才. 复合式减振器对柴油机噪声影响的试验研究. 汽车工程. 2003, 25(5): 460~462
    49 黄金威,杨朋军,于云峰等,惯性平台橡胶减振器弹性特性的有限元分析.机械设计. 2006, 23(11): 51~54
    50 董彦涛.电子设备中隔振器的选用. 声学与电子工程. 2005,80(4):46~49
    51 周云, 徐赵东等. 组合式铅橡胶复合阻尼器的性能试验研究. 世界地震工程. 2000, 16(2): 35~40
    52 林胜, 袁健, 贺才春. 摩擦阻尼橡胶隔振器的研究. 噪声与振动控制. 2006, (3): 18~21
    53 E. J. Berger, M. R. Begley, M. Mahajani. Structural Dynamic Effects on Interface Response: Formulation and Simulation under Partial Slipping Conditions.ASME. Journal of Applied Mechanics. 2000, 67: 785~792
    54 A.V. Bhaskararao, R.S. Jangid. Harmonic Response of Adjacent Structures Connected with a Friction Damper. Journal of Vibration and Sound. 2006, 292(3-5): 710~725
    55 张强星, Sainsbury M G.. 干摩擦振动系统的简化.振动与冲击. 1987, 21(1): 42~57
    56 白鸿柏, 黄协清. 含有三次非线性的粘性阻尼双线性滞迟隔振系统. 振动与冲击. 1998, 17(1): 5~8
    57 W. D. Iwan. On a Class of Models for the Yielding Behavior of Continuous and Composite Systems. ASME Transactions, Journal of Applied Mechanics. 1967, 34(3-5): 612~617
    58 E. J. Berge, C. M. Krousgrill. On Friction Damping Modeling Using Bilinear Hysteresis Elements. ASME Transactions, Journal of Vibration and Acoustics. 2002, 124(3): 367~375
    59 王佳民, 裴听国. 惯性平台新型金属橡胶减振器非线性特性分析. 宇航学报. 2004, 25(3): 256~261
    60 敖宏瑞,姜洪源,夏宇宏等. 金属橡胶干摩擦阻尼系统动态性能分析方法的研究. 中国机械工程. 2003, 14(23):2053~2056
    61 白鸿柏,张培林,郑坚等. 滞迟振动系统及其工程应用.科学出版社, 2002
    62 K. Tetsuo et al. Hydraulic Damper. US. Patent. No 4834222
    63 L. P. Davis. Vibration Absorbing Damper. US Patent. No 5249783
    64 李世民,吕振华. 汽车筒式液阻减振器技术的发展. 汽车技术. 2001, (8): 10~16
    65 W. C. Park, S. B. Choi, M. S. Suh.Material Characteristics of an ER Fluid and its Influence on Damping Forces of an ER Damper Part Ⅱ: Damping Forces. Materials and Design. 1999, 20:325~330
    66 S. B. Choi, S. K. Lee, Y. P. Park. A Hysteresis Model for the Field-dependent Damping Force of a Magnetorheological Damper. Journal of Sound and Vibration. 2001, 245(2): 375~383
    67 N. Makris, M. C. Constantinou. Viscous Damper: Testing, Modeling and Application in Vibration of Seismic Isolation. NCEERR ep.90-0028, State Univ.of New York at Bafa,Bafalo, N. Y., 1990.
    68 叶正强. 粘滞流体阻尼器消能减振技术的理论、试验与应用研究. 东南大学博士学位论文. 2003
    69 P. Davis, D. Cunningham, J. Harrell. Advanced 1.5Hz Passive Viscous Isolation System. The 35th AIAA SDM Conference, Hilton Head, South Carolina. 1994:1~11
    70 P. Davis, D. Cunningham, A. Bicos, M. Enright. Adaptable Passive Viscous Damper (An Adaptable D-Strut?). SPIE North American Conference, Orlando, Florida. 1994:1~12
    71 P. Davis, D. Carter, T. T. Hyde. Second Generation Hybrid D-Strut. SPIE Smart Structures and Materials Conference. San Diego, California. 1995
    72 S. Bennett, T. Davis, P. Wilke, G. Fosness. A Passive Damper Exhibiting the Ideal Dashpot Characteristic, F=CV. Proceedings of SPIE - The International Society for Optical Engineering, 1997, 3045: 259-267
    73 武田寿一(日).纪晓惠,陈良,那宁译.建筑物隔震防振与控振. 中国建筑工业出版社, 1997: 20~24
    74 欧进萍, 丁建华. 油缸间隙式阻尼器理论与试验研究. 地震工程与工程振动. 1999, 19(4): 82~89
    75 G. Popov, S. Sankar. Modeling and Analysis of Non-Linear Orifice Type Damping in Vibration Isolators. J. of Sound and Vibration. 1995, 183(5): 751~764
    76 F. H. Besinger, D. Cebon, D. J. Cole. Damper Models for Heavy Vehicle-Ride Dynamics. Vehicle System Dynamics. 1995, 24(1): 35~64
    77 Y. Q. Liu, J. W. Zhang. Nonlinear Dynamic Responses of Twin-Tube Hydraulic Shock Absorber. Mechanics Research Communications. 2002, 29:359~365
    78 刘淑艳,杨华,阎为革. 节流式磁流体阻尼可调减震器的实验研究. 汽车工程. 1998, 20(1):37~42
    79 蔡家明. 液压减振器阻尼特性的非线性模拟及分析. 上海汽车. 1997, (6):32~35
    80 C. J. Black, N. Makris. Viscous Heating of Fluid Dampers: ExperimentalStudies. Proceeding of SPIE-The International Society for Optical Engineering. 2000, 3989:256~265
    81 N. Makris. Viscous Heating of Fluid Dampers Ⅰ:Small Amplitude Motions. Journal of Engineering Mechanics, ASCE. 1998, 124(11) :1210~1216
    82 N. Makris, Y. Rooussos. Viscous Heating of Fluid Dampers Ⅱ :Large-Amplitude Motions. Journal of Engineering Mechanics, ASCE. 1998, 124(11): 1217~1223
    83 W. D. Stefaan, S. Randy, V. B. Gino, et al. Physical Modeling of the Hysteretic Behavior of Automotive Shock Absorbers. SAE. 970101: 63~75
    84 J. Wagner, X. Liu. Nonlinear Modeling and Control of Automotive Vibration Isolation Systems. Processing of the American Control Conference, Chicago, Illinois. 2000, 1: 564~568
    85 W. N. Patten, C. Mo. Kuehn, J. Lee. A Primer on Design of Semiactive Vibration Absorbers. J. of Engineering Mechanics. 1998, 124(1): 61~68
    86 周纪卿,朱因远. 非线性振动. 西安交通大学出版社, 1998: 110~140
    87 C. D. Johnson, P. Wilke. Protecting Satellite from the Dynamics of the Launch Environment. CSA papers. 2003: 1~14
    88 K. K. Denoyer, C. D. Johnson. Recent Achievements in Vibration Isolation Systems for Space Launch and On-Orbit Application. CSA papers. 2001: 1~10
    89 D. L. Edberg, C. D. Johnson, L. P Davis, E. R. Fosness. On the Development of a Launch Vibration Isolation System. Proceedings of the SPIE Smart Structures Conference, San Diego, CA. 1997, 3-6: 31~37
    90 C. D. Johnson, P. S. Wilke, P. J. Grosserode. Whole-Spacecraft Vibration Isolation System for the GTO/Taurus Mission. SPIE Proceedings. 1999, 3672: 175~185
    91 C. D. Johson, P. S. Wilke, K R. Darling. Multi-axis Whole-Spacecraft Vibration Isolation for Small Launch Vehicles. SPIE Conference on Smart Structures and Materials, Newport Beach, CA. 2001, 4331: 151~161
    92 P. S. Wilke, C. D.Johnson. Payload Isolation System for Launch Vehicles. Proceedings of SPIE. Smart Structures and Materials –Passive Damping and Isolation. 1997, 3045: 20~30
    93 D. Sciulli, K. K. Denoyer, E. R. Fosness. Program Development of Whole-Spacecraft Launch Isolation Systems at the U.S. Air Force Research Laboratory. 50th International Astronautical Congress. Amsterdam, the Netherlands. 1999:1~6
    94 D. L. Edberg, B. Bruce, G. James, et al. Passive and Active Launch Vibration Studies in the LVIS Program. Proceedings of SPIE-The International Society for Optical Engineering. 1998, 3327: 411~422
    95 K. Farshad, R. Jahangir, R. E. Scott A Three Degrees-of-Freedom Adaptive-Passive Isolator for Launch Vehicle Payloads. Proceeding of SPIE. 2000, 164~175
    96 G. T. Zheng. Parametric Studies of the Whole Spacecraft Vibration Isolation. AIAA Journal. 2003, 41: 1839~1841
    97 G. G. Karahalis. Whole Spacecraft Vibration Isolation. Master Thesis, Air Force Institute of Technology. March 1999
    98 D. Sciulli, S F. Griffin. Hybrid Launch Isolation System. Part of the SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies. Newport Beach, California. 1999, 3674: 352~359
    99 刘丽坤. 八作动器隔振平台及整星隔振研究. 哈尔滨工业大学博士论文. 2005
    100 王战. 整星隔振平台的优化设计和设计过程研究. 哈尔滨工业大学硕士论文. 2005
    101 L. K. Liu, L. Liang, G. T. Zheng, W. H. Huang. Dynamic Design of Octostrut Platform for Launch Stage Whole-Spacecraft Vibration Isolation, Journal of Spacecraft and Rockets. 2005, 42(2): 654~662
    102 费红姿. 基于预测控制的主动隔振研究. 哈尔滨工业大学博士论文. 2004.5
    103 Q.J.Yang, G. T. Zheng, W. H. Huang. Active Vibration Isolation of Rigid Body Using a Pneumatic Octostrut Platform. Journal of Spacecraft and Rockets. 2006, 43(5): 1149~1152
    104 盛敬超.工程流体力学.机械工业出版社, 1988: 173~175
    105 徐开先.波纹管类组件的制造及其应用.机械工业出版社, 1998: 31~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700