WC颗粒增强钢基表层复合材料的热震试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,陶瓷颗粒增强钢铁基表面复合材料研究得到了较好的发展,但由于基体和增强颗粒、基材与复合层之间热物理性能的不匹配问题使得其热震性能不高,限制了该类复合材料在激冷激热等特定工况下的应用。针对于此,论文研究了WC颗粒增强高铬钢基表层复合材料的制备工艺和抗热震性能,重点考察了加热温度、陶瓷WC颗粒体积分数等参数对其抗热震性能的影响,并对裂纹的萌生和扩展进行了初步研究。
     论文采用真空实型负压(V-EPC)铸渗工艺,成功制备了不同WC颗粒体积分数的高铬高铬钢基表层复合材料,碳化钨颗粒与基体的界面结合为冶金结合,过渡区过渡平缓,复合效果较好。
     热震实验结果表明:随着温度的升高,裂纹萌生扩展速度增大,在700℃与800℃的热震实验中,WC颗粒发生完全氧化,在金相制备过程中即发生粉化,于复合层表面形成孔洞;随着WC颗粒体积分数的变化,基体组织与基体体积分数均随之改变,从而影响了裂纹的萌生扩展速度与走向。
     为了研究复合材料的热疲劳失效机理,论文研究了复合材料的高温氧化行为,结果表明:高温氧化削弱了复合层的抗疲劳破坏能力,且随着温度的升高,氧化反应速度加快。另外,WC颗粒在高于600℃时氧化速度明显增大,易氧化为结构疏松的W03,对裂纹的扩展及材料的失效速度均产生影响。
     结合复合材料的高温氧化行为和热疲劳裂纹萌生、扩展的形貌观察指出,陶瓷颗粒增强高铬钢基表层复合材料的热疲劳失效是高温氧化和材料热应力两者共同作用的结果,在复合层自身的缺陷处及WC颗粒与基体的结合界面处裂纹开始萌生、扩展。
     因此,为提高陶瓷颗粒增强金属基表层复合材料的抗热震性能,应选择高温下抗氧化性能较好的陶瓷颗粒作为增强体,同时,易将陶瓷颗粒与金属的热膨胀系数、弹性模量等失配程度控制在较小的范围内。
Recently, steel-based surface composites reinforced with hard ceramic particles become a new class of advanced materials, but the application in thermal shock specific conditions was limited because the thermal physical properties did not match between substrate and composite layer, matrix and reinforcing particulate in the composite layer, which led to of their thermal shock performance is low. In this paper, the preparation process and thermal shock resistance of WC particles reinforced steel substrate surface composites were studied, and effects of heating temperature and WC particles volume fraction on their thermal shock resistance, crack initiation and expansion were focused on.
     In the paper, the high-carbon chromium steel substrate surface composites containing different volume fractions of WC particles were fabricated successfully by V-EPC infiltrating casting process. In the surface composites, interface between particles and matrix is metallurgical bonding and the transitional zone is gentle.
     The thermal shock experiment results showed that, with the increase in temperature, the velocity of crack initiation and expansion increased. During 700℃to 800℃temperature, WC particles were completely oxidized and changed into powder during the preparation of metallographic, so that some pinholes were found in the surface of the composite layer. When the volume fraction of WC particles is changed, the metallographic of matrix and the volume fraction of the matrix are changed, thus affecting the rate of crack initiation and direction of expansion.
     In order to study thermal fatigue failure mechanism, high-temperature oxidation behavior of the composite were studied, the results showed that, high-temperature oxidation behavior of the composite layer could decrease their ability of anti-fatigue damage, and with the increase in the temperature the oxidation rate become faster. When the test temperature was above 650℃, oxidation rate of WC particles was increased obviously, and oxidation product was WO3, which was osteoporosis structure and harmful to the thermal shock resistance of the composites.
     According to high-temperature oxidation behavior and the crack initiation and expansion patterns after thermal fatigue, the thermal fatigue failure mechanism of the surface composites was discussed. The results showed that, the thermal fatigue failure of the surface composites was the result of harmonious effects of the high-temperature oxidation and thermal stress, and crack initiation and expansion occured in the interface of WC particles and matrices and the defects of the composite layer.
     In order to enhance the thermal shock resistance of ceramic particles reinforced metal substrate surface composites, ceramic particles should have good anti-oxidant capacity at high temperature, and compared with metal sustrate, the thermal expansion coefficient and elastic modulus of the ceramic particles should be controlled in little difference.
引文
参考文献
    [1]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术,2001,(2):42-45.
    [2]王俊英,杨启志,林化春.金属基复合材料的进展、问题与前景展望[J].青岛建筑工程学院学报,1999,20(4):90-91.
    [3]M. M. Stack, D. Pena. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps [J]. Wear,1997,203-204:489-497.
    [4]B. A. Lindslay, A.R. Mander. Solid particle erosion of an Fe-Fe3C metal matrix composite[J]. Metallurgical and Materials Transactions,1998,29A (3):1071-1079.
    [5]梁作俭.碳化钨颗粒增强金属基复合材料磨损性能研究[硕士学位论文],西安交通大学,2000.
    [6]李卫.耐磨钢铁件的市场与生产[J].铸造.2004,53(12):958-959.
    [7]华磊,宋月鹏,冯承明.铸渗法制造表面耐磨复合材料的工艺进展[J].现代铸铁,2002(2):25-27.
    [8]S. F. Corbin, D. S. Wilkonson. Influence of matrix strength and damage accumulationon the mechanical response of a particulate metal matrix composite [J]. Acta Metallurgica et Materialia,1994,42 (4):1329-1335.
    [9]王恩泽,郑燕青,邢建东等.铸渗法制备颗粒增强钢基复合材料的研究[J],复合材料学报,1998,15(2):12-17
    []0]蒋业华,周荣,卢德宏等.渣浆泵用WC/铁基表面复合材料的研究[J],铸造2002,51(3):170-172.
    [11]Bryggman, U.Lindqvist, J.O. Non-Ferrous Materials, Vol.6 [M]. Metal Powder Industries Federation, Princeton,1992.
    [12]Panchal, P.M., Vela,T. Robisch, T. Fabrication of particulate Reinforced metal composites [J]. ASM International, Metals Park, OH,1990,245-260.
    [13]E. Pagounis, M. Talvitie, V. K. Lindroos. Influence of the Metal/Ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites [J]. Composites Science and Technology.1996,56:1329-1337.
    [14]E. Pagounis, V. K. Lindroos. Processing and properties of particulate reinforce steel matrix composites [J]. Materials Science and Engineering A.1998, 246:221-234.
    [15]黄民建.颗粒增强铸造金属基复合材料[J].湖南冶金,2001(1):44-47.
    [16]郭小军.铸渗法制取颗粒增强钢基复合材料的研究:[硕士学位论文].沈阳:东北大学,2001
    [17]李祖来,蒋业华,周荣.铸渗法制备钢铁基表面耐磨复合材料[J].铸造设备研究,2003,3(6):27-30.
    [18]李祖来.V-EPC制备铁基表面耐磨复合材料:[硕士学位论文].昆明:昆明理工大学机电学院,2004.
    [19]于思荣,隋忠祥.铸造碳化钨颗粒/中锰钢表面复合材料制作新工艺及理论研究[J].吉林工业大学学报,1996(4):30-34.
    [20]D.Huda, M.A. El Baradie, M.S.J. Hashmi. Factors afecting the machinability of Al/SiC metal-matrix composite [J]. Master Process Technology,1994, 44:152-156.
    [21]V.L. Ezhov et al. Increasing Service Life of Casting Hot-Moulding Dies [J]. Liteione Proizvodstvo,1991,5.
    [22]M. S. Baht, Raghunath C, P. K. Rohatgi. In situ technique for synthesizing Fe-TiC composites[J]. Scripta metallurgica et Materiala,1995, (4):577-582
    [23]刘红娟,任富建,李义曼.自蔓延高温合成涂层技术及其研究进展[J].中国非金属矿工业导刊,2006,56(4):18-20.
    [24]Y. Sahin and M. Acilar. Production and properties of SiCp-reinforced aluminium alloy composites [J]. Composites:Part A.2003,34(8):709-718.
    [25]Ljiljana Trumbulovic, Zagorka Acimovic, Zvonko Gulisija et al. Correlation of technological parameters and quality of castings obtained by the EPC method [J]. Materials Letters,2004,58(11):1726-1731.
    [26]许大庆,罗吉荣.V-EPC铸渗工艺的研究[J].铸造设备研究,1999(2):3-6.
    [27]曾绍连,李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金,2007,27(6):441-444.
    [28]KAMBAKAS K, TSAKIROPOULOS P. Solidification of high-Cr white cast iron-WC particle reinforced composites[J]. Materials Science and Engineering, 2005, A413-414:538-544.
    [29]祁小群,李秀兵,高义民.WC颗粒增强高铬铸铁基表面复合材料喷射衬板的研制[J].铸造技术,2002,23(5):282-284.
    [30]梁作俭,邢建东,鲍崇高等.碳化钨/铁基铸造复合材料的抗冲蚀磨损性能[J].铸造,2000,49(5):265-267.
    [31]李祖来,蒋业华,叶小梅等.铸渗法制备铁基表面复合材料的铸渗过程研究[J].铸造技术,2007,28(1):30-34.
    [32]Rong Zhou, Yehua Jiang, Dehong Lu. The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear,2003,255(1-6):134-138.
    [33]李远睿.合金球墨铸铁基体组织对含镍球墨铸铁热疲劳性能的影响[J].钢铁研究学报,2002,14(4):41-46.
    [34]龚江宏.陶瓷材料断裂力学[M].清华大学出版社,2001.
    [35]斯庭智,刘宁,尤显卿等.A1203基复合陶瓷抗热震研究[J].硬质合金,2003,20(4):237-241.
    [36]张芳,王介强,新宁等.A1203/20%Ni网状复合材料抗热震性能研究[J].金属学报,2001,37(6):551-554.
    [37]刘建华.热变形半钢的热疲劳行为的探讨[J].四川冶金,2001(1):19-21.
    [38]许珞萍,吴晓春,邵光杰.4Cr5MoSiV1,8407钢的热疲劳性能[J].材料工程.2001(2):3-7.
    [39]唐齐德.高温承压部件的热疲劳损伤及防范措施[J].中国锅炉压力容器安全,2003,19(6):45-48.
    [40]黄斌,杨延清.金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响[J].材料导报,2006,20(5):413-416.
    [41]胡明,费维栋.非连续增强金属基复合材料的热残余应力[J].宇航材料工艺,2005,1:15-18.
    [42]吴鹏,张建云,周贤良.高体积分数SiCp/A1金属基复合材料的压渗铸造工艺及热物理性能[J].国外金属加工,2005,26(3):11-18.
    [43]尤显卿.热处理条件对WC/钢复合材料热疲劳性能的影响[J].兵器材料科学与工程,2004,27(6):23-26.
    [44]尤显卿,郑玉春,程娟文等.碳化钨钢结硬质合金热疲劳裂纹形成机理研究[J].矿冶工程,2002,22(2):93-95.
    [45]Zulai Li, Yehua Jiang, Rong Zhou, Dehong Lu, Rongfeng Zhou. Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process [J]. Wear,2007,262(5-6): 649-654.
    [46]李祖来,蒋业华,周荣等.WC/铁基表面复合材料的热疲劳裂纹形成过程[J].复合材料学报,2008,25(2):21-24.
    [47]Venkata R Vedula, et al. Thermal fatigue resistance of open cell ceramic foam[J]. Ceram. Soc.2001,314:1894-1899.
    [48]李美栓.金属的高温腐蚀[M].冶金工业出版社:2001.
    [49]于华顺.金属基复合材料及其制备技术[M].化学工业出版社:2006.
    [50]王铁军,秦思贵,熊宁等.TiC/Cu熔渗复合材料耐烧蚀与乃热震性能性能研究[J].宇航材料工艺,2007,2:62-65.
    [51]王铁军,熊宁,秦思贵等.TiC/Cu金属陶瓷复合材料的研究[J].兵器材料科学与工程.2006,29(5):37-41.
    [52]宋世学,艾兴,赵军等.Al2O3/TiC纳米陶瓷刀具材料的抗热震性能及断裂机理研究[J].硅酸盐通报,2003,43-46.
    [53]T. R. Vijayaram, S. Sulaiman, A.M.S. Hamouda et al. Fabrication of fiber reinforced metal matrix composites by squeeze casting technology [J]. Journal of Materials Processing Technology.2006,178(1):34-38.
    [54]Y.D. Huang, N. Hort, H. Dieringa et.al. Investigations on thermal fatigue of aluminum-and magnesium-alloy based composites [J]. International Journal ofFatigue,2006,28:1399-1405.
    [55]姜文辉,姚向东,管恒荣等.钴基高温合金DZ40M高温高周疲劳过程中碳化物的行为[J].稀有金属,2000,24[1]:1-5.
    [56]李志成,刘路,吴昕等.脆性材料中的微裂纹尖端结构与断裂[J].金属学报,2001,37(5):503-506.
    [57]尤显卿,郑玉春,程娟文等.热应力作用下碳化钨钢结硬质合金梯形裂纹的形成机理[J].中国有色金属学报,2003,13[5]:1098-1102.
    [58]郑修麟.材料的力学性能[M].西北工业大学出版社:2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700