转-静盘预旋系统特征参数变化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机中,预旋冷却技术能够有效提高冷气对涡轮高温部件的冷却效率,从而保证发动机的可靠性,并延长其使用寿命。然而由于实际发动机涡轮盘腔结构的复杂性,通过对规则盘腔结构研究所得到的结论具有一定的局限性,因此,对复杂结构预旋进气盘腔的研究具有重要的理论意义和工程实用价值。
     本文根据预旋冷却的研究背景和现状,对接近实际结构的、带有三种出气方式的复杂涡轮转-静盘腔预旋系统进行了系统的研究。首先利用FLUENT软件,研究了特征参数变化对预旋盘腔系统流量分配比例、预旋温降和总压系数的影响。特征参数主要包括盘间距、预旋角度、旋转雷诺数、无量纲冷气流量、进气总温等。并根据实验室的现有条件,初步设计了复杂盘腔预旋系统的试验系统,为后续试验研究做准备。
     数值模拟研究结果表明:1)盘间距对流量分配比例的影响很小;2)预旋角度对流量分配比例的影响较小;3)旋转雷诺数对流量分配的影响较大;4)几何尺寸的改变对流量分配的影响较大;5)当旋转雷诺数增大时,无量纲总温差和总压系数逐渐减小;6)随着进气总温的增加,无量纲总温差和总压系数都逐渐增大;7)随着质量流量的增加,无量纲总温差逐渐减小,总压系数逐渐增大;8)随着盘间距增大,无量纲总温差和总压系数都是先减小后增大;9)随着预旋角度增大,无量纲总温差逐渐减小,总压系数逐渐增大。
     本文的研究成果为实际预旋进气涡轮盘腔结构的设计提供了理论指导依据。
The using of pre-swirl cooling method could increase the efficiency of the cooling air to the turbine blades which swirl in the rotation direction of the turbine, and it can guarantee the safe and reliable performance of aero-engine and prolong its working time.The investgations of the regular pre-swirl rotor-stator cavity is limited due to the complicated structure of the real turbine disk. So it is necessary to do the research on the complicated pre-swirl rotor-stator cavity.
     In this paper, numerical simulations were conducted to investigate the effects of the different characteristic parameters of the complicated pre-swirl rotor-stator cavity with three outflows by the use of FLUENT software according to the background and the actuality of the pre-swirl cooling. And it is got the conclusion that the influence of the characteristic parameters to the flux proportion,total temperature drop and total pressure coefficient. An experimental system was outlined in order to do experiments later .
     Numercial results indicate that: 1) the flux proportion is influenced little by the gap between the rotor and the stator; 2) the flux proportion is influenced little by the pre-swirl angles; 3) the flux proportion is influenced evident by the rotational Reynolds number; 4) the flux proportion is influenced distinct by the geometry size; 5) the nondimensional total temperature difference and the total pressure coefficient are monotone decreased with the increase of rotational Reynolds number; 6) the nondimensional total temperature difference and the total pressure coefficient increase with the increase of the inlet total temperature; 7) the nondimensional total temperature difference decrease while the total pressure coefficient increase because of increasing the pre-swirl inflow; 8) the nondimensional total temperature difference and the total pressure coefficient decrease and then go up with the gap between the rotor and the stator increases; 9) the nondimensional total temperature difference increases while the total pressure coefficient decreases with the decrease of pre-swirl angles.
     The present study will theoretically provide a direction for the design of complicated rotor-stator cavity with pre-swirl flow.
引文
[1]吴大观.关于新版综合高性能涡轮发动机技术计划[J].航空发动机, 2003, 29(2):1-4
    [2]王奉明.水滴型扰流元的设计和性能研究,南京航空航天大学硕士学位论文,2005,南京,南京航空航天大学
    [3]陈大光.燃气涡轮推进技术的未来发展[J].燃气涡轮试验与研究, 1997, 10(3):1-8
    [4]冶萍.转-静盘腔系统的流动与换热特性数值研究[D].南京:南京航空航天大学, 2004
    [5] Karman Th Von.über laminare and turbulente reibung [J]. Z. angew. Math. Mech., 1921, 1:233-252
    [6] Cochran W G. The flow due to a rotating disk [J]. Proc. Camb. Phil. Soc., 1934, 30:365-375
    [7] Rogers R H, Lance G N. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk [J]. J. Fluid Mech., 1960, 7:617-631
    [8] Benton E R. On the flow due to a rotating disc [J]. J. Fluid Mech., 1966, 24:781-800
    [9] Gregory N, Stuart J T, Walker W S. The stability of three dimensional boundary layers with application to the flow due to a rotating disk [J]. Phil. Trans. Roy. Soc. A, 1955, 248:155-199
    [10] Dorfman L A. Hydrodynamic resistance and the heat loss of rotating solids [M]. Oliver and Boyd, Edinburgh, 1963
    [11] Cebeci T, Abbott D E. Boundary layers on a rotating disc [J]. AIAA J., 1975, 13:829-832
    [12] Ong C L, Owen J M. Computation of the flow and heat transfer in rotating disc systems [J]. Phys. Fluids, 1971, 14:106-115
    [13] Erian F F, Tong Y H. Turbulent flow and heat transfer due to a rotating disc [J]. Int. J. heat and Fluid Flow, 1991, 12(2):2588-2591
    [14] Cobb E C, Saunders O A. Heat transfer from a rotating disk. Proc. Roy. Soc. A, London, 1956, 236:343-351
    [15] Cham T-S, Head M R. Turbulent boundary layer flow on a rotating disk [J]. J.Fluid Mech., 1969, 37:129-147
    [16] Dennis R W, Newstead C, Ede A J. Heat transfer from a rotating disc in crossflow [R]. Proc.4th Heat Transfer Conf., Versailles, 1970, III, Paper No.FC 7.1
    [17] McComas S T, Hartnett J P. Temperature profiles associated with a single disk in still air [R]. Proc.4th Heat Transfer Conf., Versailles, 1970, III, Paper No.FC 7.7
    [18] Owen J M, Haynes C M, Bayley F J. Heat transfer from an air-cooled rotating disc [J]. Proc. Roy. Soc. A, 1974, 336:453-473
    [19] Northrop A, Owen J M. Heat transfer measurements in rotating-disc systems, Part I: The free disc [J]. Int. J. heat and Fluid Flow, 1988, 9(1):19-26
    [20] Northrop A, Owen J M. Heat transfer measurements in rotating-disc systems, Part II: The rotating cavity with a radial outflow of cooling air [J]. Int. J. heat and Fluid Flow, 1988, 9(1):27-36
    [21] Schultz–Grunow F. Der Reibung swiderstand rotierender scheiben in gehaüsen [J]. Z. angew. Math. Mech., 1935, 15:191-204
    [22] Batchelor G K. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally symmetric flow [J]. Quart. J. Mech. Appl. Math., 1951, 4:29-41
    [23] Dorfman L A, Hydrodynamic resistance and heat losses of rotating solids, 1963, Oliver and Boyd, Edinburgh
    [24] Schultz–Grunow F. Der Reibung swiderstand rotierender scheiben in gehaüsen [J]. Z. angew. Math. Mech., 1935, 15:191-204
    [25] Batchelor G K. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally symmetric flow [J]. Quart. J. Mech. Appl. Math., 1951, 4:29-41
    [26] Stewartson K. On the flow between two rotating coaxial discs [J]. Proc. Camb. Phil. Soc., 1953, 49:333-341
    [27] Grohne D.über die laminare str?mung in einer kreiszylindrischen dose mit rotierendem deckle. Nachr. Akad. Wiss. G?ttingen [J]. Math. Phys. Kl., 1955, 1:263-282
    [28] Daily J W, Nece R E. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating discs [J]. J. Basic Eng., 1960, 82:217-232
    [29] Chech S C, Iacovides H, Jackson D C, Ji H and Launder B E, 1992, LDA measurements of an enclosed rotor-stator disc flow, Symposium on laser anemometry on reciprocating, reacting or Rotating Flow, Swansea
    [30] Itoh M, Yamada Y, Imao S and Gouda M, 1990, Experiments on turbulent flowdue to an enclosed rotating disc, Proc.1st Symposium on Engineering Turbulence Modeling and Measurements, pp659-668, Ed. W. Rodi and E. N. Ganic, Elsevier
    [31] Soo S L. Laminar flow over an enclosed rotating disk [J]. Trans. ASME, 1958, 80:287-296
    [32] Owen J M. Air-cooled gas-turbine disk: A review of recent research [J]. Int. J. heat and Fluid Flow, 1988, 9(4):354-365
    [33] Sambo A S. Numerical computation of laminar flows in rotor-stator cavities [R]. Proc.4th Int. Conf. On Num. Methods in Laminar and Turbulent Flow, Pineridge Press, 1985, 274-286
    [34] Chew J W, Vaughan C M. Numerical predictions for the flow induced by an enclosed rotating disc [R]. 33rd ASME Int. Gas Turbine Conf., Amsterdam, 1988, Paper No.88-GT-127
    [35] J.-x.Chen ,x.Gao,J.M.Owen, Heat Transfer in an Air-Cooled Rotor-Stator System , July 1996,Vol.118 ,pp444-451
    [36] Dibelius G H, Heinen M. Heat transfer from a rotating disc [R] . ASME Paper 90-GT-219
    [37] Owen J M, Bilimoria E D. Heat transfer in rotating cylindrical cavities [J]. Int. J. Heat Mass Transfer, 1977, 19(4):175-187
    [38] Millward J A, Robinson P H. Experimental investigation into the effects of rotating and static bolts on both windage heating and local heat transfer coefficients in a rotor-stator cavity [R]. ASME Paper 89-GT-193
    [39] Bunker R S, Metzger D E, Witting S. Local heat transfer in turbine disk-cavities [J]. ASME J.Turbomach, 1992, 114(1):211-220
    [40] Staub F W. Rotor cavity flow and heat transfer with inlet swirling and radial outflows of cooling air [R]. ASME Paper 92-GT-378
    [41] Bayley F J, Owen J M. The fluid dynamics of a shrouded disc system with a radial outflow of coolant [J]. J. Engng for Power, 1970, 92:335-341
    [42] Phadke U P, Owen J M. An investigation of ingress for an air-cooled shrouded rotating disc with radial-clearance [R]. ASME Paper 82-GT-145
    [43] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas turbine rotor- stator systems. Part I: The behavior of simple shrouded rotating-disc systems in a quiescent environment [J]. Int. J. Heat and Fluid Flow, 1988, 9:98-105
    [44] Hide R, 1968, On source-sink flows in rotating fluid, journal of Fluid Mechanics, Vol.32, p737
    [45] Farthing P R and Owen J M, 1988, The effects of disc geometry on heat transfer ina rotating cavity with a radial outflow of fluid. J. Eng. Gas Turbines and Power, Vol.110,p70
    [46] Long C A and Tucker P G, 1992, shroud heat transfer measurements from a rotating cavity with an axial throughflow of air. ASME Paper 92-GT-69
    [47] Kim S Y, Han J C, Morrison g L and Elovic E, 1993, Influence of source heating condition on local heat transfer in enclosed co-rotating disks with axial throughflow. ASME Paper 93-GT-258
    [48] Owen J M, Pincombe J R, Rogers R H. Source-sink flow inside a rotating cylindri- cal cavity [J]. J. Fluid Mech., 1985, 155:233-265
    [49] Chew J W, Owen J M, Pincombe J R. Numerical predictions for laminar source- sink flow in a rotating cylindrical cavity [J]. J. Fluid Mech., 1984, 143:451-466
    [50] Owen J M, Pincombe J R. Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid [J]. J. Fluid Mech., 1988, 99:111-127
    [51] Long C A, Morse A P, Tucker P G. Measurement and computation of heat transfer in high-pressure compressor drum geometries with axial throughflow [J]. ASME J. Turbomach., 1997, 119:51-59
    [52] Wilson M. Parallel multigrid computation of rotating disc flows [J]. Parallel com- puting and Transputers Applications, 1992
    [53] Wilson M. Parallel multigrid computation of rotating flows, multiblock and multigrid methods on high performance computers [M]. SERC Workshop, Univer- sity of Bath, 1992
    [54] Chen J X, Owen J M, Wilson M. Parallel computing techniques applied to rotor- stator systems: fluid dynamics cimputations [C]. Proc.8th Int. Conf. Num. Meth. in Laminar and Turbulent Flow, Swansea Pineridge Press, 1993,899-911
    [55] Chen J X, Owen J M, Wilson M. Parallel computing techniques applied to rotor- stator systems: thermal cimputations [J]. Numerical Methods in Thermal Problems, 1993
    [56] Craber D J, Daniels W A, Johnson B V. Disk pumping test [R]. Air Force Weight Aeronaut Lab, 1987, Report No.AFWAL-TR-87-2050
    [57] Morse.A.P,1988,Numerical Prediction of Turbulent Flow in Rotating Cavities,ASME Journal of Turbomachinery Vol110,pp202-215
    [58] Kilic.M and Gan.X ,and Owen.J.M,1994a, Superposed Flow Between Two Discs Contrarotating at Different Speeds, Int J.Heat Fluid Flow,Vol,15 pp438-446
    [59] Gan X, Kilic M, Owen J M. Superposed flow between two discs contrarotating at differential speeds [J]. Int. J.Heat and Fluid Flow, 1994, 15(6):438-446
    [60] Gan X, Kilic M, Owen J M. Flow between contrarotating discs [J]. ASME J. Turbomach., 1995, 117(2):298-305
    [61] Kilic.M and Gan.X, and Owen.J.M. Transitional Flow Between Two Discs Contrarotating at Different Speeds,ASME Journal of Turbomachinery, Vol.118. pp408-413
    [62] Chen J X, Owen J M, Wilson M. Parallel computing techniques applied to rotor- stator systems: fluid dynamics cimputations [C]. Proc.8th Int. Conf. Num. Meth. in Laminar and Turbulent Flow, Swansea Pineridge Press, 1993,899-911
    [63] Meierhofer B, Franklin C J. An investigation of a pre-swirled cooling air flow to a gas turbine disk by measuring the air temperature in the rotating channels [R]. 26th ASME Int. Gas Turbine Conf., Houston, Paper No.81-GT-132
    [64] El-oun Z B. Flow in a shrouded rotor-stator cavity with pre-swirl coolant [D]. D. Phil. Thesis, University of Sussex, 1986
    [65] El-oun Z B, Neller P H, Turner A B. Sealing of a shrouded rotor-stator system with pre-swirl coolant [J]. ASME J. Turbomach., 1988, 110:218-228
    [66] El-oun Z B, Owen J M. Pre-swirl blade-cooling effectiveness in an adiabatic rotor-stator system [J]. ASME J. Turbomach., 1989, 111:522-529
    [67] Wilson M, Chen J X, and Owen J M. Parallel computing techniques applied to rotor-stator systems: fluid dynamics computations[C]. Proc.8th Int. Conf. Num.Meth in Laminar and Turbulent Flow,Swansea Pineridge Press,1993:899-911
    [68] Wilson M and Owen J M. Axisymmetric computation of flow and heat transfer in a pre-swirl rotor-stator system. 1st International Conference on flow Interaction, Hongkong, pp447-450
    [69] Wilson M, Pilbrow R and Owen J M. Flow and heat transfer in a pre-swirl rotor-stator system [J]. ASME J. Turbomach., 1997, 119(2):364-373
    [70] Wilson M, Pilbrow R G, Owen J M. Flow and heat transfer in a pre-swirl rotor- stator system [J]. ASME J. Turbomach., 1997, 119(2):364-373
    [71] Karabay H, Chen J X, Pilbrow R G, et al. Flow in a cover-plate pre-swirl rotor-stator system [J]. ASME J.Turbomach., 1999, 121(1):160-166
    [72] Pilbrow,Wilson.M,and Owen, Predicting Effects of Swirl on Flow and Heat Transfer in a Rotating Cavity,submitted to Int.J.Heat Fluid Flow, 1999:360-365
    [73] Karabay H, Pilbrow R G, Wilson M, Owen J M. Performance of pre-swirl rotating-disc systems [J]. ASME J. Engineering for Gas Turbines and Power, 2000, 122:442-450
    [74] Dittmann M, Geis T, Schramm V, et al. Discharge coefficients of a pre-swirl system in secondary air systems [J]. ASME J. Turbomach., 2002, 124:119-124
    [75] Youyou Yan,Fluid Dynamics of a Pre-Swirl Rotor-Stator System,Journal of Turbomachinery, October 2003, Vol. 125, No. 4:641–647
    [76] Geis T, Dittmann M, Dullenkopf K. Cooling air temperature reduction in a direct- transfer pre-swirl system [J]. ASME J. Engineering for Gas Turbines and Power, 2004, 126:809-815
    [77] Dittmann M, Dullenkopf K, Wittig S. Direct-transfer pre-swirl system:A one-dim- ensional modular characterization of the flow [J]. ASME J. Engineering for Gas Turbines and Power, 2005, 127:383-388
    [78] Lock G D, Wilson M, Owen J M. Influence of fluid dynamics on heat transfer in a pre-swirl rotating-disk system [J]. ASME J. Engineering for Gas Turbines and Power, 2005, 127:791-797
    [79] Gary D.Lock,Youyou Yan,Paul J.Newton,et al.Heat Transfer Measurements Using Liquid Crystals in a Preswirl Rotating-Disk System, Journal of Engineering for Gas Turbines and Power,April 2005,Vol.127:375
    [80] Scheper G W. Turbine rotor ventilation system [P]. US Patent 3043561, 1962
    [81] Brown W M, Manente J C. Compressor bleed system [P]. US Patent 4008977, 1977
    [82] Chew J W, Farthing P R, Owen J M. The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow [J]. ASME J.Turbomach., 1989, 111(3): 349-356
    [83] Farthing P R, Chew J W, Owen J M. The use of deswirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow [R]. ASME Paper 89-GT-184
    [84] Farthing P R, Owen J M. De-swirled radial inflow in a rotating cavity [J]. Int. J. Heat and Fluid Flow, 1991, 12(1):63-70
    [85] Karabay H, Wilson M, Owen J M. Approximate solutions for flow and heat transfer in pre-swirl rotating-disc systems [R]. ASME Int. Gas Turbine and Aeroengine Conf., New Orleans, Paper No.2001-GT-200
    [86]曹玉璋,林宇震,冯华仲,等.空气冷却旋转盘的萘升华传热-传质模拟实验研究[J].航空动力学报, 1993, 8(3): 283-287
    [87]冯青,周彬,刘松龄.转盘-静盘腔内层流流动的相似分析及其N-S方程数值解[J].航空动力学报, 1994, 9(4):366-370
    [88]王美丽,周彬,刘松龄,涡轮盘腔内流动和传热的数值模拟, 1995,航空动力学报, Vol.10, 4:383-386
    [89]徐国强等,具有中心进气外缘加热旋转盘的局部换热特性研究, 1995.7,航空动力学报Vol.10,pp229-300
    [90]丁水汀,陶智,徐国强,等.带进气预旋的旋转空腔平均换热特性研究[J].航空动力学报, 1998, 13(3): 277-280
    [91]丁水汀,陶智,徐国强,等.外缘轴向进气的旋转空腔主盘平均换热特性研究[J].航空动力学报, 1998, 13(3):281-284
    [92]丁水汀,徐国强,陶智,等.外缘预旋进气的旋转空腔主盘局部换热及流阻特性研究[J].推进技术, 1998, 19(6):45-49
    [93]丁水汀,陶智,徐国强,等.旋转盘腔冷却问题的工程评价[J].航空动力学报,1999,14(1):83-86
    [94]丁水汀,陶智,徐国强,等.外缘轴向进气的旋转空腔主盘局部换热及流阻特性研究[J].航空动力学报, 1999, 14(2):153-156
    [95]徐国强,陶智,丁水汀,等.高位垂直进气旋转盘流动与换热的实验研究[J].航空动力学报,2000,15(2):164-168
    [96]徐国强,陶智,丁水汀,等.中心进气旋转盘流动与换热的数值研究[J].航空动力学报, 2000, 15(2):169-173
    [97]徐国强,丁水汀,陶智,等.中心进气旋转盘的冷却效果实验研究[J].热能动力工程, 2000, 15(3):260-263
    [98]徐国强,丁水汀,陶智,等.中心进气转静系旋转盘流动与换热计算[J].推进技术, 2000, 21(4):40-43
    [99]徐国强,詹国治,丁水汀,等.中心进气和高位垂直进气转静系旋转盘冷却品质比较[J].推进技术,2000, 21(5):42-44
    [100]吉洪湖,张靖周,梁波.封闭转静盘腔中紊流的数值模拟[J].航空动力学报,2001,16(1):13-18
    [101]吉洪湖, Cheah S C, Iacovides H,等.旋转盘腔流场速度与压力的实验研究[J].工程热物理学报,1997,18(3):300-305
    [102]张靖周,吉洪湖,王锁芳.具有径向进出流的转-静盘腔流动与换热的数值研究[J].工程热物理学报, 2001, 22(Suppl):137-140
    [103]张靖周,吉洪湖.旋转盘腔紊流流动的数值研究[J].推进技术, 2002, 23(6): 472-476
    [104]孙纪宁,陶智,丁水汀,2002.12,高位进气、径向出流的旋转腔内流动与换热的数值研究,航空动力学报,Vol.17,5,pp586-590
    [105]何亚军,徐国强,陶智,丁水汀,2002.12,同向旋转盘间换热特性的试验研究,航空动力学报,Vol17.5,pp572-577
    [106]冯青,卜其龙,刘松龄.动盘带预旋喷嘴的旋转盘腔内流场的相似分析与数值模拟[J].西北工业大学学报, 2003, 21(2):239-242
    [107]白洛林,冯青,刘松龄等.预旋进气的盘腔系统内流场的数值研究[J].推进技术, 2003, 24(2):135-137
    [108]冶萍,张靖周.有预旋进气转静盘腔中的流动和换热特性数值研究[J].航空动力学报,2004, 19(3):370-374
    [109]蔡毅,徐国强,陶智,等.反向旋转盘间非稳态换热特性的实验研究[J].航空动力学报,2004, 19(3):346-350
    [110]白洛林,冯青,刘松龄,等.湍流参数对复杂形状涡轮盘腔流场的数值研究[J].推进技术, 2003, 24(4):344-347
    [111]白洛林,郑光华,冯青,等.带有微型涡轮的旋转盘腔局部换热特性[J].推进技术, 2005, 26(3):223-228
    [112]孟伟,徐国强,罗翔,等.高位进气转静系旋转盘流动与换热的数值模拟[J].热科学与技术,2006, 5(1):32-37
    [113]杨成凤,张靖周.高旋转雷诺数下预旋进气转-静盘腔流动换热特性[J].航空动力学报,2006, 21(2):326-330
    [114]罗翔,徐国强,陶智,等.具有离散出气孔的旋转盘冷却效果的实验[J].航空动力学报,2006, 21(4):621-625
    [115]周雷声,冯青,武亚勇.旋转涡轮盘腔中等转速下内部流场分布的实验研究[J].推进技术, 2006, 24(4):223-228
    [116]武亚勇.反预旋进气旋转转腔系统的流场实验与计算研究[D].西安:西北工业大学,2007
    [117]夏登勇.旋转系统冷气预旋冷却效应研究[D].南京:南京航空航天大学, 2001
    [118]栾海峰.带有预旋孔的旋转盘腔传热实验研究[D].南京:南京航空航天大学, 2005
    [119]张羽.导流叶片预旋进气的实验研究与数值模拟[D].南京:南京航空航天大学, 2005
    [120]朱强华.预旋孔径向位置变化对转-静盘腔内换热影响的研究[D].南京:南京航空航天大学, 2006
    [121]黄爱霞.带反旋喷嘴的径向内流共转盘腔内流动与换热的数值模拟[D] .南京:南京航空航天大学, 2007
    [122]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004.121
    [123] Yakhot V,Orzag S A.Renormalization group analysis of turbulence:basic theory.J Scient Comput.1986.1:3-11
    [124] Shih T H, Lion W W, Shabbir A, Yang Z G, Zhu J. A new k-εeddy viscosity model for high Reynolds number turbulent flows. Comput Fluids. 1995.24(3): 227-238
    [125]陶文铨.数值传热学[M].西安:西安交通大学出版社, 2001.353-356
    [126]陶文铨.计算传热学的近代发展[M].北京:科学出版社, 2000.159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700