饲料中铅在鸡种蛋和胚胎中的沉积及其对鸡胚肝、肾毒性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅是一种无处不在的重金属,被称为三大毒害金属之一,受到人们广泛的关注。随着现代工业的飞速发展,在环境体系和生态系统中的任何一个环节都可以检测出。铅被广泛使用,尤其近20年来,铅的使用量超过了以往所有年中的使用,大量的使用可以导致当地的和全球的空气,烟尘以及土壤污染。铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血系统、消化系统、生殖系统等均有危害。国内外对于人类和小鼠等哺乳动物铅中毒方面的研究很多,鸟类的研究多集中于野生种类,对于从饲料中添加铅来探讨铅的沉积及其对鸡胚胎毒性的研究很少。因此,本文以饲料为污染源,以集约化饲养的家禽鸡为实验动物,研究了饲料中铅在种蛋中的沉积情况以及铅在胚胎各组织器官中的沉积,了解铅沉积的器官特异性;通过组织病理学和细胞超微结构的观察来了解铅对肝、肾细胞结构的影响;同时通过对胚胎肝、肾抗氧化酶的影响探讨铅对禽类胚胎的毒性作用机制,为进一步研究铅的毒性作用机理提供理论依据。
     具体研究内容和结果如下:
     1.重金属在鲜蛋中的沉积情况
     本论文对江苏南京地区市售各产地和鸡种的鸡蛋进行随机采样,根据国家无公害标准检测重金属残留情况,结果表明,不同产地、不同品种的鸡蛋各种重金属污染的程度有所不同,但无论蛋清、蛋黄还是全蛋,无论是产地还是品种,除无公害蛋以外,铅都毫无例外的超过无公害标准,铅沉积量蛋清在0.2054~0.5817mg·kg~(-1)之间,蛋黄在0.3788~1.2918 mg·kg~(-1)之间,全蛋在0.3365~0.8787 mg·kg~(-1)之间,蛋黄中沉积最多。因此,铅在鲜蛋中的超标问题及相应的解决措施应引起足够重视。
     2.饲料中不同含量铅在种蛋中的沉积及其影响
     通过在伊莎褐(ISA)种鸡饲料中添加不同剂量的铅,研究铅在种蛋各成分中的沉积以及铅对种蛋品质的影响,实验分为四组,分别为对照组(铅含量为3.55mg·kg~(-1))、15mg·kg~(-1)、30mg·kg~(-1)、60mg·kg~(-1)组,实验期为30天,分别于实验第0、5、10、15、20、25、30天测定种蛋各成分中的铅含量。结果表明,饲料中铅的添加和沉积时间影响其在种蛋各成分中的沉积,同时影响蛋的品质。在短时间内,铅对蛋重无影响,对蛋形指数有影响但无规律性,说明铅可能引起蛋的畸型。铅主要沉积在蛋壳中,其次沉积于蛋黄中,其含量都显著高于蛋清和全蛋。蛋壳铅的沉积使蛋壳厚度变薄,蛋壳强度无差异,同时破蛋率显著下降。
     当沉积到第25天时各成分铅含量达到平衡,蛋壳铅量与全蛋铅量之间相关系数为0.857,达到了显著的水平,逐步回归结果为y=1.845*10~(-2)a+0.265(y为全蛋铅含量,a为蛋壳铅含量),提示可用蛋壳铅含量预测全蛋铅含量。饲料中铅含量在15mg·kg~(-1)以下时并未显示出与对照组的显著差异。饲喂第25天的种蛋作为后期实验的采样时间。
     3.饲料中不同含量铅在不同胚龄鸡胚各器官中的沉积情况
     取饲喂至第25天的种蛋进行孵化,在孵化至第9、14和19天时,取鸡胚胎进行各器官的铅沉积的测定,探讨了饲料中不同含量铅在鸡不同胚龄各器官中的沉积情况。结果表明,鸡胚生长到14天时各器官铅的沉积量最多,沉积量大小顺序依次为肾脏、肝脏、肌肉。各组肌肉铅含量都小于国家标准。在饲料中添加铅至30mg·kg~(-1)时,铅在鸡胚中的沉积已达极限,30mg·kg~(-1)组14天鸡胚肾脏、肝脏和肌肉的铅含量分别达到了1.2193mg·kg~(-1),0.2714mg·kg~(-1),0.1446mg·kg~(-1)。随着饲料铅含量的增加,并未出现鸡胚各组织中铅沉积量的增加。饲料铅含量与14天和19天鸡胚肾脏铅含量相关性具有统计学上的显著性,相关系数分别达到了0.574和0.380。
     4.饲料中不同含量铅对不同胚龄鸡胚肝、肾病理组织学及超微结构的影响
     组织病理学的分析和重金属沉积相关数据的结合对有关重金属对活体组织影响的研究可以提供更有价值的信息。本文通过对不同胚龄鸡胚肝肾组织病理学和细胞超微结构的观察,探讨了饲料中不同含量的铅对三个胚龄鸡胚病理组织学的影响。结果表明,当鸡胚生长到9天时,铅对肝脏的组织病理学并未产生明显的影响。鸡胚9天时的肝脏细胞器较生长到14天和19天时种类少,数量少。同时,肾细胞中的细胞器较肝细胞中的丰富,种类多。
     对于肝脏,当鸡胚生长到14天和19天,饲料铅含量达到15mg·kg~(-1)时,可引起肝细胞轻微病变,而饲料铅含量达到30mg·kg~(-1)时,肝脏组织结构才可发现明显病变现象。肝脏亚细胞对铅更为敏感。对于肾脏,无论是14天还是19天的鸡胚,当饲料铅达到15mg·kg~(-1)时,肾脏组织和肾细胞内细胞器结构均可见明显的变化,因此,肾脏对铅的毒性较肝脏更为明显。同时发现,对于两种器官,饲料铅含量为30mg·kg~(-1)和60mg·kg~(-1)的损伤程度几乎相同,说明饲料铅为30mg·kg~(-1)已使肝肾的损伤达到最大。鸡胚期肝肾细胞变性主要表现为肝细胞变形、细胞间隙增加、核膜肿胀、线粒体肿胀,内部嵴不清晰,嵴断裂溶解,线粒体发生溶解以及炎症细胞的产生等。
     5.饲料中不同含量铅对不同胚龄鸡胚肝、肾抗氧化能力影响的研究
     通过鸡胚肝肾抗氧化酶活力的测定,部分的探讨了铅对鸡胚毒性机理。结果表明,在整个生长发育期,各实验组,随着鸡胚的生长,肝肾的抗氧化能力有所变化,肝脏和肾脏中的MDA含量都随着鸡胚的生长而减少。肝脏抗氧化酶中SOD、GST活力降低,CAT和GR活力增加,而肾脏中所有的抗氧化酶活力都随着鸡胚的生长而降低。而对于饲料中铅的添加,当鸡胚生长到第9天时,肝脏中只有GST活力下降,而对于14天的鸡胚,只有肾脏CAT活力下降,其它酶都没有变化,只有当鸡胚生长到19天时所有的抗氧化酶活力才受到影响,随着铅的添加而下降。以上说明,随着胚胎的生长,铅对鸡胚肝脏抗氧化酶活力的影响并不一致,而肾脏的抗氧化能力却显著下降。脂质过氧化反应并不是铅对鸡胚胎毒性的一个主要标志。铅对抗氧化酶的抑制是铅对鸡胚胎毒性的一个机制。同时结果表明肾脏是调节鸡胚抗氧化体系一个主要器官。
Lead is ubiquitously a kind of heavy metal that was regarded as one of the three mostnoxious metals, so it is widespread paid attention. Lead can be determined during any partof environmental and ecological system with the fast development of modem industry.Lead was widespread used, especially in the recent two decades, the quantity exceeded thatof the all past years that lead to the local and global pollution of the air, smoking and soil.Lead is a huge harmful kind of heavy metal for the body that can lead to the dysfunction onthe nerve system, hematogenic system, digestive system and reproductive system, etc. Wecan find many studies of the lead toxicology on the mammal of human and rat, meantime,the research on bird were mainly focused on wild kinds. Few data was found out about thelead deposition and the effect of lead on the embryo toxicology of chick in the way offeedstuff. In the paper, the lead was added in the way of feedstuff and the experimentalanimal was the poultry chicks that were feed on a large scale. The lead deposition ofhatching eggs and the tissue and organ of the chick embryos was researched in order tounderstand the organ specificity of lead deposition. With the help of histopathology and cellultrastructure, we realized the effect of lead on the hepatic and renal cell structure; in thesame time, we discussed the change of antioxidant enzymes of liver and kidney in order tounderstand the lead toxicity mechanism for chick embryos, which provided a theory basisabout the further research of lead toxicology.
     The contents and results were as follows.
     1. The deposition of heavy metals in fresh eggs
     In this paper, the chick eggs saled in NanJing City JiangSu Province were randomlysampled to examine the deposition of heavy metals according as the national harmlessstandards, the results was showed that the deposition of heavy metals in chick eggs fromdifferent places and breeds varied. The content of lead in all eggs (egg white, egg yolk andwhole egg) except for harmless eggs unlimitedly exceeded that of the standard. The contentof lead in egg white, egg yolk and whole egg was 0.2054~0.5817mg·kg~(-1), 0.3788~1.2918mg·kg~(-1), 0.3365~0.8787mg·kg~(-1), respectively. The deposition in egg yolk was maxim. So,the super-concentration of lead in fresh eggs and relative resolvent should be paid attention.
     2. The deposition and effect of different contents of lead in feedstuffon the hatching eggs
     The lead of different contents were added into the laying chick (ISA) feedstuff toresearch the deposition in hatching eggs and the effect of lead on the quality of eggs. Theexperiment was divided into four groups as follows: ck group, adding lead of 15mg·kg~(-1)group, 30 mg·kg~(-1) group, 60 mg·kg~(-1) group. The duration of whole experiment was 30 days.Content of components in hatching eggs was determined in the 0, 5th, 10th, 15th, 20th, 25th,30th day, respectively. The results were showed that the deposition of lead in components ofhatching eggs and the quality of eggs was influenced by the adding lead into feedstuff anddeposition period. In the short period, lead did not influence the egg weight; the eggshape index was affected without order according to the lead residue level which could leadto the malformation of the eggs and harm the development of embryo. For all componentsof eggs, lead was mainly deposited into eggshell, then egg yolk, all of which weresignificantly higher than that of egg white and whole eggs. The deposition of eggshell madethe shell thin, but the eggshell strength was not influenced and the percentage of crackedeggs significantly dropped.
     In the 25th day of the experiment period, the deposition of components was up to themaximum. At the same time, the correlation coefficient between the content of eggshell andwhole egg was to remarkable level, 0.857. The stepwise regression equation wasy=1.845*10~(-2)a+0.265 (y indicated lead content in whole egg, a indicated lead content ineggshell), which gave a clue of that lead content in eggshell could be examined to forecastthat in whole eggs. When the content in feedstuff was lower 15 mg·kg~(-1), the deposition ineggs was not significantly different compared with ck group. The 25th hatching eggs wereselected as the sampling period in the later experiment.
     3. The deposition and effect of different content of lead in feedstuffon tissue and organs of chick embryo at different growing period
     The hatching eggs in the 25th day were hatched. At the 9th, 14th,19th day of hatchingperiod, tissue and organs of chick embryos were gained to determine the content of lead inorder to discuss the effect of deposition of lead on chick embryo. The results were showedthat the period of maximum deposition was the 14th chick embryos. At this time, the orderof content in tissue and organs was kidney, liver, the lowest muscle. The content of lead inmuscle in every group was lower than that regulated in national standard. When the contentof lead in feedstuff was up to 30mg·kg~(-1), the deposition in embryos was maximum; at thistime, for the 14th chick embryos, the content of kidney, liver and muscle was up to1.2193mg·kg~(-1), 0.2714mg·kg~(-1), 0.1446mg·kg~(-1), respectively. The correlative coefficientsbetween content of lead in feedstuff and that of kidney of the 14th and 19th embryos werestatistically significant, 0.574 and 0.380.
     4 The effect of the different content of lead in feedstuff onhistopathology and ultrastructure of liver and kidney of chick embryos atdifferent growing period
     The combinative analyse of histopathology and the deposition status of heavy metalscould provide the most valuable information on the effect of heavy metals on the organismtissue. In this paper, the observation on the histopathology and ultrastructure of liver andkidney of chick embryos at different growing period was carded out to discuss the effect oflead on the histopathology of chick embryos. The results were showed that lead did notsignificantly influence the histopathology of liver. In the 9th day of chick embryos, the kindsand quantity of organelle of liver were fewer than that in the 14th and 19th day. Meantime,the kinds and quantity of organelle of kidney were more than that of liver.
     For the liver of the 14th and 19th day of embryos, lead of 15mg·kg~(-1) in feedstuff couldlead to the slight pathological changes of hepatic cells, and when the content of lead was upto 30mg·kg~(-1), the pathological changes of liver was obvious. The subcellular structure ofliver was most sensitive to lead. For the kidney, the content of 15mg·kg~(-1) of the lead infeedstuff could find the obvious pathological changes in renal tissue and organelle, so, theeffect of lead on kidney was significantly higher than that on liver. We also found that30mg·kg~(-1) and 60mg·kg~(-1) of lead destroyed the two organs to the same extent, which showedthat 30mg·kg~(-1) of lead was the maximum of damaging the liver and kidney. The histopathological changes of hepatic and renal cells were represented in the way oftransmutation of cells, the largement of cell interspace, the swollen karyotheca andmitochondrion, unclearness, breakage and dissolution of inner cristae, and the production ofinflammation.
     5. The effect of the different content of lead in feedstuff on thehepatic and renal antioxidant capacity of chicken embryos at differentgrowing period
     The hepatic and renal antioxidant enzyme activities of chick embryos were determinedto discuss the toxicology mechanism of lead on chick embryo. The results were showed thatwith the development of chick embryos, the hepatic and renal MDA content decreased;hepatic SOD and GST activities dropped; CAT and GR activities increased. But all of renalantioxidant enzymes fell with the development of chick embryos. For the 9th day chickembryos, hepatic GST activity decreased with the adding of lead; all of antioxidantenzymes activities except for descendent CAT activity did not change for the 14th day chickembryos. Only for the 19th day chick embryos, all antioxidant enzymes decreased with theadding of lead in the feedstuff. The above results were showed that the effect of lead on thehepatic antioxidant capacity did not obvious, but lead decreased the renal antioxidantcapacity with the development of chick embryos. Lipoxidantion reaction was not a majorindicator of lead toxicology. A mechanism of lead toxicology on chick embryo was thatlead inhibited the antioxidant enzyme activities. And the results were showed that kidney isa major organ that regulated the antioxidant system of chick embryo.
引文
1 Moore, J. W., Ramamoorthy, S. Lead. In: Heavy metals in natural waters[M]. New York: Springer-Verlag,1984: 100-124.
    2 Cheremisinoff, P. N., Cheremisinoff, N. P. Lead: a guidebook to hazard detection, remediation, and control[M]. Englewood Cliffs (NJ): Prentice-Hall, 1993.
    3 Nriagu, J. O. Lead in the atmosphere. The biogeochemistry of lead in the environment: Part A. Ecological cycles[M]. New York: North-Holland Biomedical Press, 1978c: 137-184.
    4 Baht, R. V., Moy, G. G. Monitoring and assessment of dietary exposure to chemical contaminants [J]. WHO, Geneva. Technical Report, 1997, 50:132-149.
    5 Anderson, W. L., Havera, S. P. Blood lead, protoporphyrin, and ingested shot for detecting lead poisoning in waterfowl[J]. Wildlife Society Bulletin, 1985,13: 26-31.
    6 雷洁,古桂雄,马如娅.新生大鼠铅损伤动物模型的建立[J].实验动物科学与管理,2003,20,1:8-9.
    7 Goyer, R. A. Lead toxicity: current concerns[J]. Environmental Health Perspect, 1993,100:177-187.
    8 Needham, J. Chemical Embryology[M]. New York, London: Hafner Publishing Comp. 1963.
    9 Kertesz, V., Hlubik, I. Plasma ALP activity and blood PCV value changes in chick fetuses due to exposure of the egg to different xenobiotics[J]. Environmental Pollution,2002,117:323-332.
    10 Kumar, A., Rawat, J. S. Effect of age, sex and reproduction on serum enzymes and electrolytes levels in White Leghorn birds[J], Indian J. Anim. Sci,1976,45,3:135-138.
    11 Dobado-Berrios, P. M., Ferrer, M. Age-related changes of plasma alkaline phosphatase and inorganic phosphorus, and late ossification of the cranial roof in the Spanish Imperial Eagle (Aquila adalberti C.L. Brehm, 1861)[J]. Physiological Zoology, 1997,70 (4):421-427.
    12 Albustany, Z., A1Athari, A. K., AbdulHassan, I. A. Plasma alkaline phosphatase and production traits in laying hens as influenced by diatery protein, strain and age[J]. British Poultry Science, 1998, 39, 4:568-571.
    13 Varga, T. The toxicity of different pesticide formulations to chick and pheasant embryos (in Hungarian). PhD thesis, Keszthely, Hungary, 1999.
    14 Itoh, N., Moritsu, Y., Ichikawa, S. Comparison of blood chemical values among Japanese quail, White Leghorns and broiler chickens [J]. J. Vet. Med. (Tokyo), 1995,48, 2: 97-101.
    15 Yusof, M., Yildiz, D., Ercal, N., N-acetyl-L-cysteine protects against delta-amino-laevulinic acid-induce δ-hydrooxy -degua -nosine formation[J]. Toxicology Letters, 1999,106(1):41-47.
    16 Kertesz, V., Fancsi, T. Adverse effects of(surface water pollutants) Cd, Cr and Pb on the embryogenesis of the mallard[J]. Aquatic Toxicology,2003,65:425-433.
    17 韦耀东,肖裕芳,农嵩,等.铅损伤对大鼠部分血液指标的影响[J].右江民族医学院学报,2004,26,6:876.
    18 杨小羊.儿童贫血患者血铅含量分析[J].江西医学院学报,2002,42(4):89.
    19 Herbert, L.L., Schell, A. The long-term effects of exposure to low doses flead in childhood[J]. Negl J Med, 1995,322:83-88.
    20 Oberto, A., Marks, N., Evans, H. L., et al. Lead promotes apoptosis in new born rat eerebellar neurons: pathological implications[J]. J Pharmacol. Exp. Ther., 1996, 279:435-442.
    21 Bressler, J., Kim, K.A., Chakraborti, T., et al. Mechanism of lead neurotoxicity[J]. Neurochemical Respect, 1999,24: 595-600.
    22 De-Silva, P.E. Determination of lead in plasma and studies on its relationship to lead in erythrocytes[J]. Br. J. Ind. Med, 1981, 38: 209-217.
    23 Lancranjan, I., Popescu, J.I., Gavenescu, O., et al. Reproductive ability of workmen occupationally exposed to lead[J]. Arch. Environ. Health ,1975, 30:396-401.
    24 Rom, W.N. Effects of lead on reproduction. In: Infante, P.F., Legator, M.S. (Eds.), Proceedings of the Workshop on Methodology for Assessing Reproductive Hazards in the Workplace[M]. National Institute for Occupational Safety and Health, Washington, DC,1980, 33-42.
    25 Fenoglio, C., Boncompagni, E., Fasola, M. Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana eseulenta [J]. Ecotoxicology and Environmental Safety, 2005,60:259-268.
    26 阿瑗,周玫启由基医学[J].北京:人民军医出版社,1991:1-7.
    27 Rice-Evans, C., Dormandy, T. Free radicals: Chemistry, Pathology and Medicine[M]. London: The Richelieu Press, 1988.
    28 Martell, E. A.. Radionucleotide evolution of DNA and the origin of life[J]. Journal of molecule Ecology, 1995,35, 4:346-355.
    29 方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002,23-24.
    30 Sato, Y., Hotta, N., Sakamoto, N., et al. Lipid peroxide level in plasma of diabetic patients[J]. Biochemical Medicine, 1979,21: 104-107.
    31 Esterbauer, H., Dieber-Rhotheneder, M., Waeg, G., et al. Biochemical, structural and functional properties of oxidized low-density lipoprotein[J]. Chem. Res. Toxicol., 1990, 3: 77-92.
    32 Yousef, M.I. Aluminum induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid[J]. Toxicology, 2000, 153:83-104.
    33 Konings, A.W.T., Drijver, E.B. Radiation effects on membranes. I .Vitamin E deficiency and lipid peroxidation[J]. Radiat. Res, 1979,80:494-501.
    34 Kasai, H., Crain, P.F., Kuchino, Y., et al. Formation of 8-hydroxyguanine in cellular DNA by agents producing oxygen radicals and evidence for its repair[J]. Carcinogenesis, 1986, 8:1849-1851.
    35 Chung, M. H., Kasai, H., Jones, D. S., et al. An endonuclease activity of Escherichia coli that specifically removes 8-hydroxyguanine residues from DNA[J]. Mutation Respects, 1991,254:1-12.
    36 Domigan, N. M., Charlton, M. W., Duncan, C. C., et al. Chlorination oftyrosyl residues in peptides by myeloperoxidase and human neutrophils[J]. Biol. Chem., 1995, 270: 16542-16548.
    37 Lewisch, S. A., Levine, R. L. Determination of 2-oxohistidine by amino acid analysis[J]. Ann. Biochem., 1995, 231: 440-446.
    38 Wiseman, H., Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflamatory disease and progression to cancer[J]. Biochemistry of Journal, 1996, 313: 17-29.
    39 Berliner, J. A., Heinecke, J. W. The role of oxidized lipoproteins in atherogenesis[J]. Free Radical Biology and Medicine, 1996, 20:707.
    40 Stadtman, J. A. Protein oxidation and aging[J]. Science, 1992,257: 1220-1224.
    41 Hallivell, B., Gutteridge, J. M. C. Free radicals, antioxidants and human disease: where are we now[J]? Journal of Lab Clinical Medicine, 1992, 119:598-620.
    42 Boveris, A., Cadenas, E. Production of superoxide radicals and hydrogen peroxide in mitochondria [M]. In: Oberley, L. W. ed, Superoxide Dismutase Vol. Ⅱ Florida: CRC Press, 1982: 15-30.
    43 Halliwell, B, Aruoma, O. I. DNA damage by oxygen-derived species[J]. FEBS Lett, 1991, 281:9-19.
    44 Halliwell, B, Gutteridge, J. M. C. Role of free radicals and catalytic metal ions in human diseases[J]. Methods Enzymol, 1990, 186: 1-90.
    45 Ladenstein, R., Epp, O., Bartel, K., et al. Structure analysis and molecular model of the selenoenzyme: glutathione peroxidase of 208 A resolution[J]. J. MoL Biol., 1979, 134: 199-218.
    46 Gonzalez, M. C., Ferrer, M., et al. Cloning, sequenceing and functional expression of a cDNA encoding a NADP-dependent malie enzyme from human liver[J]. Gene, 1995, 159: 255-260.
    47 陈琳军.谷胱甘肽S—转移酶同工酶与白血病[J].国外医学输血及血液学分册,1995,18(4):215-217.
    48 Pain, D. J., Burneleau, G., Bavoux, C., et al. Levels of polychlorinated biphenlyls, organ- ochlorine pesticides, mercury and lead in relation to shell thickness in marsh harrier (Circus aeruginosus) eggs from Charente-Maritime, France[J].Environmental pollution, 1999,104: 61-68.
    49 Lowom, J. R., Gillingham, M. P. A spatial energetic model of cadmium accumulation by Diving Ducks[J]. Arch. Environ. Contam. Toxicol, 1996, 30: 241-251.
    50 Heinz, G. H., Hoffman, D. J., Sileo, L., et al. Toxicity of lead-contaminated sediment to mallards[J]. Arch. Environ. Contam.Toxicol, 1999, 36:323-333.
    51 Spahn, S. A., Sherry, T. W.. Cadmium and lead exposure associated with reduced growth rates, poorer fledging success of little blue heron chicks (Egretta caerulea) in South Louisiana wetlands[J]. Arch. Environ. Contam. Toxicol, 1999, 37: 377-384.
    52 Hoffman, D. J., Heinz, G. H., Sileo, L., et al. Developmental toxicity in lead-contaminated sediment in Canada geese (Branta Canadensis) [J]. J. Toxicol. Environ. Health, Part A, 2000, 59: 235-252.
    53 Ridgway, L. P., Karnofsky, D. A. The effects of metals on the chick embryo: toxicity and production of abnormalities in development[J]. Ann. N. Y. Acad. Sci, 1952, 55: 203-215 (cited in: Lead-Environmental Aspects, Environmental Health Criteria 85. WHO, 1989).
    54 Abu-Sinna, G., El-Shabaka, H., Al-Henzab, N. Effect of lead nitrate on the liver of the developing chick embryos[J]. Qatar Univ. Sci. J, 1991,11: 227-243.
    55 Mars, A., Arola, Li. Cadmium and lead toxicity effects on zinc, copper, nickel and iron distribution in the developing chick embryo[J]. Comparative Biochemistry and Physiology Part C, 1985, 80: 185-188.
    56 Hoffman, D. J., Eastin, W. C. Effects of industrial effluents, heavy metal, and inorganic solvents on mallard embryo development[J]. Toxicology Letters, 1981,9:35-40.
    57 Fejes, S., Budai, P., Vamagy, L., et al. Embryo-toxicity study of a dimethoate containing insecticide formulation and heavy elements (Cu, Cd) in chicken embryos after administration as single compounds or in combination. In: Proceedings of the SECOTOX World Congress and the Sixth European Conference on Ecotoxicology and Environmental Safety, 20-24 August 2001, Krak6w, Poland, 2001: 113.
    58 Hatano, U., Hatano, A. Effects of sea water pollution on chicken embryos[J]. Toxicol. Lett, 1992, 62:1-7.
    59 Jeng, S. L., Lee, S. J.,Yang, S. C, et al. Effects of lead ingestion on concentrations of lead in tissues and eggs of laying tsaiya ducks in Taiwan[J]. Poultry Science, 1997,76: 13-16.
    60 Fasola, M., Movalli, P. A., Gandini, C. Heavy metal, organochlorine pesticide, and PCB residues in eggs and feathers of herons breeding in Northern Italy[J]. Arch. Environ. Contam. Toxicol., 1998, 34:87-93.
    61 Romanoff, A L., Romanoff, A. J. Pathogenesis of the Avian Embryo[M]. Wiley, New York, 1972.
    62 Danielsson, B. R. G., Dencker, L., Lindgren, A. Transplacental movement of inorganic lead in early and late gestation in the mouse[J]. Environ. Toxicol. Chem., 1999, 18: 673-678.
    63 Burger, J., Gochfeld, M. Comparisons of nine heavy metals in salt gland and liver of greater scaup (Aythya marila), black duck (Anas rubricpes) and mallard (A. Platyrhynchos)[J]. Comp. Biochem. Physiol, 1985, 81:287-292.
    64 Burger, J., Gochfeld, M. Heavy metals in Franklin's gull tissues: age and tissue differences [J]. Toxicol. Chem., 1999, 18: 673-678.
    65 Pace, R. M., Hohman, W. L., Custer, T. W.. Lead affects on body composition and organ size of wintering canvasbacks Aythya valiseneria in Louisiana[J]. Wildlife Biol, 1999,5:3-10.
    66 Myklebust, I., Pedersen, H. C. Accumulation and distribution of cadmium in willow ptarmigan [J]. Ecotoxicology, 1999, 8: 457-465.
    67 Braune, B.M., Gaskin, D. E.. A mercury budget for the Bonaparte's gull during autumn moult[J]. Ornis Scand., 1987, 18:244-250.
    68 Scheuhammer, A. M. The chronic toxicity of aluminum, cadmium, mercury and lead in birds: A review[J]. Environmental Pollution, 1987,46:263-295.
    69 Scheuhammer, A.M., Templeton, D.M. Metallothionein production: similar responsiveness of avian liver and kidney to chronic cadmium administration[J]. Toxicology, 1990,60:151-159.
    70 Flick, D. F., Kraybill, H. F., Dimitroff, J. M. Toxic effects of cadmium: A review[J]. Environmental Respects, 1971,4,71-85.
    71 Froslie, A., Haugen, A., Holt, G., et al. Levels of cadmium in liver and kidneys from Norwegian cervides[J]. Bull. Environ. Contam. Toxicol., 1986,37:453-460.
    72 Walsh, P. M.. The use of seabirds as monitors of heavy metals in the marine environment. In B.W. Furness and P.S. Rainbow (eds), Heavy metals in the marine environment[M]. Boca Raton: CRC Press, 1990, 183-204.
    73 Pedersen, H. C, Mykelbust, I.. Age-dependent accumulation of cadmium and zinc in the liver and kidneys of Norwegian willow ptarmigan [J]. Bull. Environ. Contam. Toxicol, 1993, 51:381-388.
    74 Marn, C. M., Mirarchi, R. E., Lisano, M. E. Effects of diet and cold exposure on captive female mourning doves dosed with lead shot[J]. Archives of Environmental Contamination and Toxicology, 1988,17: 589-594.
    75 USFWS. Use of Lead Shot for Hunting Migratory Birds in the United States (Final supplement environmental impact statement). US Department of the Interior, Fish and Wildlife Service, Washington, DC. 1986.
    76 Abu-Sinna, G., El-Shabaka, H, Al-Henzab, N. Effect of lead nitrate on the liver of the developing chick embryos[J]. Qatar Univ. Sci. J., 1991,11:227-243.
    77 Miguel, A. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona[J]. Environmental Pollution, 2003,125: 393-400.
    78 Romanoff, A. L. Biochemistry of the Avian Embryo[M]. NY: John Wiley & Sons press, 1967: 50.
    79 Boadi, W.Y., Urbach, J., Brandes, J.M., et al. In vitro exposure to mercury and cadmium alters term human placental membrane fluidity[J]. Toxicol. Appl. Pharmacol, 1992,116:17-23.
    80 Domingo, J. L. Metal-induced developmental toxicity in mammals: a review[J]. J. Toxicol. Environ. Health,1994, 42: 1233-1241.
    81 Peters, J.M., Duncan, J.R., Wiley, L.M. and Keen, C.L. Influence of antioxidants on cadmium toxicity of mouse preimplantation embryos in vitro[J]. Toxicology, 1995, 99: 11-18.
    82 Sieg, D.J., Billings, R.E. Lead cytokine-mediated oxidative DNA damage in cultured mouse hepatocyes[J]. Toxicol. Appl. Pharm,1997, 142: 106-115.
    83 Daniel, A. D., Terry, D. O., Shelli, A. N., et al. Effects of lead on rat kidney and liver: GST expression and oxidative stress[J]. Toxicology,1998,128:191-206.
    84 Long, G.J., Rosen, J.F., Schanne, F.A.X.. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR[J]. J. Biol. Chem, 1994,269: 834-837.
    85 Sandhir, R., Julka, D., Gill, K.D. Lipoperoxidative damage on lead treatment in rat brain and its implications on membrane bound enzymes. Pharmacol. Toxicol,1994, 74: 66-71.
    86 McGowan, C, Donaldson, W.E. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks[J]. Biol. Trace Elem. Res,1986, 10: 37-46.
    87 Chiba, M., Shinohara, A., Matsushita, K., et al. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood[J]. TohokuJ. Exp. Med, 1996,178:49-62.
    88 Halliwell, B., Gutteridge, J.M.C.. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.), Free Radical in Biology and Medicine[M]. Clarendon Press, Oxford, 1989, 86-123.
    89 Lima-Hermes, M., Pereira, B., Bechara, E.J.H.,. Are free radicals involved in lead poisoning[J]. Xenobiotica, 1991,21: 1085-1090.
    90 Monterio, H., Abdalla, D., Arcuri, A., et al. Oxygen toxicity related to exposure to lead[J]. Clin. Chen,1995,31:1673-1676.
    91 Monterio, H.P., Bechara, E.J.H., Abdalla, D.S.P.. Free radical involvement in neurological porphyries and lead poisoning[J]. Mol. Cell. Biochem., 1991, 103:73-83.
    92 Knowles, S.O., Donaldson, W.E. Dietary modification of lead toxicity: effects on fatty acid and eicosanoid metabolism in chicks[J]. Comp. Biochem. Physiol, 1990,95:99-104.
    93 Lawton, L., Donaldson, W.E. Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol[J]. Trace Elem.Res, 1991,28: 83-97.
    94 Adonaylo, V.N., Oteiza, P.I. Pb2-promotes lipid oxidation and alterations in embrane physical properties[J].Toxicology, 1999a, 132:19-32.
    95 Donaldson, W.E., Knowles, S.O. Is lead toxicosis a reflection of altered fatty acid composition of membranes[J]? Comp. Biochem. Physiol. 1993,104C: 377-379.
    96 Stohs, S.J., Bagchi, D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Rad. Biol. Med,1995,18: 321-336.
    97 Halliwell, B., Gutteridge, J.M.C. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.)[M]. Free Radical in Biology and Medicine. Clarendon Press, Oxford, 1989: 86-123.
    98 Yiin, S.J., Lin, T.H. Lead-catalyzed peroxidation of essential unsaturated fatty acid[J]. Biol. Trace Elem. Res,1995,50:167-172.
    99 Fu, H., Ye, X.B., Zhu, J.L., et al. Oxidative stress in lead exposed workers[M]. IARC Gargnano Conference, 1999,2-3.
    100 Farant, J.P., Wigfield, D.C.. Biomonitoring lead exposure with ALAD activity ratios[J]. Int. Arch. Occup. Environ. Health,1982,51: 15-24.
    101 Hermes-Lima, M., Valle, V. G. R., Vercesi, A.E., et al. Damage to rat liver mitochondria promoted by d-aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphria and lead poisoning[J]. Biochim. Biophys. Acta,1991, 1056: 57-63.
    102 Hermes-Lima, M. How do Ca2_ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria[J]. Free Radic. Biol. Med,1995, 19:381-390.
    103 Bechara, E. J. H.. Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid[J]. Braz. J. Med. Biol. Res., 1996, 29:841-851.
    104 Douki, T., Onuki, J., Medeiros, M.H., et al.. Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid[J]. FEBS Lett, 1998b, 428: 93-96.
    105 Rossman, T.G.. Cloning genes whose levels of expression are altered by metals: implications for human health research[J]. Am. J. Ind. Med.,2000, 38: 335-339.
    106 Quintanilla-Vega, B., Hoover, D.J., Bal, W., et al.. Lead effects on protamine-DNA binding[J]. Am. J. Ind. Med,2000, 38: 324-329.
    107 Dong, J.T., Luo, X.M. Arsenic-induced DNA strand breaks associated with DNA-protein crosslinks in human fetal lung fibroblasts[J]. Mutat. Res.,1993, 302:977-1102.
    108 Olin, K.L., Cherr, G.N., Ritkin, E., et al. The effects of some redox-active metals and reactive aldehydes on DNA-protein cross-links in vitro[J]. Toxicology, 1996:1-8.
    109 Valenzuela, A., Lefauconnier, J. M., Chaudiere, J., et al. Effect of lead acetate on cerebral glutathione peroxidase and catalase during chronic exposure in sucking rats[J]. Neurotoxicology, 1989,10: 63-69.
    110 Hsu, J.M. Lead toxicity related to glutathione metabolism[J]. J. Nutr,1981, 111: 26-33.
    111 McGowan, C., Donaldson, W.E. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks[J]. Biol. Trace Elem. Res.1986, 10: 37-46.
    112 Chiba, M., Shinohara, A., Matsushita, K., et al. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood[J]. Tohoku J. Exp. Med,1996, 178: 49-62.
    113 Lachant, N.A., Tomoda, A., Tanaka, K.R. Inhibition of the pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning[J]. Blood, 1984, 63:518-524.
    114 Gurer, H., Ozgunes, H., Neal, R., et al. Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats[J]. Toxicology,1998, 128:181-189.
    115 Cocco, P., Salis, S., Anni, M., et al. Effects of short-term occupational exposure to lead on erythrocyte glucose-6-phosphate dehydrogenase activity and serum cholesterol[J]. J. Appl. Toxicol., 1995,15:375-378.
    116 Lachant, N.A., Tomoda, A., Tanaka, K.R. Inhibition of the pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning[J]. Blood, 1984, 63: 518-524.
    117 Gelman, B.B., Michaelson, I.A., Bus, J.S. The effect of lead on oxidative hemolysis and erythrocyte defense mechanisms in the rat[J]. Toxicol. Appl. Pharmacol,1978, 45:119-129.
    118 Schrauzer, G.N., 1987. Effects of selenium antagonists on cancer susceptibility: new aspects of chronic heavy metal toxicity[J]. J. UOEH, 1987, 9: 208-215.
    119 Othman, A.I., EI-Missiry, M.A. Role of selenium against lead toxicity in male rats[J]. J. Biochem. Mol. Toxicol,1998,12: 345-349.
    120 Hussain, S., Meneghini, E., Moosmayer, M., et al. Potent and reversible interaction of silver with pure Na,K-ATPase and Na,K-ATPase-liposomes[J].Biochim. Biophys. Acta, 1994, 1190: 402-408.
    1 Hui, C. A. Concentrations of chromium, manganese, and lead in air and in avian eggs[J]. Environmental Pollution, 2002,120:201-206.
    2 Mora, M. A. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona[J]. Environmental Pollution,2003,125:393—400.
    3 Burger, J. Heavy metals in avian eggshells: another excretion method[J]. Journal of Toxicology and Environmental Health, 1994,41:207-220.
    4 Dauwe, T., Bervoetz, L., Blust, R., et al. Are eggshells and egg contents of great and blue tits suitable as indicators of heavy metal pollution?[J]. Belgian Journal of Zoology, 1999,129: 439-447.
    5 Kertesz, V., Fancsi, T. Adverse effects of (surface water pollutants) Cd, Cr and Pb on the embryogenesis of the mallard[J]. Aquatic Toxicology,2003,65:425-433.
    6 Goyer, R. A., Klaassen, C. D., Waalkes, M.P. Metal toxicology[M]. Academic Press: San Diego, CA, 1995.
    7 Moore, J. W., Rarnamoorthy, S. Lead. In: Heavy metals in natural waters[M]. New York: Springer-Verlag, 1984: 100-124.
    8 Blaxter, K. L. Lead as a nutritional hazard to farm livestock. Ⅱ. The absorption and excretion of lead by sheep and rabbits[J]. Jr. Comp. Path. And Therap, 1950, 60: 140-151.
    9 Vyas, N. B., Spann, J. W., Heinz, G. H. Lead shot toxicity to passerines[J]. Environmental Pollution, 2001, 11: 135-138.
    10 Goutner, V., Papagiannis, I., Kalfakakou, V. Lead and cadmium in eggs of colonially nesting waterbirds of different position in the food chain of Greek wetlands of international importance[J]. The Science of the Total Environment, 2001,267:169-176.
    11 Mateo, R., Taggart, M., Meharg, A. A. Lead and arsenic in bones of birds of prey from Spain[J]. Environmental Pollution, 2003, 126:107-114.
    12 Hillman, F. E.. A rare case of chronic lead poisoning: polyneuropathy traced to lead shot in the appendix[J]. Ind. Med. Surg, 1967, 36(7): 488-492.
    13 Madsen, H. H. T., Skjodt, T., Jorgensen, P. J., et al. Blood lead levels in patients with lead shot retained in the appendix[J]. Acta Radiol, 1998,29:745-746.
    1 Teresa, A G., Laura, C. Biochemical changes in the kidneys after perinatal intoxication with lead and/of cadmium and their antagonistic effects when coadministered[J]. Ecotoxicology and Environmental Safety, 2004, 57: 184-189.
    2 Satyalatha, B.D.J., Vardhani,V.V. Liver phosphatases in mice treated with lead during murine ancylostomiasis[J]. Ecotoxicology and Environmental Safety, 2005,61: 134-136.
    3 Burger, J., Gochfeld, M.. Cadmium and lead in common terns (Ayes: Sterna hirundo): relationship between levels in parents and eggs[J]. Environental Monitor Assess, 1991, 16: 253-258.
    4 Eisler, R. Lead hazards to fish, wildlife, and invertebrates: a synoptic Review [J].USFish Wildl. Serv. Biol. Rep, 1988, 85:1-14.
    5 Hui, C. A.. Concentrations of chromium, manganese, and lead in air and in avian eggs[J]. Environmental Pollution, 2002, 120: 201-206.
    6 Swaileh,K.M., Ezzughayyar, A. Dose-dependent effects of dietary Pb and Zn on feeding and growth rates of the Landsnail Helix engaddensis[J]. Ecotoxicology and Environmental Safety: Environmental Research, Section B, 2001, 50: 9-14.
    7 Rabitto, I. S., Alves, J. R M., Silva, H. C., et al. Effects of dietary Pb(Ⅱ) and tributyltin on neotropical fish, Hoplias malabaricus: histopathological and biochemical findings[J]. Ecotoxicology and Environmental Safety, 2005,60:147-156.
    8 Naomasa, K., Hideo, O. Effects of heavy metals on sea urchin embryo development. Part2. Interactive toxic effects of heavy metals in synthetic mine effluents[J]. Chemosphere, 2005,8:1198-1203.
    9 Snoeijs, T., Dauwe, T., Pinxten, R., et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the Zebra finch (Eaeniopygia guttata) [J]. Environmental Pollution, 2005,134:123-132.
    10 KiliC, Z., Acar, O., Ulasan, M., et al. Determination Of lead, copper, zinc, magnesium, calcium and iron in fresh eggs by atomic absorption spectrometry[J]. Food Chemistry, 2002,76:107-116.
    11 Eijsackers H, Heinbach F, Donker M. Heavy metal tissue levels, impact on breeding and nestling development in natural populations of pied flycatchers(Aves)in the pollution gradient from a smelter[M]. Ecotoxicology of test organisms, USA: Chelsea press, 1993:246-258.
    12 OdsjO, T., Sondell, J. Population development and breeding successs in the marsh harrier Circus aeruginosus in relation to levels of DDT, PCB and Mercury[J]. Var Fagelvard, 1977, 36(2): 156-160.
    13 Pain, D. J., Burneleau, G., Bavoux, C., et al. Levels of polychlorinated biphenyls, organchlorine pesticides, mercury and lead in relation to shell thickness in marsh harrier(Circus aeruginosus) eggs from Charente-Maritime, France[J]. Environmental Pollution, 1999,104: 61-68.
    14 Tapio, E., Esa, L.. Egg shell quality, clutch size and hatching success of the great tit(Parus major) and the pied flycatcher(Ficedula hypoleuca) in an air pollution gradient[J]. Oecologia, 1995,102: 312-323.
    15 Panheleux, M., Bain, M., Fernandez, M. S., et al. Organic matrix composition and ultrastructure of eggshell: a comparative study[J]. British Poultry Science, 1999.40:240-252.
    16 Ratcliffe, D.A. Decrease in eggshell weight in certain birds of prey[J]. Nature, 1967,215(97): 208-210.
    17 Dauwe, T., Bervoetz, L., Blust, R., et al. Are eggshells and egg contents of great and blue tits suitable as indicators of heavy metal pollution[J]? Belgian Journal of Zoology, 1999,129: 439-447.
    18 Burger, J. Heavy metals in avian eggshells: another excretion method[J]. Journal of Toxicology and Environmental Health, 1994,41:207-220.
    19 Morera, M., Sanpera, C., Crespo, S., et al. Inter and intraclutch variability in heavy metals and selenium levels in Adouin's gull eggs from the Ebro Delta, Spain[J], Archives of Environmental Contamination and Toxicology, 1997,33:71-75.
    20 Miguel, A. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona[J]. Environmental Pollution, 2003,125: 393-400.
    21 Burger, J., Gibbons, J. W. Trace elements in egg contents and egg shells of slider turtles (Trachemys scripta) from the Savannah River Site[J]. Archives of Environmental Contamination and Toxicology, 1998,34:382-386
    22 Romanoff, A. L. Biochemistry of the Avian Embryo[M]. NY: John Wiley & Sons press, 1967: 50.
    23 Nyholm, N. E. I. Influence of heavy metal exposure during different phases of the ontogeny on the development of pied flycatchers, Ficedula Hypoleuca, in natural populations[J]. Archives of environmental contamination and toxicology, 1998,35:632-637.
    1 史志诚.动物毒理学[M].北京:中国农业出版社,2001.
    2 Jeffrey, M. L. Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and Wood Ducks (Aix sponsa) using the Illinois River (USA)[J]. Environmental Pollution, 2003,122: 177-181.
    3 Johansen, P., Asmund, G., Riget, F. Lead contamination of seabirds harvested with lead shot implications to human diet in Greenland[J]. Environmental Pollution, 2001,112:501-504.
    4 Snoeijs, T., Dauwe, T, Pinxten, R., etc. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata) [J]. Environmental Pollution, 2005, 134: 123-132.
    5 Falandysz, J. Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidney of poultry, rabbit and sheep slaughtered in the northern part of Poland[J]. Food Additive Contamination, 1991, 8:71-83.
    6 Falandysz, J. Some toxic and essential trace metals in cattle from the northern part of Poland [J]. The science of the total Environment, 1993, 136: 177-191.
    7 Jorheim, L., Slorach, S., Sundstrom, B., et al. Lead, cadmium, arsenic and mercury in meat, liver and kidneys of Swedish pigs and cattle 1984-88[J]. Food Additive Contamination, 1991, 8:210-212.
    8 Eisler, R. Lead hazards to fish, wildlife, and invertebrates: a synoptic Review [J].US Fish Wildl. Serv. Biol Rep, 1988, 85:1-14.
    9 Nyholm, N. E. I. Influence of heavy metal exposure during different phases of the ontogeny on the development of pied flycatchers, Ficedula Hypoleuca, in natural populations[J]. Archives of environmental contamination and toxicology, 1998, 35: 632-637.
    10 Farmer, A. A., Farmer, A. M. Concentrations of cadmium,lead and zinc in livestock feed and organs around a metal production centre in eastern Kazakhstan[J]. The science of the total environment., 2000, 257: 53-60.
    11 Laskowski, R., Hopkin, S. P. Effect of Zn, Cu, Pb and Cd on fitness in snails (Helix aspersa) [J]. Ecotoxicology and Environmental Safety, 1996,34:59-69.
    12 Knigge, T., Kohler, H-R.. Lead impact on nutrition, energy reserves, respiration and stress protein (hsp70) level in Porcellio scaber (Isopoda) populations differently preconditioned to their habitats[J]. Environmental Pollution, 2000, 108:209-217.
    13 Posthuma, L., van Straalen, N. M. heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences[J]. Comp. Physiol. Biochem, 1993, 106C: 11-38.
    14 Wilson, J. B.. The cost of heavy metal tolerance: an example[J]. Evolution, 1988, 42: 408-413.
    15 Dallinger, R., Berger, B., Hunziker, P., et al. Metallothionein in snail Cd and Cu metabolism[J]. Nature, 1997,388: 237-238.
    16 Spurgeon, D. J., Hopkin, S. P. The development o genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida[J]. Environmental Pollution, 2000, 109: 193-201.
    17 Richards, M. P. Reproductive effects of chronic, low-level dietary metal exposure in birds[J]. NA Wildlife Natural Resources Conference, 1987, 52: 658-664.
    1 Spellerberg, J. S. Biological indicator. In: Monitoring Ecological Change[M]. Cambridge University Press, Cambridge, 1991. O'Brien.
    2 O'Brien, D.J., Kaneene, J.B., Poppenga, R.H.. The use of mammals as sentinels for human exposure to toxic contaminants in the environment[J]. Environmental Health Perspect, 1993, 99:351-368.
    3 Friberg, L., Nordberg, G. F., Vouk, V. B. In: Handbook on the Toxicology of Metals, 2nd Edition. Elsevier, Amsterdam, New York, Oxford, 1986.
    4 Cooke, J. A., Andrews, S. M., Johnson, M. S.. Lead, zinc, cadmium and fluoride in small mammals from contaminated grassland established on fluorspar tailings[J]. Water Air Soil Pollution, 1990, 51:43-54.
    5 Sheffield, S. R., Sawicka-Kapusta, K., Cohen, J. B., et al. Rodentia and Lagomorpha. In: Shore, R. F., Rattner, B. A. (Eds), Ecotoxicology of Wild Mammals. Wiley, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2001, 215-314.
    6 Gonzales, G., Crespo, S., Brusle, J. Histo-cytological study of the liver of the cabrilla sea bass, Serramus cabrilla (Teleostei, Serramidae), an available model for marine fish experimental studies[J]. Journal ofFish Biology, 1993, 43: 363-373.
    7 Pacheco, M., Santos, M. A. Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European ell (Anguilla anguilla L.)[J]. Ecotoxicology and Environmental Safety, 2002, 53:331-347.
    8 Wester, P. W., Canton, J. H. The usefulness ofhistopathology in aquatic toxicity studies[J]. Comparative Biochemistry and Physiology Part C, 1991,100 (1): 2115-2117.
    9 AbdAllah, A. T., Moustafa, M. A. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemicall analysis, light and electron microscopy[J]. Environmental Pollution, 2002, 116: 185-191.
    10 Campana, O., Sarasquete, C., Blasco, J. Effect of lead on ALA-D activity, metalothionein levels, and lipid peroxideation in blood, kidney, and liver of the toadfish Halobatrachus didactylus[J]. Ecotoxicology and Environmental Safety, 2003, 55:116-125.
    11 Rabitto, I. S., Alves-Costa, J. R. M., Silva de Assis, H. C., etc. Effects of dietary Pb(Ⅱ) and tributyltin on neotropical fish, Hoplias malabaricus: histopathological and biochemical findings[J]. Ecotoxicology and Environmental Safety, 2005, 60:147-156.
    12 罗克.家禽解剖学与组织学[M].福州:福建科学技术出版社,1983,50-76.
    13 贾东平,彭克美,姜国彦,等.东方白鹳消化系统的组织学研究(二)[J].野生动物,1991,59(6):46-74.
    14 张子慧,肖方,袁伟静,等.一雄性丹顶鹤消化系统组织学观察[J].动物学杂志,1999,34(3):39-40.
    15 Stentiford, G. D., Longshaw, M., Lyons, B. P., et al. Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[J]. Marine Environmental Respect, 2003, 55: 137-159.
    16 Chavin, W. Teleostean endocrine and para-endocrine alterations of utility in environmental studies[M], In: Chavin, W. (Ed.), Responses offish to Environmental Change. Thomas and Springfield, Illinois, 199-238.
    17 施佩璜,刘汝棣,赵瑞珠.电镜观察并比较鸡胚孵化各时期的肝细胞,探讨亚显微结构与功能的关系[J].生理科学,1983,1:60-61.
    18 Teh, S.J., Adams, S.M., Hinton, D.E. Histopathological biomarkers in feral freshwater fish populations exposed to different types of contaminant stress[J]. Aquatic Toxicology, 1997, 37:51-70.
    19 Bolognaini-Fantin, A. M., Franchini, A., Trevisan, P., et al. Histopathological and cytochemical changes induced in liver of goldenfish Carassius carassius var. auratus by short-term exposure to lead[J]. Acta Histoehemistry, 1992, 92: 228-235.
    20 Foulkes, E. C. Metals and biological membranes. In: Change, L. (Ed.), Toxicology of Metals[M]. CRC Press Inc., Boca Raton, FL, 1996, 133-143.
    21 Pereira, R., Pereira, M. L., Ribeiro, R., et al. Wildlife animals as sentinels to human health due to environmental exposure to heavy metals[M]. In: Abstract Book. In: Proceedings of the 11th Annual meeting, SETAC Europe, 6-10 May, Soc. Environ Toxicol. Chem., Madrid, 2001,108.
    22 Goyer, R. A. Mechanisms of lead and cadmium nephrotoxicity[J]. Toxicology Letter, 1989, 46:153-162.
    23 Nolan, C. V., Shaikh, Z. A. Lead nephrotoxicity and associated disorders: biochemical mechanisms[J]. Toxicology, 1992, 73:127-146.
    24 Kim, R., Rotnizky, A,, Sparrow, D., et al. A longitudinal study of low-level lead exposure and impairment of renal function[J]. JAMA, 1996, 275:1177-1181.
    25 Loghman-Adham, M. Renal effects of environmental and occupational lead exposure[J]. Environmental Health perspect, 1997, 105: 958-938.
    26 Franchini, A., Barbanti, E., Bolognani-Fantin, A. M. Effects of lead on hepatocyte ultrastructure in carassius carassius (L.) var. auratus[J]. Tissue and Cell, 1991, 23(6):893-901.
    27 Goyer, R. A., Moore, J. F. Cellular effects of lead[J]. Adv. Exp. Med. Biol., 1974, 48:447-462.
    28 Klionsky, D. J., Emr, S. D. Artophagy as a regulated pathway of cellular degradation[J]. Science, 2000, 290: 1717-1721.
    29 Reed, J. C. Cytochrome c: can't live with it - can't live without it[J]. Cell, 1977, 91:559-562.
    30 Shukla, G. S., Hussain, T., Srivastava, R. S., et al. Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent with rowel[J]. Industrial Health,1989, 27(2): 59.
    31 刘发义,吴玉霜.重金属污染物在海洋生物体内积累和解毒机理.海洋科学,1988,5:63-66.
    1 Hermes-Lima, M., Pereira, B., Bechara, E.J.H. Are free radicals involved in lead poisoning[J]? Xenobiotica, 1991,21: 1085-1090.
    2 Sandhir, R., Julka, D., Gill, K.D. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes[J]. Pharmacology Toxicology, 1994, 74:66-71.
    3 Flora, S. J. S., Mehta, A., Satsangi, K., et al. Aluminum induced oxidative stress in rat brain: response o combined administration of citric acid and HEDTA[J]. Comparative Biochemistry and Physiology Part C, 2003, 134:319-328.
    4 Lowry, O. H., Rosenbrough, N. J., Farr, A.L., et al. Protein measurement with folin-phenol reagent[J]. Journal of Biology and Chemistry, 1951,193:265-75.
    5 Yousef, M. I. Aluminum induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid[J]. Toxicology, 2000, 153:83-104.
    6 Konings, A.W.T., Drijver, E.B. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation[J]. Radiation Respects, 1979,80:494-501.
    7 郑荣梁,黄中洋.自由基医学与农学基础[M].北京:高等教育出版社;海德堡:施普林格出版社,2001:50-51.
    8 Shafiq-ur-Rehman, S. Lead-induced regional lipid peroxidation in brain[J]. Toxicology Letters, 1984, 21:333-337.
    9 Sandhir, R., Gill, K.D. Effect of lead on lipid peroxidation in liver of rats[J]. Biological Trace Element Respect, 1995,48:91-97.
    10 Donaldson, W.E., Knowles, S.O. Is lead toxicosis a reflection of altered fatty acid composition of membranes[J]? Comparative Biochemistry and Physiology Part C, 1993,104: 377-379.
    11 Stohs, S.J., Bagchi, D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biological and Medicine,1995,18: 321-336.
    12 Halliwell, B., Gutteridge, J.M.C. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.)[M]. Free Radical in Biology and Medicine. Clarendon Press, Oxford, 1989: 86-123.
    13 Yiin, S.J., Lin, T.H. Lead-catalyzed peroxidation of essential unsaturated fatty acid[J]. Biological Trace Elemental Respect, 1995,50:167-172.
    14 Knowles, S.O., Donaldson, W.E. Dietary modification of lead toxicity: effects on fatty acid and eicosanoid metabolism in chicks[J]. Comparative Biochemistry and physiology, 1990,95:99-104.
    15 Lawton, L., Donaldson, W.E. Lead-induced tissue fatty acid alterations and lipid peroxidation[J]. Biological Trace Elemental Respect, 1991,28: 83-97.
    16 Adonaylo, V.N., Oteiza, RI. Pb~(2-) promotes lipid oxidation and alterations in embrane physical properties[J].Toxicology,1999a,132: 19-32.
    17 Hsu, J.M. Lead toxicity related to glutathione metabolism[J]. Journal of Nutrition,1981,111, 26-33.
    18 Ito, Y., Niiya, Y., Kurita, H., et al. Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead[J]. Int. Arch. Occup. Environ. Health, 1985,56: 119-127.
    19 McGowan, C., Donaldson, W. E. Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks[J]. Biological Trace Elemental Respect, 1986,10: 37-46.
    20 Chiba, M., Shinohara, A., Matsushita, K., et al. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. TohokuJ. Exp. Med, 1996,178: 49-62.
    21 Gelman, B.B., Michaelson, I.A., Bus, J.S. The effect of lead on oxidative hemolysis and erythrocyte defense mechanisms in the rat[J]. Toxicological Applied Pharmacology, 1978, 45: 119-129.
    22 Halliwell, B., Gutteridge, J. M. C. Free Radicals in Biology and Medicine[M]. Oxford Clarenden Press, 1985: 87.
    23 Cutler R G, Davies K J A. Antioxidant, aging and longevity. In: Free Radicals in Biology[M]. Pryor W eds., Academic Press, New York, 1984:371-428.
    24 Patra, R.C., Swarup, D. Effect of lead on erythrocytic antioxidant defense, lipid peroxide levels and thiol groups in calves[J]. Res. Ver. Sci,2000, 68:71-74.
    25 Sivaprasad, R., Nagaraj, M., Varalakshmi, P., Combined efficacies of lipoic acid and meso-2,3-dimercaptosuccinic acid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status[J]. Human Exp. Toxicol,2003,22:183-192.
    26 Farbod F, Ashkan E, Christian K. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase[J]. Environmental Research ,2005,98: 33-39.
    27 Okamoto, O.K., Colepicolo, P. Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra[J]. Comparative Biochemistry and physiology PartC, 1998, 119:67-73.
    28 Vaziri, N.D., Lin, C., Farmand, F, et al. Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension[J]. Kidney International. 2003b,63:186-194.
    29 Estefania, G. M., Guilherme, J. M. R., Silvia, B. M. B., et al. Antioxidant defense in rat brain regions after developmental lead exposure[J]. Toxicology,2001,169:145-151.
    30 Sieg, D.J., Billings, R.E. Lead cytokine-mediated oxidative DNA damage in cultured mouse hepatocyes [J]. Toxicology of Applied Pharmacy ,1997,142:106-115.
    31 Daniel A. D., Terry D. O., Shelli A. N., et al. Effects of lead on rat kidney and liver: GST expression and oxidative stress[J]. Toxicology,1998,128:191-206.
    32 Markovac, J., Goldstein, G.W. Picomolar concentrations of lead stimulate brain protein kinase C[J].Nature , 1988,334:71-73.
    33 Long, G. J., Rosen, J.F., Schanne, F.A.X.. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR[J]. Journal of Biology and Chemistry, 1994,269: 834-837.
    34 Boyland, E., Dukes, C.E., Grover, R L., Mitchley, B.C.V. The induction of renal tumors by feeding lead acetate to rats[J]. British Journal of Cancer ,1962,26:283-288.
    35 Van Esch, G. J., Van Genderen, H.V., Vink, H. H. The induction of renal tumors by feeding of basic lead acetate to rats[J]. British Journal of Cancer ,1962, 26:289-297.
    36 Columbano, A., Ledda, G.M., Sirigu, R, et al. Liver cell proliferation induced by a single dose of lead nitrate[J]. American Journal of Pathology,1983,l 10:83-88.
    37 Davies, S.J., D'Sousa, R., Phillips, H, et al. Localization of alpha, mu and pi class glutathione S-transferases in kidney: comparison with Cu-Zn superoxide dismutase[J]. Biochemistry and Biophysiology Acta, 1993, 1157:204-208.
    38 Oberley, T.D., Friedman, A.L., Moser, et al. Effects of lead administration on developing rat kidney. II. Functional, morphologic and immunohistochemical studies[J]. Toxicology of Applied Pharmacy, 1995,131:94-107.
    39 Ainbinder, E., Bergelson, S., Pinkus, R., Daniel, V. Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione S-transferase gene expresssion by chemical agents[J]. FEBS, 1991, 243:49-57.
    40 Masci, O., Bongarzone, R. Toxicity of lead. In: Castellino, N., Castellino, P., Sannolo, N. (Eds.), Inorganic Lead Exposure: Metabolism and Intoxication[M]. Lewis Publishers, Boca Raton, FL,1995: 203-213.
    41 Goyer, R.A. In: Amdur, M.O., Doull, J., Klaassen, CD. (Eds.), Casarett and Doull's Toxicology: The Basic Science of Poisons[M]. McGraw-Hill, New York, 1993: 623-680.
    42 Sharma, P, Mishra, K. P.. Aluminum-induced matemall and developmental toxicity and oxidative stress in rat brain: Response to combined administration of Tiron and glutathione[J]. Reproductive Toxicology, 2006,21:313-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700