药物对映体手性萃取及支载液膜分离理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物对映体的制备性分离研究为当前最热门的课题之一。手性液-液萃取是药物对映体制备性分离的一种十分重要方法,相对化学拆分法、酶或微生物法和色谱拆分法,分离体系的选择有一定的规律可循,并且适用范围也大大扩宽。中空纤维膜萃取是近年发展起来的一种高效分离技术,受到众多研究者的重视。本论文主要工作是研究氧氟沙星、氯噻酮、扁桃酸和叔丁喘宁四种对映体在含有手性选择体的水-有机溶剂两相系统中的萃取分配行为,考察pH、手性选择体浓度、有机溶剂等因素对萃取性能的影响;将手性液-液萃取和中空纤维膜萃取分离技术结合,建立手性分离数学模型,对药物对映体进行制备性分离。主要内容如下:
     1.采用β-环糊精和L-苯丙氨酸-Cu~(2+)手性流动相添加剂法对氧氟沙星、氯噻酮、叔丁喘宁和扁桃酸四种对映体进行色谱分离和测定,该法具有良好的重现性和线性关系,相关系数均大于0.9993。
     2.基于化学热力学原理和质量守恒定律,对手性萃取基本理论进行研究,指出手性萃取是依据手性选择体和药物对映体生成两个非对映体在疏水性有机相中的自由能差-△(△G)来实现的。理论上,只要-△(△G)大于0,即分离因子(α)大于1,就能实现对映体的萃取分离。
     3.采用具有应用前景的酒石酸衍生物作为手性选择体,从分配系数、分离因子及分配自由能差-△(△G)三个方面考察pH、手性选择体浓度、有机溶剂等因素对氧氟沙星、扁桃酸、氯噻酮等药物对映体萃取性能的影响,研究具有不同取代基的酒石酸衍生物手性选择体的萃取性能及手性识别规律。
     4.以四苯硼钠(NaBPh_4)为疏水性相转移试剂,研究不同酒石酸衍生物手性选择体对叔丁喘宁对映体萃取性能。疏水性相转移试剂NaBPh_4与叔丁喘宁对映体阳离子形成疏水性复合盐,促进叔丁喘宁对映体在有机溶剂中的溶解,大大增大了两对映体的分配系数;但分配系数的增大以损失分离因子为代价,实验中采用0.0045 mol/LNaBPh_4,适合萃取分离叔丁喘宁对映体。
    
    博士学位论文
    摘要
     5.合成N一n一十二烷基一L一脯氨酸和N一n一十二烷基一L一轻基脯氨
    酸,以这两种氨基酸衍生物为手性选择体,采用手性配体交换萃取,
    研究了两种氨基酸衍生物手性选择体对氧氟沙星和扁桃酸对映体的
    萃取性能,考察了铜离子浓度、pH、有机溶剂等因素对萃取性能的
    影响。两种氨基酸衍生物手性选择体对氧氟沙星和扁桃酸对映体的
    立体选择性比酒石酸衍生物手性选择体大大提高。
     6.基于质量守恒定律和传统非手性逆流分级萃取理论,研究中
    空纤维膜0/W逆流分级手性萃取理论,建立侧S或S瓜~NTU和
    卜NTU数学模型,对数学模型进行研究和讨论。运用Visual Basic
    程序,对数学模型进行模拟;同时通过对数学模型模拟,对中空纤
    维膜0/W逆流分级手性萃取的操作参数进行优化。
     7.采用水凝胶负载和磷酸氢二钠/磷酸缓冲溶液浸泡两种方法
    对聚矾中空纤维膜进行改性;使用改性的中空纤维膜,对氧氟沙星
    对映体进行膜萃取分离,考察了中空纤维膜传质性能和萃取平衡时
    间。氧氟沙星对映体经过2X5(5个萃取和5个反萃取)水凝胶负
    载的聚矾中空纤维膜O/W分级手性萃取后,出口水相氧氟沙星对映
    体浓度比值达3.4,实验值和从数学模型计算得到的理论值非常接
    近。
     8.基于手性液一液萃取理论,提出了支载液膜双有机相手性萃取
    新方法;采用中空纤维支载液膜和分别含有相反手性选择体的双有机
    相对氧氟沙星对映体进行了萃取分离及机理研究。研究表明,支载液
    膜双有机相手性萃取能够获得几乎双倍的手性萃取分离推动力和更
    大的分离因子。使用2 xs(5个萃取和5个反萃取)水凝胶负载的聚
    矾中空纤维支载液膜双有机相手性萃取对氧氟沙星外消旋体进行了
    分离,得到膜内相出口氧氟沙星对映体浓度比值分别约为9.8。中空
    纤维支载液膜双有机相手性萃取比中空纤维膜0/W逆流分级手性萃
    取具有更强的分离能力,为外消旋体制备性分离开拓了一个新的领
    域,具有十分广阔的应用前景。
Preparative techniques for the separation of drug enantiomers have a great interesting potential. Chiral extraction is a very important method for preparative separation of enantiomers. It has some regularity and a larger application range in contrasting to chemical resolution, fermentation and enzymatic transformation and chromatography. Hollow fiber membrane extraction is a very effective separation technique with great promise. In the thesis, distribution behaviors of ofloxacin, chlorthalidone, mandelic acid and terbutaline enantiomers were examined in the aqueous-organic solvent of a two-phase systerm containing a chiral selector. Influence of pH value, organic solvents and concentrations of chiral selector on the partition coefficients(k) and separation factors( a ) of enantiomers, were investigated. Drug enantiomers were separated by combining chiral extraction and hollow fiber membrane extraction, and mathematical models were established for chiral separation. The main content and results can be summa
    rized as following:
    1. The enantiomeric resolution of ofloxacin, chlorthalidone, mandelic acid and terbutaline was studied by reversed phase HPLC with
    β -cyclodextrin and L-phenylalanine-Cu as chiral mobile phase additives. The method was applied to determination of amount of the enantiomers with good linear relationship and selection.
    2. Based on chemical thermodynamic theory and mass balance, the theory for chiral extraction was studied. It is pointed that enantiomeric separation is dependent on the difference in free energy between the two diastereomeric complexes formed by a chiral selector and enantiomers, - A ( A G). Only if separation factor is more than 1, that is to say, - △(△G) is above 0, different degrees of separation of enantiomers can be achieved by chiral extraction.
    3. The influence of pH, organic solvents and the concentrations of
    
    
    chiral selector on K, a and - A (A G) for ofloxacin, chlorthalidone and mandelic acid enantiomers, was investigated with tartaric acid derivatives as chiral selectors. The extraction performance and chiral recognition mechanism were studied.
    4. Distribution behaviors of terbutaline enantiomers were examined in the aqueous-organic of a two-phase system containing one of tartaric acid derivatives with Na-tetraphenylborate (NaBPlit) as a lipophlilic phase transfer reagent. BPri4~ can form lipophilic salt complexes with terbutaline enantiomers, which facilitates the solubility of the enantiomers in the organic phase. Partition coefficients increase with the rise of the concentrations of NaBPh4 at cost of loss of separation factor of terbutaline enantiomers by extraction. 0.0045 mol/L NaBPlij is suitable to separate terbutaline enantiomers.
    5. N--dodecyl-L-proline(Ci2-Pro) and N--dodecyl-L-hydroxyprol-ine(Ci2-Hyp) were synthesized. With Ci2-Pro and Ci2-Hyp derivatives as chiral selectors, respectively, influence of pH value, Cu2+ concentrations and organic solvents on extraction performance was investigated. It is found that C-pro and Ci2-Hyp have stronger stereoselectivity for ofloxacin and mandelic acid enantiomers than tartaric acid derivatives.
    6. Based on mass balance and fractional achiral extraction theory, fractional chiral extraction was studied, and mathematical models of R/S or S/R-NTU and Y-NTU were established. The models were simulated by Visual Basic program, and provided for separation of enantiomers by countercurrently fractional extraction with hollow fiber membrane.
    7. Polysulfone hollow fiber membranes were modified by filling hydrogel and immersing in NaH2PO4/H3PO4 buffer solution, respectively. Ofloxacin enantiomers were separated by hollow fiber membrane extraction. Good separation results were obtained with 3.4 of the ratio of the concentrations of ofloxacin enantiomers by 2 X 5 hollow fiber membrane modules filled with hydrogel.
    
    
    8. Based on chiral O/W extraction theory, support-liquid membrane extraction with two organic phases containing D-selector and L-selector, respectively, was studied.
引文
[1] Rosa H H, Pilar C F. Chromatographic separation of chlorthalidone enantiomers using β-cyclodextrins as chiral additives. J. Chromatogr. B, 2000, 740: 169-177
    [2] Gross A S, Hener B, Eichelbaum M. Stereoselective protein binding of verapamil enantiorners. Biochem. Pharrnacol., 1998, 37:4623-2427
    [3] Ariens E J. Stereoselectivity in pharmacodynamics and pharmacokinetics. Schweiz Med. Wochenschr., 1990, 120:131-134
    [4] Caldwell J. Stereochemical determinants of the nature and consequences of drug metabolism J. Chromatogr. A, 1995, 694:39-48
    [5] Caldwell J. Importance of stereospecific bioanalytical monitoring in drug development. J. Chromatogr. A, 1996, 719:3-13
    [6] Gimenez F, Pennie R A, Crevoisier C. Stereoselective pharmacokinetics of mefloquine in healthy caucasinans after multiple does. J. Pharm. Sci., 1994, 83(6): 824-827
    [7] Drayer D E. Pharmacodynamic and pharmacokinetic differences between drug enanriomers in humans: an overview. Clin. Pharmacol. Ther., 1986. 40(2): 125-133
    [8] Lirn W H, Hooper W D. Stereoselective metabolism and pharmacokinetics of racemic methylphenobarbital in humans. Drug Metab. Dispos., 1989, 17(2): 212-217
    [9] Wdliams K, Lee E. Importance of enantiomers in clinical pharmacology. Drugs, 1985, 30(4): 333-354
    [10] Mikus G, Eichelbaum M, Fischer C, et al. Interaction of verapamil and cimetine. stereochemical aspects of drug metabolism, drug disposition and drug action. J. Pharmacol. Exp. Ther., 1990, 253(3): 1042-1048
    [11] Abolfazl S M, Robert T F. Pharmacokinetics of metoprolol enantiomers following single and mutiple administration of racemate in rat. Internal J. pharm., 2002, 2:97-102
    [12] Guxman A, Yuste F, Toscano R A, et al. Absolute configuration of (-)-5-benzoyl-1, 2-dihydro-3H-pyrrolo [1,2-a] pyrrole-1-carboxylic acid, the active enantiomer of ketorolac. J. Med. Chem., 1986, 29:589-591
    [13] Mitscher L A, Sharma P N, Chu-Daniel T W, et al. Chiral DNA gyrase inhibitors
    
    2. Asymmetric synthesis and biological activity of the enantiomers of 9-fluoro-3-methyl-10(4-methyl-1-piperacinyl)-7-oxo-2, 3-dihydro-7H-pyrido [1,2, 3-de]-1,4-benzoxazine-6-carboxylic acid (ofloxacin). J. Med. Chem., 1987, 30(12): 2283-2286
    [14] Plenge P, Mellerup E T, Honore T, et al. The activity of 25 paroxetine/femoxetine structure variants in various reactions, assumed to be important for the effect of antidepressants. J. Pharm. Pharmcal., 1987, 39(11): 877-882
    [15] Carter R B, Dykstra L A. Effect of picenadol (LY 150720) and its stereoisomers on electric shock titration in the squirrel monkey. J. Pharmacal. Exp. Ther., 1985, 234(2): 299-305
    [16] Middlefell V C, Price T L. 5-HT3 receptor agonism may be responsible for the emetic effect of zacopride in the ferret. Br. J. Pharmacol., 1991, 103:1011-1015
    [17] Knabe J. Studies on the enantioselectivity of drugs. Arzneim-Forsch., 1989, 39(11): 1379-1384
    [18] Blaschke G, Kraft H P, Fickentscher K, et al. Chromatographic racemic separation of thalidomide and teratogenic activity of its enantiomers. Arxneim-Farsch., 1979, 29(10): 1640-1642
    [19] Goodwin S D, Gallis H A, Chow A T. Pharmacology and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother, 1994, 38:799-804
    [20] Tobert J A, Cirillo V J, Hitsenberger G, et al. Enhancement of uricosuric properties of indacrinone by manipulation of the enantiomer ratio. Clin. Pharmacal. Ther., 1981, 29(3): 344-350
    [21] Gold E H, Chang W, Coben M, et al. Synthesis and comparison of some cardiovascular properties of the stereoisomers of labetalol. J. Med. Chem., 1982, 25:1363-70
    [22] Lee J D, Williams K M. Chirality-clinical pharmacokinetics and pharmacodynamic considerations. Clin. Pharmacokinet., 1990, 18:339-345
    [23] Jamali F, Mehvar R, Pasutto F M. Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J. Pharmaceu. Sci., 1989, 78:695-715
    [24] Caldwell J. The importance of stereochemistry in drug action and disposition. J. Clin. Pharmacol., 1992, 32:925-929
    [25] Smith D F. The stereoselectivity of drug action. Pharmacol. Toxicol., 1989, 65:
    
    321-331
    [26] Michael J. Single enantiomer drugs: new strategies and directions. Chemistry & Industry, 1996, 5 (20): 374-378
    [27] Miriam L. Membranes make chiral separations simpler. Manufacturing Chemist, 1995, 10:25-32
    [28] Sylvie L, Didier V, Alain V W, et al. SMB enantioseparation: process development, modeling, and operating conditions. AIChE J. 2000, 46(2): 247-256
    [29] James E R. Chiral separations. AIChE J., 2001, 47 (1): 2-5
    [30] Botsaris D G, Qian R Y, Barrett A. New insights into nucleation through chiral crystallization. AIChE J., 1999, 45(1): 201-203
    [31] Kagawa M, Machida Y, Nishi H. Enantiomeric purity determination of acetyl-1-carnitine by reversed-phase high-performance liquid chromatography using chiral derivatization. J. Chromatogr. A, 1999, 857:127-135
    [32] 王德才,陆伟,周国林等.酒石酸噻吗洛尔的合成及其降眼压作用的初步研究.中国药物化学杂志,1994,4(4):289-291
    [33] Kaupp G. Resolution of rocemates by Piotillation with inclusion compounds. Angew. Chem. Int. Ed., 1994, 33:728-729
    [34] Tanaka K, Okada T, Toda F. Separation of the enantiomers of 2,2-dihydroxy-1,1-binaphthyl and 10,10-dithydroxy-9,9-biphenanthryl by complextion with N-alhylcinchonidinium halides. Angew. Chem. Int. Ed., 1993, 32:1147
    [35] Toda F, Tanaka K, Stein Z, et al. Optical resolution of binaphthyl and biphenanthnryl diols by inclusion crystallization with N-alkylcinchonidium halides. Structural characterization of the resolved materials. J. Org. Chem., 1994, 59:5784-5751
    [36] 邓金根.手性亚砜类化合物的包结拆分.化学研究与应用,1999,11:465-466
    [37] Toda F. in Inclusion Compounds, Vol.4. Oxford: Oxford University Press, 1991. 126
    [38] Vries T, Wynberg H, Echtenvan E, et al. The family approach to the resolution of racemates. Angew. Chem. Int. Ed., 1998, 37(17): 2349-2354
    [39] 尤田耙编.手性化合物的现代研究方法.合肥:中国科学院技术大学出版社,1993.37
    
    
    [40] Bevinakatti H S, Benerji A A. Practical chemoenzymatic synthesis of both enantiomers of propranolol. J. Org. Chem., 1991, 56:5372-5375
    [41] Van Tol J, Bert A, Duine J, et al. Description of hydrolase enantioselectivity must be based on the actual kinetic resolution of glycidyl(2,3-epoxy-1-propyl) butyrate by pig pancreas lipase. Biocatal. Biotransf., 1995, 12:99-106
    [42] Slraathof A J, Rakels J L. Van Tel J B A, et al. Improvement of lipase catalyzed kinetic resolution by tandem transesterification. Enzyme Microbial. Technol., 1995, 17:623-628
    [43] Battistel E, Bianthi D, Cesti P, et al. Enzymatic resolution of (S)-(+)-Naproxen in a continuous reactor. Biotechnol Bioeng., 1991, 38:659-664
    [44] Kalaitis P, Regenge R W, Partridge J, et al. Kinetic resolution of 2-substiituted esters catalyzed by a lipase Ex. Pseudomonas fluorescens. J. Org. Chem., 1990, 55:812-815
    [45] Takeshi S, Hideaki K. Enzymatic preparation of enantiomerically enriched tertiary 2-benzyloxy acid esters, application to the synthesis of (S)-(-)-fronlatinn. J. Org. Chem., 1990, 55:4643-4647
    [46] Akita H, Cheng Y, Uchida K. A formal total synthesis of Nikkomycin B based on enzymatic resolution of a primary alcohol possessing two stereogenic centers. Tetrahedron Asymmetry, 1995, 6:2131-2134
    [47] Stanffer S T, Dessy R E. CHIRULE: a chiral chromatographic column selection system utilizing similarity searching. J. Chromatogr. Sci., 1994, 32:228-235
    [48] Pirkle W H, Pochasky T C. Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem. Rev., 1989, 89: 347-362
    [49] 黄维垣,闻建勋.高技术有机高分子材料进展.北京:化学工业出版社,1994.108
    [50] 陈传福,任长玉,习复.光学活性高分子的手性固定相.色谱,1995,13(7):250-253
    [51] 邹公伟,郑琦,胡冠九等.高效液相色谱中的纤维素衍生物手性固定相.分析化学,1995,23(4):466
    [52] Negawa M, Shoji F. Optical resolution by simulated moving-bed adsorption technology. J. Chromatogr., 1992, 590:113-117
    [53] Ching C B, Lim B G, Lee E J D, et al. Preparative resolution of praziquantel enantiomers by simulated counter-current chromatography. J. Chromatogr., 1993,
    
    634:215-219
    [54] Fuchs G, Doguet L, Barth D. Enantiomer fractionation of phosphine oxides by preparative subcritical fluid chromatography. J. Chromatogr., 1992, 623: 329-336
    [55] Vladimir P, Stjepan M, Krunoslav K. ber die Enantiomerentrennung durch verteilung zwischen füssigen Phasen. Helv. Chim. Acta., 1983, 66(225): 2279-2284
    [56] Viadimir P, Zarko S, Krunoslav K. ber die enantiomerentrennung durch verteilung zwischen flüssigen phasen. Helv. Chim. Acta., 1982, 65(38): 377-384
    [57] Vladimir P, Stjepan M, ber die Stereoselektivitt der 9,9-spirobifluoren-kronenther gegenüber α-aminoalkoholen. Helv. Chim. Acta., 1983, 66(224): 2274-2278
    [58] Vladimir P, Mi?e K, Martin E. Lipophilic tartaric acid esters as enantioselective ionophores. Angew. Chem.Int. Ed., 1989, 28:1147-1152
    [59] 岑仲浙,蔡水洪.手性溶剂萃取麻黄碱差向异构体.化工学报,2000,51(3):418-420
    [60] Toshifumi T, Rikizo H, Takenori T. Enantioselective solvent extraction of neutral DL-Amino acids in two-phase systems containing N-n-alkyl-L-proline derivative and copper(Ⅱ) ion. Anal. Chem., 1984, 56:1152-1155
    [61] Ding H B, Carr P W, Cussler E L. Racemic leucine separation by hollow-fiber extraction. AIChE J., 1992, 38(10): 1493-1498
    [62] Jérme L, Catherine G G, Sonya T H, et al. Efficient enantioselective extraction tris(diimine)ruthenium(Ⅱ) complexs by chiral, lipophilic trisphat anions. Angew. Chem. Int. Ed., 2000, 39(20): 3695-3697
    [63] Jurgen K, Charles A H. Modelling multiple chemical equilibria in chiral partition systems. Chem. En. Sci., 2001, 56:5853-5864
    [64] Armstrong D W, Jin H. Enrichment of enantiomer and other isomers with aqueous liquid membranes containing cyclodextrin carriers. Anal. Chem., 1987, 59:2237-2241
    [65] Henning M K, Jeanette L, Klass K, et al. Enrichment of chlorthalidone enantiomers by an aqueous bulk liquid membrane containing β-cyclodextrin. J. Membr. Sci., 2000, 167:33-45
    [66] Tomohiko Y, Koichiro N, Toshio S, et al. Amino acid transport through supported liquid membranes: mechanism and its application to enantiomeric
    
    resolution. Bioelectrochemistry and Bioenergetics, 1988, 20:109-123
    [67] Pirkle W H, Doherty E M. Enantioselective transport through a silicone-supported liquid membrane. J. Am. Chem. Soc., 1989, 11:4113-4114
    [68] Maruyama A, Adachi N, Takasuki T, et al. Enantioselective permeation of a-amino acid isomers through poly(amino acid)-derived membranes. Macromolecule, 1990, 23: 2748-2752
    [69] Yashima E, Noguchi J, Okamoto Y. Continuous and preparative enantioseparation of Oxprenolol with celluloseTris(3,5-dimethylphenylcarbamate)-coated Belt. Tetra. Asymm., 1995, 6(8): 1889-1890
    [70] Yashima E, Noguchi J, Okamoto Y. Enantiomer Enrichment of Oxprenolol through cellulose tris (3,5-dimethylphenylcarbamate)membrane. J. Appl. Polym. Sci., 1994, 54:1087-1091
    [71] Teruyuki M, Masaharu S, Sersuji T. Optical resolution of amino acid by enantioselective ultrafiltration memberane. J. Chem. Eng. Jpn., 1992, 25(1): 33-38
    [72] Thoelen C, Debryn M, Theunissen E. Membrane based on poly(γ-methyl-L-glutamate): synthesis, characterization and use in chiral separations. J. Membr. Sci., 2001, 186:153-163
    [73] Gabelman A, Hwang S T. Hollow fiber membrane contactors. J. Membr. Sci., 1999, 59:61-106
    [74] Frank G T, Sirkar K K. Alcohol production by yeast fermentation and membrane extraction. Biotechnol. Bioeng. Symp., 1985, 15:621-631
    [75] Frank G T, Sirkar K K. An integrated bioreactor-separator: in situ recovery of fermentation products by a novel membrane-based dispersion-free solvent extraction technique. Biotechnol. Bioeng. Symp., 1986, 17:303-316
    [76] Kaang W, Shukla R, Sirkar K K. Ethanol production in a microporous hollow-fiber based extractive fermentor with immobilized yeast. Bioeng., 1986, 2(1): 53-60
    [77] Vatai G, Tekic M N. Membrane-based, ethanol extraction witt hollow-fiber module. Sep. Sci. Technel., 1991, 26(7): 1005-1011
    [78] Cho T, Schuler M L. Multimembrane bioreactor for extractive fermentation. Biotech. Prog., 1986, 2(1): 53-60
    [79] Matsumura M, Markl H. Elimination of ethanol inhibition by perstraction. Biotechnol. Bioeng., 1986, 28:534-541
    
    
    [80] Shukla R, Kang W, Sirkar K K. Acetone-butanol-ethanol(ABE) production in a novel hollow fiber fermentor extractor, Biotechnol. Bioeng., 1989, 34: 1158-1166
    [81] Bajpaai R, Scheler C, Popovic M, et al. Chemical interactions between aqueous and organic phases in a reactive distillation process, APPL. Biochem. Biotechnol. Part A, 1996, 58: 29-38
    [82] Scheler C, Popovic M, Bajpai R. Reactive extracttion of lactic acid from a fermentation broth in a hollow-fibre membrane module. Chem. Ing. Tech., 1997, 69(7): 951-955
    [83] Naser S F, Fournier R L. A numerical evaluation of a hollow fiber extractive fermentor process for the production of ethanol. Biotechnol. Bioeng., 1988, 32: 628-638
    [84] Lopez J L, Matson S L. Amultiphase/extractive enzyme membrane reactor for production of diltiazem chiral intermediate. J. Membr. Sci., 1997, 125:189-211
    [85] Hoq M M, Yamane T, Shimizu S, et al. Continuous hydrophobic membrane bioreactor. J. Am. Oil. Chem. Soc., 1985, 62:1016-1021
    [86] Molinari R, Drioli M E. Study and comparison of two enzyme membrane reactors for fatty acids and glycerol production. Ind. Eng. Chem. Res., 1994, 33: 2591
    [87] Dahuron L, Cussler E L. Protein extractions with hollow fibers. AIChE J., 1988, 34(1): 130-136
    [88] D'Elia N A, Dahuron L, Cussler E L. Liquid-liquid extractions with microporous fibers. J. Membr. Sci., 1986, 29:309-319
    [89] Kiani A, Bhave R R, Sirkar K K. Solvent extraction with immobilized interfaces in a microporous hydrophobicc membrane. J. Membr. Sci., 1984, 20:125-145
    [90] Prasad R, Bhave R R, Kiani A K, et al. Further studies on solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J. Membr. Sci., 1986, 26:79-97
    [91] Prasad R, Sirkar K K. Microporous membrane solvent extraction. Sep. Sci. Technol., 1987, 22(2-3): 619-640
    [92] Prasad R, Sirkar K K. Solvent extraction with microporous hydrophilic and composite membranes, AIChE J., 1987, 33(7): 1057-1066
    [93] Prasad R, Sirkar K K. Hollow fiber solvent extreaction with microporous hollow-fiber modules. AIChE J., 1987, 33(7): 1057-1066
    
    
    [94] Coelhoso I M, Silvestre P, Viegas R M C, et al. Membrane-based solvent extraction and stripping of lactate in hollow-fiber contactorss. J. Membr. Sci., 1997, 134:19-32
    [95] Seibert A F, Fair J R, Scale-up of hollow fiber extractors. Sep. Sci. Technol., 1997, 32(1-4): 573-583
    [96] Basu R, Sirkar K K. Hollow fiber contained liquid membrane separation of citric acid. AICHE J., 1991, 37:383-393
    [97] Yang Z F, Guha A K, Sirkar K K. Novel membrane-based synergistic metal extraction and recovery processes, Ind. Eng. Chem. Res., 1996, 35:1383-1394
    [98] Yun C H, Prasad R, Guhaa A K, et al. Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams. Ind. Eng. Chem. Res., 1993, 32: 1186-1195
    [99] Yoshizuka K, Yasukawa R, Koba M, et al. Diffusion model accompanied with aqueous homogeneous reaction in hollow fiber membrane contactor. J. Chem. Eng. Jpn., 1995, 28(1): 59-65
    [100] Kathios D J, Jarvinen G D, Yarbro S L, et al. A preliminary evaluation of microporous hollow fiber membrane modules for the liquid-liquid extraction of actinides. J. Membr. Sci., 1994, 97:251-261
    [101] 王玉洁,张淑敏,李德谦.中空纤维膜萃取分离混合稀土中的钍.中国稀土学报,1998,16(3):193-198
    [102] 罗芳,张凤君,李德谦等.聚偏氟乙烯中空纤维膜器对钐传质性能的影响.中国稀土学报,2000,18(3):203-205
    [103] Prasad R, Sirkar K K. Membrane Handbook. New York: Chapman & Hall, 1992. 727-763.
    [104] Aziz C E, Fitch M W, Linquist L K, et al. Methanotrophic biodegradation of trichloroethylene in a hollow fiber membrane bioreactor. Environ. Sci. Technol., 1995, 2:2574-2583
    [105] Yun C H, Prasad R, Sirkar K K. Solvent extraction of priority organic pollutants using hollow fiber membranes, AIChE National Meeting, Philadelphia, PA, 21-23 August 1989
    [106] Zander A K, Qin K, Semmens M J. Membrane/oil stripping of VOCs from water in hollow-fiber contactor. J. Environ. Eng., 1989, 115(4): 768-784
    [107] 王玉军,朱慎林,戴猷元.膜萃取去除水中氯仿的研究.膜科学与技术,1999,19(3):32-35
    
    
    [108] 王玉军,骆广生,蔡卫滨等.膜萃取去除水中对氨基苯磺酸的研究.现代化工,2000,20(10):31-33
    [109] Yang M C, Cussler E L. Designing hollow fiber contactors. AIChE J., 1986, 32(11): 1910-1916
    [110] Prasad R, Sirkar K K. Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J. 1988, 34(2): 177-188
    [111] Nada I, Dimabo G, Gryte C. Effect of flow maldistribution on hollow fiber dialysis experimental studies. J. Membr. Sci., 1979, 5:209-225
    [112] Scibert A F, Py X, Mshewa M, et al. Hydraulics and mass transfer efficiency of a commercial-scale membrane extractor. Sep. Sci. and Technol., 1993, 28: 343-359
    [113] Costello M J, Fane A G, Hogan P A, et al. The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules. J. Membr. Sci., 1993, 80:1-11
    [114] Lemanski J, Lipscomb G G. Effect of shell-side flow on hollow-fiber membrane device performance. AIChE J., 1995, 41(10): 2322-2326
    [115] Shiro Y, Kohei O, Shinichi M, et al. Experimental study of flow mechanism in a hollow fiber module for plasma separation. J. Chem. Eng. Jpn., 1994, 27(3): 385-390
    [116] 陈华,曹春,徐连禄等.中空纤维气体膜分离器丝外流速分布及其分离性能的影响.化工学报,1997,48(5):608-615
    [117] 张卫东,李云峰,戴猷元.中空纤维膜萃取器的壳程子通道模型.膜科学与技术,1996,16(1):56-61
    [118] Labecki M, Bowen B, Pieet J. Two-dimensioal analysis of protein transport in the extracapillary space of hollow-fiber bioreactors. Chem. Eng. Sci., 1996, 51(17): 4197-4213
    [119] Prasad R, Kiani A, Bhave R R, et al. Further studies on solvent extraction with immobilized interface in a micorporous hydrophobic membrane. J. Membr. Sci., 1986, 26:79-97
    [120] Kubaczka A, Burghardt A, Mokrosz T. Membrane-based solvent extraction in mutlicomponent systems. Chem. Eng. Sci., 1998, 53(5): 899-917
    [121] 骆广生,夏芳,戴猷元.高分子膜的浸润性能及溶胀.膜科学与技术,1998,18(5):38-41
    [122] Urtiaga A M. Analytical approach to mass transfer in laminar flow in reactive
    
    hollow fibers and membrane devices with nonlinear kinetics. Chem. Eng. Sci., 1990, 45(9): 2991-1994
    [123] Alonso A I, Urtiaga A M, Iraboem A M, et al. Extraction of Cr(Ⅵ) with aliquat 336 in hollow fiber contactors: Mass transfer analysis and nodding. Chem. Eng. Sci., 1994, 49(6): 901-909
    [124] Qin Yingjie J, Cabral Joaquim M S. Lu men mass transfer in hollow-fiber membrane process with constant external resistances. AIChE J., 1997, 43(8): 1975-1988
    [125] Arai T, Koike H, Kji H, izumi H. Separation of pyridone carboxylic acid enantiomers by high-performance liquid chromatography using copper(Ⅱ)-L-amino acid as the eluent. J. Chromatogr., 1988,448:439-444
    [126] Rosa H H, Pilar C E Chromatographic separation of chlorthalidone enantiomers using β-cyclodextrins as chiral additives. J. Chromatogr. B, 2000, 740:169-177
    [127] Christian R, Anita F. Cationic β-cyclodextrin: a new versatile chiral additive for separation of drug enantiomers by high-performance liquid chromatography. J.Chromatogr., 1995, 704:67-74
    [128] Jansz D, Danuta S. β-cyclodextrin as a chiral component of the mobile phase for separation of mandelic acid into enantiomers in reversed-phase systems of high-performance liquid chromatography. J. Chromatogr., 1982, 237:303-306
    [129] Mikael H, Roland I, Curt P. Cellobiohydrolase I as a chiral additive in capillary electrophoresis and liquid chromatography. J. Chromatogr. A., 1998, 807: 297-305
    [130] 李桦,胡先明,谢颖峰.高效液相色谱手性流动相添加剂分离肾上腺素类对映体.色谱,1998,16(5):424-426
    [131] 谢剑炜,杨造萍,阮金秀.手性药物对映体的环糊精手性流动相、手性固定相HPLC法拆分.药学学报,1998,33(2):143-147
    [132] Heldin E, Lindner K J, Pettersson C, Lindner W, Rao R. Tartaric acid derivatives as chiral selectors in liquid chromatography. Chromatographia, 1991, 32(9-10): 407~416
    [133] 仉文生,李安良.药物化学.高等教育出版社(北京).1999.(第一版):269
    [134] Davankov V A. Chiral selectors with chelating properties in liquid chromatography: Fundamental reflections and selective review of recent
    
    developments. J. Chromatogr., 1994, 666: 55-78.
    [135] Galaverna G, Corradini R, de Munari E, et al. Chiral separation of unmodified amino acid by ligand-exchang high-performance liquid chromatograghy using copper(Ⅱ) complexes of L-amino acid amines as additives to the eluent. J. Chromatogr., 1993, 657: 43-54.
    [136] Gübitz G, Jellenz W, Santi W. Separation of the optical isomers of amino acid by ligand-exchang chromatography using chemically bonded chiral phases. J. Chromatogr., 1981,203: 377-348.
    [137] Remelli M, Piazza R, Pulidori E HPTLC separation of aromatic α-amino acid enantiomers on a new histidine-based stationary phase using ligand exchang. Chromatogr., 1991, 32(5/6): 278-284.
    [138] Koska J, Mui C, Haynes C A. Solvent effects in chiral ligand exchang systems. Chemical Engineering Science. 2001, 56(1): 29-41.
    [139] Pickering P J, Chaudhuri J B. Equilibrium and kinetic studies of the enantio-selective complexation of (D/L/)-phenylalanine with copper(Ⅱ) N-decyl-(L)-hydroxy-proline. Chemical Engineering Science. 1997,52:337-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700