(细)乳液聚合法制备有机—无机杂化纳米粒子和微胶囊
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机.无机杂化纳米粒子和微胶囊兼具高分子材料和无机材料的优点,可提高和拓宽单一材料的性能,在控制释放、生物制药等前沿领域有广阔的应用前景。本论文选用常用单体苯乙烯和功能单体甲基丙烯酸-3-三甲氧基硅丙酯(MPS),进行核壳乳液共聚(或细乳液共聚),方便地制得了有机-无机杂化核-壳结构的纳米粒子和纳米微胶囊。
     深究反应机理,认为上述杂化粒子是自由基共聚和MPS中SiOR基团的水解-缩合反应耦合的结果,MPS在乳液体系中粒子相和水相的分配以及水解-缩合速率是影响过程的关键因素,并在反应温度(70℃)下,实验测得了这两方面数据。发现MPS加入量小于PS种子的11wt%时,体系处于非饱和状态,粒子相和水相中的MPS浓度随加入量的增加而线性增长。达到饱和状态后,粒子相和水相中的MPS浓度不再变化,分别为0.37、0.014mol/L,且乳胶粒粒径、化学组成对MPS的分配行为影响很小。MPS在粒子相与水相间以及在单体液滴与水相间都有恒定的分配系数k~p、k~d,分别为k~p=φ~p/φ~w=[M]~p/[M]~w=25.8、k~d=φ~d/φ~w=[M]~d/[M]~w=364。同时,用~(29)Si核磁共振谱测定了MPS的水解和缩合速率常数,发现该值随pH值均呈马鞍型变化,可用下式表述:k_h=k_H10~(-pH)+k_(OH)10~(pH-14),k_c=k_(H,c)10~(-pH)+k_(OH,c)10~(pH-14),最小值分别在pH=7和pH=4处。
     通过反应过程分析,并根据乳胶粒形态的热力学判据,设计了核-壳结构的有机-无机杂化纳米粒子,指导实验的实施。即经乳液聚合先合成聚苯乙烯种子,继而在种子核外生成苯乙烯与MPS的共聚物,利用MPS中硅氧烷基的水解-缩合反应,再形成杂化的壳。pH值和MPS的饱和程度是影响制备过程及乳胶粒形态结构的重要因素:pH=7时,MPS的水解-缩合反应并不剧烈,乳胶粒中自由基共聚处于主导地位,MPS迅速吸附在乳胶粒相表面,发生反应,逐渐形成核-壳结构,同时SiOR基团轻微水解,生成SiOH基团,得到聚合物与氢键交联的杂化结构;pH=8.5、体系中MPS非饱和时,水相中MPS浓度较小,苯乙烯和MPS及其水解缩合产物的共聚反应仍能在乳胶粒表面发生,但产物中SiOR基团的水解、缩合程度较大,形成了以共聚物为主链、伴有大量Si-O-Si缩合产物为侧链的复杂结构;pH=8.5、体系处于MPS饱和状态时,水相中MPS浓度和水解缩合速率(缩合速率相对更快)都较高,使MPS在水相中迅
Nanoparticles and nanocapluses with organic-inoragnic hybrid structure can exhibit the excellent properties of both inorganic and polymer materials. They can be used in some pioneer fields, such as controlled release, biotechnology, medicine etc. In this thesis, a special functional comonomer, 3-trimethoxysilyl propyl methacrylate (MPS), is copolymerized with styrene in the seeded emulsion (or miniemulsion) polymerization process to prepare the organic-inoragnic hybrid nanoparticles with core-shell morphology or nanocapluses.It is found that this process is determined by the coupling reaction of free radical polymerization and hydrolysis-condensation. Therefore, partition and hydrolysis/condensation rates of MPS are the key factors determining the reaction process. In the thesis, MPS partition behavior is characterized by gas chromatography (GC). It is found that MPS concentration both in water and particle phase increase linearly up to the saturated concentration when MPS addition amount is about 11%wt of polymer seeds. Then the concentrations in these two phases keep constant at the saturated concentration, which are 0.37 and 0.014 mol/L in particle and water phases, respectively. The MPS partitions in each phase have constant coefficients, which can be expressedas: Meanwhile, the hydrolysis andcondensation rate constants are measured at different pH value with ~(29)Si liquid-state NMR. It is found that the hydrolysis and condensation rate constants-pH plots show inverted bell-type with a lowest value at pH=7 and 4, respectively. A formula is presented to correlate the hydrolysis and condensation rate constants at different pH value as:Based on the reaction mechanism and the thermodynamic criterion governing the final morphology of the particles, organic-inorganic hybrid core-shell nanoparticles are designed and synthesized by seeded emulsion polymerization. Through morphology design, polystyrene, as seeded cores, are synthesized firstly;then MPS is added to form MPS-styrene copolymer shell on the surface of polystyrene core;and finally the organic-inorganic hybrid shell is formed through sol-gel process via the hydrolysis-condensation of organic alkoxysilane groups in MPS. The operation conditions, such as pH value, saturation degree of MPS, etc, have great influence on the latex
    morphology and microstructures: the hydrolysis-condensation rates are quite slow at pH=7, free radical polymerization is the dominated reaction in the system and MPS enter into particles very quickly, only a little parts of SiOR groups are hydrolyzed to form slightly hydrogen bonded crosslink;in the case of pH=8.5 and unsaturation, high hydrolysis-condensation rate constants will lead the copolymer shell to have C-C main polymer chain with side chains of Si-O-Si oligomers or cyclic molecules;and in the case of pH=8.5 and saturation with MPS, higher MPS concentration and higher hydrolysis-condensation rates in water phase will promote the growing up and agglomeration of the Si-O-Si oligomers or cyclic molecules in the water and make the emulsion unstable finally;at pH=2, the extreme high hydrolysis rate (much higher than condensation rate) leads to the formation of multi-SiOH resultants, which act as crosslinker and cause the gelation of the system.A monomer partition model was developed firstly using constant partition coefficients;then a free radical emulsion polymerization model with the monomer partition was presented. On the base of these two models and the features of hydrolysis-condensation reaction for organosilane at various phases in the heterogeneous system, a complete kinetic model of emulsion polymerization with the participation of hydrolysis-condensation reaction was derived. This model is used in the emulsion copolymerization system of MPS and styrene, and are compared with the experimental data obtained by GC and solid-state ~(29)Si NMR. It is found that the model predicted results are in good agreement with the experimental data. It is concluded that the characteristic parameter f of the heterogeneous system is determined by the surface area and the difficulty of functional groups diffusingonto the particle surface, and can be estimated byBy using the synthetic hybrid core-shell nanoparticles, nanocapsules can be obtained after removing the polystyrene core through centrifuge-redisperse or dialysis methods. However, morphology of the nanocapsules obtained by centrifuge-redisperse method is greatly destroyed because of the strong mechanic force during the produced process. The dialysis process can produce perfect nanocapsules, but it consumes quite a long time and the core cannot be removed completely. Therefore, miniemulsion process is used to synthesize hybrid nanocapsules by only one step with using low molecular weight droplets as template. In this process, styrene and MPS are copolymerized on the surface of the well-dispersed isooctane droplets to form capsules. It is found that the micelles and homogenous nucleation methods in the synthetic process must be avoided, so that the
    addition amount of surfactant must be less than its critical micelle concentration (3.3g/L) and hexadecane used as costabilizer. It is also found that the initial volume fraction of the monomer in the recipe must be lower than 0.36 to obtain capsules, because less monomer fraction in droplets is in favor of the phase separation after polymer is produced, and higher MPS fraction is favor in the formation of capsules, but too higher MPS content in capsules will lead to collapse.The kinetics of the penetrative process is researched by ultraviolet-visible spectrum (UV), it is found that the diffuse behavior is consisted with diffuse model in themicroporous media: cw - coe B r ', DB =Da£/r2 . The diffusion coefficients andtortuosities are calculated and suggest that the diffusion velocity is increased with higher MPS content in capsules due to the larger porosity;the tortuosity is less in cresol red-methanol system than that in anthracene-THF system, and nearly didn't change with the MPS content in capsules. The loading of the anthracene is proved by FTIR, and the release velocity is much slower than the loading velocity because the special microstructure of the hybrid nanocapsules.
引文
[1] Roy R, Komarneni S, Roy D M. Structure/property behavior of organic-inorganic semi-IPNs, Mater Res Soc Symp Proc, 1984, 32: 347
    [2] Pomogailo A D. Hybrid polymer-inorganic nanocomposites, Russ Chem Rev. 2000, 69: 53-80
    [3] Bourgeat-Lami E. Organic-Inorganic Nanostructured Colloids, J Nanoscience. Nanothchnology. 2002, 2: 1-24
    [4] Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity, J Mater. Chem. 1996, 6: 511-625
    [5] Portney N G;Singh K;Chaudhary S, Destito G;Schneemann A, Manchester M, Ozkan M. Organic and Inorganic Nanoparticle Hybrids, Langmuir;2005, 21: 2098-2103
    [6] Sanchez C, Ribot F. Review of organic-inorganic Hybrid Nanoparticles, New J Chem. 1994, 18: 1007-1047
    [1] Okada A, Usuki A. The chemistry of polymer-clay hybrids, Mater. Sci. Eng. 1995, C3: 109-115
    [2] Gilman J W. Chem. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay Sci. 1999, 15: 31-49
    [3] Gilman J W, Jackson C L, Morgan A B, Harris J R, Manias E, Giannelis E P, Wuthenow M, Hilton D and Philips S H. Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites, Chem. Mater. 2000, 12: 1866-1873
    [4] Poter D, Metcalfe E, Thomas M J K. Nanocomposite fire retardants - a review, Fire Mater. 2000, 24: 45-52
    [5] Zanetti M, Lomakin S, Camino G. Polymer layered silicate nanocomposites, Macromol. Mater. Eng. 2000, 279: 1-9
    [6] Armes S P. Electrically conducting polymer colloids, Polym. News, 1995, 20: 233-237
    [7] Godovski D Y. Electron behavior and magnetic properties of polymer nanocomposites, Adv. Polym. Sci. 1995, 119: 79-122
    [8] Winiarz J G, Zhang L, Lal M, Friend C S and Prasad P N. Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite, Chem. Phys. 1999, 245: 417-428
    [9] Pomogailo A D. Hybrid polymer-inorganic nanocomposites, Russ Chem Rev. 2000, 69: 53-80
    [10] Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity, J Mater Chem. 1996, 6: 511-625
    [11] Nalwa H S. Handbook ofnanostructured materials and nanotechnology. Academic Press, San Diego. 1999, Vols. 1-5
    [12] Bourgeat-Lami E. Organic-inorganic Nanostructured Colloids, J Nanoscience. Nanothchnology. 2002, 2: 1-24
    [13] Giannelis E P. Self-Assembling Frameworks: Beyond microporous oxides, Adv Mater. 1996, 8: 19-35
    [14] Lagaly G. Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites, Appl Clay Sci. 1999, 15: 1-9
    [15] 陈光明(CHENG Guangming), 漆宗能(QI Zhongneng). 王佛松(WANG Fusong). 高分子通报(Polymer Bulletin), 1999, 4: 1-10
    [16] Usuki A, Kojima K, et al. Swelling behavior of montmorillonite cation exchanged for w-amino acids by e-caprolactam, J. Mater Res. 1993, 8:1179-1194
    [17] Kanatzidis M G, Wu C G, Macy H O, Kannewurf C R, Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels, J Am Chem Soc, 1989, 111:4139-4141
    [18] Bissessur R, DeGroot D, Schindler J, Kannewurf C, Kanatzidis M. Inclusion of poly(aniline) into MoO_3, Chem Commun. 1993, 687-689
    [19] Matasubayashi G, Nakajima H. Inclusion of poly(aniline) into molybdenum trioxide, MoO_3, Chem Lett. 1993,3:31-34
    [20] Goward G R, Leroux F, Nazar L F. Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries, Electrochim Acta. 1998, 43:1307-1313
    [21] Aranda P, Ruiz-Hitzky E. Poly(ethylene oxide)-silicate intercalation materials, Chem Mater. 1992,4:1395-1403
    [22] Greenland DJ. Adsorption of polyvinyl alcohols by montmorillonite, J Colloid Sci. 1963, 18:647-664
    [23] Francis CW. Soil Sci. 1973, 115:40-54
    [24] Zhao X, Urano K, Ogasawara S. Colloid Polym Sci. 1989;267:899-906
    [25] Ogata N, Jimenez G, Kawai H, Ogihara T. J Polym Sci Part B: Polym Phys. Structure and thermal/mechanical properties of poly(l-lactide)-clay blend, 1997, 35:389-396
    [26] Wang Jiajun, Yi Xiaosu. Mater Rev. 1999, 3:54
    [27] Hoffman B. Morphology and rheology of polystyrene nanocomposites based upon organoclay, Macro Rapid Commun. 2000, 21:57
    [28] Usuki A, Akada A. Synthesis of polypropylene oligomer - clay intercalation compounds, J Appl Polym Sci. 1997, 66:1781
    [29] Lee Y J, Baljon A, Loring R F.J Chem. Phys. 1999, 111:9068
    [30] Guido K. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog Polym Sci. 2003, 28:83-114
    [31] Amir H R, Michael G B, Paul A Smith. Journal of Materials Science Letters, 1995, 14:1030-1031
    [32] Ajayan P W, Stephan O, Colliex C, Trauth D. Science, 1994, 265:1212-1214
    [33] Ron Dagani. C & EN, 1997, 77:25-37
    [34] Tsang S C, Chen Y K, Harris P J F. Nature, 1994,372:159
    [35] Frisch H L, Mark J E. Nanocomposites Prepared by Threading Polymer Chains through Zeolites, Mesoporous Silica, or Silica Nanotubes, Chem Mater. 1996, 8:1735-1738
    [36] Frisch HL, Xue Y. Hybrid inorganic/organic interpenetrating polymer networks based on zeolite 13X and polystyrene, J Polym Sci, Part A: Polym Chem. 1995;33:1979-85
    [37] Frisch HL, Maaref S, Xue Y, Beaucage G, Pu Z, Mark JE. J Polym Sci,Part A: Polym Chem. Interpenetrating and pseudo-interpenetrating polymer networks of polyethylacrylate and zeolite 13X, 1996;34:673-677
    [38] Graeser A, Spange S. Chem Mater. Novel Polyvinyl Ether-HY Zeolite Hybrid Materials: General Features, 1998;10:1814-1819
    [39] Schneider J, Fanter D, Bauer M, Schomburg C, Wohrle D,Schulz-Ekloff G. Preparation and optical transparency of composite materials from methacrylate ester copolymers and faujasites with an embedded azo dye, Microporous Mesoporous Mater.2000;39:257-63
    [40] Beecroft L L, Ober C. Nanocomposite Materials for Optical Applications, Chem Mater. 1997,9:1302
    [41] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater Sci Eng. 2000, 28:1
    [42] Schottner G. Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials, Chem Mater. 2001, 13: 3422
    [43] Rajeshwar K, Tacconi N R, Chemthamarakshan C R. Chem Mater. Semiconductor-Based Composite Materials: Preparation, Properties, and Performance, 2001, 13:2765
    [44] Hergeth W D, Sterinau U J, Bittrich H J, Simon G, Schmutzler K., Polymerization in the presence of seeds. Part IV: Emulsion polymers containing inorganic filler particles, Polymer, 1989, 30:254
    [45] Hergeth W D, Starre P, Schmutzler K. Polymerizations in the presence of seeds: 3. Emulsion polymerization of vinyl acetate in the presence of quartz powder, Polymer, 1988, 29: 1323-2328
    [46] Bourgeat-Lami E, Espiard P, Guyot A, Briat S, Gauthier C, Vigier G, Perez J. Composite polymer colloid nucleated by fuctionalized silica, ACS Symp Ser. 1995, 36: 112-124
    [47] Bourgeat-Lami E, Lang J. Silica-polystyrene composite particles, Silica-polystryene composite particles, M1cromol Symp, 2000, 151: 377-385
    [48] Schubert U. Polymers Reinforced by Covalently Bonded Inorganic Clusters, Chem Mater. 2001, 13: 3487-3494
    [49] Kickelbick G, Schubert U. An unusual ring structure of an oligomeric oxotitanium alkoxide carboxylate, Eur J Inorg Chem. 1998, 39: 159-161
    [50] Landfester K. Polyreactions in Miniemulsions, Macromol Rap Commun, 2001, 22: 896
    [51] Wormuth K., Superparamagnetic Latex via Inverse Emulsion Polymerization, J Colloid Interface Sci. 2001, 241: 366
    [52] Sperling L H. Interpenetrating polymer networks, Adv Chem Ser, 1994, 239: 3
    [53] Sanchez C, Ribot F. New J Chem. 1994, 18: 1007-1047
    [54] Deng Q, Moore R B, Mautritz K A. Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment, Chem Mater. 1997, 9:36
    [55] Mauritz K A. Mater Sci Engng. Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, 1998, C6: 121-133
    [56] Shao P L, Mauitz K A, Moore R B. [Perfluorosulfonate ionomer]/[SiO_2-TiO_2] nanocomposites via polymer-in situ sol-gel chemistry: Sequential alkoxide procedure, J Polym Sci, Part B: Polym Phys, 1996, 34: 873-882
    [57] Sharp K G. ACSSymp Ser. 1995, 585: 163-180
    [58] Landry C, Coltrain B K, Teegarden D M, Long T E, Long V K. Use of Organic Copolymers as Compatibilizers for Organic-Inorganic Composites, Macromolecules, 1996, 29: 4712-4721
    [59] Pope E, Asami M, Mackenzie J. Transparent silica gel-PMMA composite, J Mater Res. 1989, 4: 1018-1026
    [60] Brennan A B, Miller T M, Vinocur R B. Hybrid organic-inorganic interpenetrating networks, ACS Symp Ser. 1995, 585: 142-162
    [61] Brennan A B, Miller T. Structure/property behavior of organic-inorganic semi-IPNs. Mater Res Soc Symp Proc. 1996, 435: 155-164
    [62] Hajji P, David L, Gerard J, Pascault J, Vigier G. Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate, J Polym Sci Part B: Polym Phys, 1999, 37: 3172-3187
    [63] Ellsworth M W, Novak B M. Mutually interpenetrating inorganic-organic networks. New routes into nonshrinking sol-gel composite materials, J Am Chem Soc. 1991, 113: 2756-2758
    [64] Hackson C L, Bauer B J, Nakatani A, Barnes J. Synthesis of Hybrid Organic-Inorganic Materials from Interpenetrating Polymer Network Chemistry, Chem Mater, 1996, 8: 727-733
    [65] In M, Gerardin C, Lambard J, Sanchez C. Transition metal based hybrid organic-inorganic copolymers, J Sol-gel Sci Technol, 1995, 5: 101-114
    [66] Campero A, Sato A M, Maquet J, Sanchez C. Vanadium-oxo based hybrid organic-inorganic copolymers, Mater Res Soc Symp Proc. 1996, 435: 527-532
    [67] Biswas M, Mukherjee A. Synthesis and evaluation of metal-containing polymers, Adv Chem Rew, 1994, 115: 89-123
    [68] Liles D T, Muray D L. US Pat, 5932651, 1999
    [69] Ladika M, Rose G D. WO 0043427, 2000
    [70] Masaaki Y. US Pat, 5240992, 1993
    [71] Moelnaar H A, Vercauteren F F, Tinnemans A H. 1995, WO 95/14700
    [72] Marcu I, Daniels E S, Dimonie V L, Hagiopol C and EI-Aasser M S, Incorporation of Alkoxysilanes into Model Latex Systems: Vinyl Copolymerization of Vinyltriethoxysilane and n-Butyl Acrylate, Macromolecules. 2003, 36: 328
    [73] Ni K F, Shan G R, Weng Z X, Fevotte G, Sheibat-Othman N, Bourgeat-Lami E. Synthesis of Hybrid Core-Shell Nanoparticles by Emulsion (Co)polymerization of Styrene and γ-Methacryloxypropyltrimethoxysilane, Macromolecules, 2005, 38: 7321-7329
    [74] William T W, Tseng J, Lee S. Functional MBS impact modifiers for PC/PBT alloy, J Appl Polym Sci, 2000, 76: 1280-1284
    [75] Pan, M W, Zhang, L C, Wan, L Z. Preparation and characterization of composite resin by vinyl chloride grafted onto poly(BA-EHA)/poly(MMA-St), Polymer, 2003, 44: 7121-7129
    [76] Ma Guanghui(马光辉), Su Zhiguo(苏志国). New type of Polymer Material(新型高分子材料), Beijing: Chemical Industry Press(北京:化学工业出版社), 2003, 135-170
    [77] Nelliappan V, EI-Aasser M S, Klein A, Daniels E S. Compatibilization of the PBA/PMMA Core/Shell Latex Interphase. Ⅱ. Effect of PMMA Macromonomer, J Polym Sci: Part A Polym Chem, 1996, 34: 3183-3190
    [78] Lee C F. The properties of core-shell composite polymer latex.: Effect of heating on the morphology and physical properties of PMMA/PS core-shell composite latex and the polymer blends, Polymer, 2000, 41: 1337-1344
    [79] Jang J, Hak J O. Fabrication of a Highly Transparent Conductive Thin Film from Polypyrrole/Poly(methyl methacrylate) Core/Shell Nanospheres, Adv Fun Mater, 2005, 15: 494-502
    [80] Carris C H M, Elven L P M, Herk A M, German A. Br Polym J, 1989, 21: 133
    [81] Espiard E, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica, Polymer, 1995 36: 4391
    [82] Espiard E, Guyot A, Perez J, Vigier G. David L. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 3. Morphology and mechanical properties of reinforced films, Polymer, 1995, 36: 4397
    [83] Bougeat-Lami E, Lang J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene, J colloid Interface Sci, 1998, 197: 293
    [84] Corcos F, Bourgeat-Lami E, Lang. Poly(styrene-b-ethylene oxide) copolymers as stabilizers for the synthesis of silica-polystyrene core-shell particles, J. Colloid Polym Sci, 1999, 177: 1142
    [85] Sondi I, Fedynyshyn T H, Sinta R, Matijevic E. Encapsulation of Nanosized Silica by in Situ Polymerization of tert-Butyl Acrylate Monomer, Langmuir, 2000, 16: 9031
    [86] Mefuro K, Yabe T, Ishioka S, Kato K, Esumi K. Bull Chem Soc Jpn, 1986, 59: 3019
    [87] Tempeton-Knight R L. J Oil Colour Chem Assoc, 1990, 73: 459
    [88] Quaroni L and Chumanov G. Preparation of Polymer-Coated Functionalized Silver Nanoparticles, JAm Chem Soc, 1999, 121: 10642
    [89] Kondo A, Kamura H, and Higashitani K. Appl Microbiol Biotechnil, 1994, 41: 99
    [90] Yanase N, Noguchi H, Asakura H, and Suzuta T. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid, J Appl Polym Sci, 1993, 50: 765
    [91] Percy M J, Barthet C, Lobb J C, Khan M A, Lascelles S F, Vamvakaki M, Armes S P. Synthesis and Characterization of Vinyl Polymer-Silica Colloidal Nanocomposites, Langmuir, 2000, 16: 6913
    [92] Amalvy J I, Percy M J, Armes S P. Synthesis and Characterization of Novel Film-Forming Vinyl Polymer/Silica Colloidal Nanocomposites, Langmuir, 2001, 17: 4770
    [93] Marikanos S M, Schultz D A, Feldheim D L. Gold Nanoparticles as Templates for the Synthesis of Hollow Nanometer-Sized Conductive Polymer Capsules, Adv Mater, 1999, 11: 34
    [94] Marikanos S M, Novak J, Brousseau L C, House A B, Edeki E M, Feldhaus J C, Feldheim D L. Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation, J Am Chem Soc, 1999, 121: 8518
    [95] Yoshinaga K, Nakashima F, Nishi T. Polymer modification of colloidal particles by spontaneous polymerization of surface active monomers, Colloid Polym Sci, 1999, 277: 136
    [96] Haga Y, Watanabe T, Yosomiya R. Alternating copolymerization of butadiene and propylene, Angrew Makromol Chem, 1991, 23: 189
    [97] Luna-Xavier J L, Bourgeat-Lami E, Guyot A. The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization, Colloid Polym Sci, 2001, 279: 947
    [98] Luna-Xavier J L, Guyot A, Bourgeat-Lami E. Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator, J Colloid Inter Sci, 2002, 242: 2493
    [99] Bamnolker H, Nitzan B, Gura S and Margel S. JMater Sci Lett, 1997, 16: 1412
    [100] Shisho H, Kawashashi N. Titanium compounds as coatings on polystyrene latices and as hollow spheres, Colloid Polym Sci, 2000, 278: 270
    [101] Tissot I, Reymond J P, Lefebvre F, Bourgear-Lami E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chem Mater, 2002, 14: 1325
    [102] Tissot I, Novot C, Lefebvre F, Bourgeat-Lami E. Hybrid Latex Particles Coated with Silica, Macromolecules, 2001, 279: 171
    [103] Marston N J, Vincent B, Wright N G. Prog Colloid Polym, 1998, 23: 159
    [104] Du H, Zhang P, Liu F, Kan S, Wang D, Li T, Tang X. Polym Int, 1997, 43: 274
    [105] Mori H.;Lanzendorfer M. G.;Muller A H E;Klee J E. Organic-Inorganic Nanoassembly Based on Complexation of Cationic Silica Nanoparticles and Weak Anionic Polyelectrolytes in Aqueous and Alcohol Media, Langmuir;2004, 20: 1934-1944
    [106] Pagba C;Zordan G;Galoppini E;Piatnitski E;Hore S;Deshayes K, Piotrowiak P. Hybrid Photoactive Assemblies: Electron Injection from Host-Guest Complexes into Semiconductor Nanoparticles, J Am Chem Soc;2004, 126: 9888-9889
    [107] Portney N G;Singh K;Chaudhary S, Destito G;Schneemann A;Manchester M;Ozkan M. Organic and Inorganic Nanoparticle Hybrids, Langmuir;2005, 21: 2098-2103
    [108] Du J, Chen Y. Unusual Reactivity at a Platinum Center Determined by the Ligands and the Solvent Environment, Angew Chem Int Ed, 2004, 43: 5084-5087
    [109] Bronstein L M, Chemyshov D M, Timofeeva G I, Dubrvia L V, Valetsky P M, Obolonkova E S and Khokhloc A. Interaction of Polystyrene-block-poly(ethylene oxide) Micelles with Cationic Surfactant in Aqueous Solutions. Metal Colloid Formation in Hybrid Systems, Langmuir, 2000, 16: 3626
    [110] Gohy J F, Willet N, Varshney, Zhang J X and Jerome R. High Nuclearity ZnⅡ/MeCO2-/(C5NH4)2CO22- Clusters by "Depolymerization": Conversion of a Three-Dimensional Coordination Polymer Containing Hexameric Units into Its Constituent Hexanuclear Complex, Angew Chem Int Ed, 2001, 40: 3214
    [111] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO_2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol, J. Phys. Chem. B 2002, 106: 10674
    [112] D. G. Shchukin, G. B. Sukhorukov, H. Mowald, Smart Inorganic/Organic Nanocomposite Hollow Microcapsules, Angew. Chem. Int. Ed. 2003, 42, 4472
    [113] Thies C. Microspheres, Microcapsules & Liposomes. London: Citus Book, 1999, 1: 47
    [114] Blythe D, Churchill D, Glanz K, et al. Microspheres, Microcapsules & Liposomes. London: Citus Book, 1999, 1: 419
    [115] Augustin M A, Sanguansri L, Margetts C, et al. Food Australia 2001, 53: 220
    [116] Tsuji K. Microspheres, Microcapsules & Liposomes. London: Citus Book, 1999, 1: 350
    [117] Arshady R. Microspheres, Microcapsules & Liposomes. London: Citus Book, 1999, 1: 279-326
    [118] Kowalski A, Vogel M, Blankenship R M. US Patent 1984, 4,427,836
    [119] Kowalski A, Vogel M. US Patent 1984, 4,469,825
    [120] Blankenship R M, Kowalski A. US Patent 1986, 4,594,363
    [121] Blackley D C. Polymer Lattices, Chapman & Hall, New York, 1996
    [122] Durant Y G, Sundberg D C. Technology for Waterborne Coatings, ACS Symposium Series No. 663, American Chemical Society, 1997
    [123] Choi S B, Jang T H, Yoo J N, Lee C H. WO Patent 1995, 9511265
    [124] Pavlyucheko V N, Sorochinskaya O V, Ivanchev S S, Klubin V V, et al. Hollow-particle latexes: Preparation and properties, JPolym Sci A, 2001, 39: 1435
    [125] Mcdonald, C J, Bonck, K J, Chaput, A B, et al. Emulsion Polymerization of Voided Particles by Encapsulation of a Nonsolvent, Macromolecules, 2001, 33: 1593
    [126] Jang J, Lee K. Polymer Preprints, 2002, 43: 605
    [127] Tiarks F, Landfester K, and Antonietti M. Preparation of Polymeric Nanocapsules by Miniemulsion Polymerization, Langmuir, 2001, 17, 908-918
    [128] Luo Y, and Zhou X. Nanoencapsulation ofa hydrophobic compound by a miniemulsion polymerization process, J. Polym. Sci. Part A: Polym. Chem. 2004, 42: 2145-2154
    [129] Velikov K P, Blaaderen A. Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica, Langrnuir, 2001, 17: 4779
    [130] Cheng, D.;Zhou, X.;Xia, H.;Chan, H. S. O., Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes, Chem. Mater. 2005, 17(14): 3578-3581
    [131] Giersig M, Ung T, Liz-Marzan L M, Mulvaney P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles, Adv Mater, 1997, 9: 570
    [132] Mandal T K, Fleming M S, Walt D R. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates, Chem Mater, 2000, 12: 3481
    [133] Fu, G. D.;Shang, Z.;Hong, L.;Kang, E. T.;Neoh, K. G., Preparation of Cross-Linked Polystyrene Hollow Nanospheres via Surface-Initiated Atom Transfer Radical Polymerizations, Macromolecules;2005;38(18): 7867-7871
    [134] Shiho H, Kawahashi N. Titanium compounds as coatings on polystyrene latices and as hollow spheres, Colloid Polym Sci, 2000, 278: 270
    [135] Eiden S, Maret G. Preparation and Characterization of Hollow Spheres of Rutile, J Colloid Interf Sci, 2002, 250: 281
    [136] Imhof A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells, Langmuir, 2001, 17: 3579
    [137] H Banmolker, B Nitzan, S Gura, S Margel. Titre. J Mater Sci Lett, 1997, 16: 1412
    [138] Bourgeat-Lami E, Tissot I, Lefebvre F. Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization, Macromolecules, 2002, 35: 6185
    [139] Lu, L.;Sun, G.;Xi, S.;Wang, H.;Zhang, H.;Wang, T.;Zhou, X., A Colloidal Templating Method To Hollow Bimetallic Nanostructures, Langmuir;2003, 19(7);3074-3077
    [140] Kawahashi N, Persson C, Matijevic E. J Mater Chem, 1991, 1: 577
    [141] Putlitz B, Landfester K, Fischer H, Antionietti M. The Generation of "Armored Latexes" and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes, Adv Mater, 2001, 13: 500
    [142] Dejugnat, C.;Sukhorukov, G. B.;Langmuir;pH-Responsive Properties of Hollow Polyelectrolyte Microcapsules Templated on Various Cores, 2004;20(17): 7265-7269
    [143] Park, M. -K.;Deng, S.;Advincula, R. C. Sustained Release Control via Photo-Cross-Linking of Polyelectrolyte Layer-by-Layer Hollow Capsules, Langmuir;2005, 21 (12): 5272-5277
    [144] Kozlovskaya, V.;Ok, S.;Sousa, A.;Libera, M.;Sukhishvili, S. A.;Hydrogen-Bonded Polymer Capsules Formed by Layer-by-Layer Self-Assembly, Macromolecules, 2003, 36(23): 8590-8592
    [145] Caruso F, Caruso RA, Mohwald H. Science, 1998, 282: 1111
    [146] Caruso F, Caruso R A, Mohwald H. Production of Hollow Microspheres from Nanostructured Composite Particles, Chem Mater, 1999, 11: 3309
    [147] Caruso R A, Susha A, Caruso F. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres, Chem Mater, 2001, 13: 400
    [148] Zheng, S.;Tao, C.;He, Q.;Zhu, H.;Li, J.;Self-assembly and Characterization of Polypyrrole and Polyallylamine Multilayer Films and Hollow Shells, Chem. Mater. 200, 1, 16(19): 3677-3681
    [149] Caruso F, Spasova M, Susha A, Giersig M, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, Chem Mater, 2001, 13: 109
    [150] Wu M, O'Neill S A, Brousseau L C, McConnell W P, et al. Synthesis of nanometer-sized hollow polymer capsules from alkanethiol-coated gold particles, Chem Commun, 2000, 775
    [151] Hu, J. -S.;Guo, Y. -G.;Liang, H. -P.;Wan, L. -J.;Bai, C. -L.;Wang, Y. -G.;Interface Assembly Synthesis of Inorganic Composite Hollow Spheres, J. Phys. Chem. B. 2004;108(28): 9734-9738
    [152] Huang H, Remsen E E, Kowalewske T, et al. Nanocages Derived from Shell Cross-Linked Micelle Templates, JAm Chem Soc, 1999, 121: 3805
    [153] Zhang Q, Remsen E and Wooley K L. Shell Cross-Linked Nanoparticles Containing Hydrolytically Degradable, Crystalline Core Domains, J Am Chem Soc, 2000, 122: 3642
    [154] Liu X Y, Jiang M and Yang S. Fluorinated Interfaces Drive Self-Association of Transmembrane αHelices in Lipid Bilayers, Angew. Chem. In. Ed, 2002, 35: 2950
    [155] Pan Zuren (潘祖仁). Polymer Chemistry: Third Edition (高分子化学:第三版), Beijing: Chemical Industry Press(北京:化学工业出版社), 2002
    [156] Hakins W D. A General Theory of the Mechanism of Emulsion Polymerization, J Am Chem Soc, 1947, 69: 1428
    [157] Smith W V, Ewart R H. J Chem Phys, 1948, 16: 592
    [158] de Arbina L L, Barandiaran M J, Gugliotta L M, Asua J M. Emulsion polymerization: particle growth kinetics, Polymer, 1996, 37: 5907-5916
    [159] Fitch R M, Tsai C H. Polymer colloid Ⅲ, New York: Plenum Press, 1971, p73-102
    [160] Fitch R M, Tsai C H. Polymer colloid Ⅳ, New York: Plenum Press, 1971, p103-116
    [161] Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization. Ⅳ. Nucleation in monomer droplets, J Polym Sci Polym Chem, 1979, 17: 3069-3082
    [162] Maxwell I A, Morrisson B R, Napper D H, Gilber R G. Entry of free radicals into latex particles in emulsion polymerization, Macromolecular;, 1991, 24: 1629
    [163] Dougherty E P. The SCOPE dynamic model for emulsion polymerization I. Theory, J Appl Polym Sci, 1986, 32: 3051-3078
    [164] Penlidis A, MacGregor J F, Hamielec A E. ACS Symp Set, 1986, 313: 219-240
    [165] Yeliseyeva V I, Zuikov AV. ACS Symp Set, 1982, 24: 62-81
    [166] Penboss I A, Napper D H, Gillbert R G. J Chem Soc Faraday Trans, 1983, 79: 1257-1271
    [167] Ugelstad E J and Hansen F K. Rubber Chem Technol, 1976, 49: 536
    [168] Maxwell I A, Morrison B R, Gillbert R G and Napper D H. Entry of free radicals into latex particles in emulsion polymerization, Macromolecules, 1991, 24: 1629
    [169] Van Doremaele G H J, Van HerkA M, German A L. Polym Int, 1992, 27: 95
    [170] Motorn M, Kaizerman S and Airier M W. Swelling of latex particles, J Colloid Sci, 1954, 9: 300
    [171] Guillot J. Kinetics and thermodynamic aspects of emulsion copolymerization. Acrylonitrile-styrene copolymerization, Acta Polym, 1981, 32: 593
    [172] Guillot J. Makromol Chem Suppl, 1985, 10: 235
    [173] Delgodo J, El-Aasser M S, Silebi C A, Venderhoff J W, Guillot J. Chemiluminescence from oxidation of polypropylene: Some comments on a kinetic approach, J Polym Sci Phys, 1988, 28: 257-274
    [174] Maxwell I A, Kurja J, Van Doremaele G H J and German. Makromol Chem 1992, 193: 2049
    [175] Maxwell IA, Kurja J, Van Doremaele G H J and German. Makromol Chem 1992, 193: 2065
    [176] Noel L F J, Maxwell I A and German A L. Partial swelling of latex particles by two monomers, Macromolecules, 1993, 26: 2911
    [177] Schoonbrood H A S, Van den Boom M A T, German A L and Hutovic J. Multimonomer partitioning in latex systems with moderately water-soluble monomers, J Polym Sci: Polym Chem, 1994, 32: 2311
    [178] Noel L F J, Vanzon M A M, Maxwell I A and German A L. Prediction of polymer composition in batch emulsion copolymerization, J Polym Sci: Polym Chem, 1994, 32: 1009
    [179] Noel L F J, Vanzon M A M, and German A L. Monomer-to-water ratios as a tool in controlling emulsion copolymer composition: The methyl acrylate-indene system, J Appl Polym Sci, 1994, 51: 2073
    [180] O'Toole J T. Kinetics of emulsion polymerization, JAppl Polym Sci, 1965, 9: 1291-1297
    [181] Ugelstad J, Mork P C, Aasen J O. Kinetics of emulsion polymerization, J Polym Sci A-Polym Chem, 1967, 5: 2281-2288
    [182] Nomura M, Kubo M, Fujita K. Kinetics of emulsion copolymerization. Ⅲ. Prediction of the average number of radicals per particle in an emulsion copolymerization system, J Appl Polym Sci. 1983, 28: 2767-2776
    [183] Li B G, Brooks B W. Prediction of the average number of radicals per particle for emulsion polymerization, J Polym Sci Chem, 1993, 31: 2397-2402
    [184] Lichti G, Gilbert R G, Napper D H. The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate, J Polym Sci Chem, 1983, 21: 269-291
    [185] Chen S A, Wu K W. Emulsion polymerization: Determination of the average number of free radicals per particle by use of the number average volume of the particles, J Polym Sci Chem, 1990, 28: 2857-2866
    [186] Osterholtz F D and Pohl E R. Kinetics of the Hydrolysis and Condensation of Organofunctional Alkoxsilanes: a review, J Adhedion Sci Technol, 1992, 6: 127
    [187] Sanchez J and McCormick A V. Kinetic and thermodynamic study of the hydrolysis of silicon alkoxides in acidic alcohol solutions, J Phys Chem, 1992, 96: 8973
    [188] Hook R J. A ~(29)Si NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes, J Non-Cryst Solids, 1996, 195: 1
    [189] Ro J C and Chung J. Sol-gel kinetics of tetraethylorthosilicate (TEOS) in acid catalyst, J Non-Cryst Solids, 1989, 110: 26
    [190] Bakali I, Rhess E, Rousselot C and Mercier R. Can. J Chem, 1992, 70: 1612
    [191] Assink R A and Kay B D. The chemical kinetics of silicate sol—gels: Functional group kinetics oftetraethoxysilane, Colloids SurfA, 1993, 74: 1
    [192] Sanchez J, Rankin S E and McCormick A V. Ind Eng Chem Res, 1996, 35: 117
    [193] SefcIk J and McCormick A V. Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides, Catalysis Today, 1997, 35: 205
    [194] Zhang Z, Tanigami Y and Terai R. Preparation of transparent methyl-modified silica gel, J Non-Cryst Solids, 1995, 189: 212
    [195] Doston N A, Galvan R L, Tirrell M. Polymerization process modeling, VCH, New York, 1996
    [196] Peppas N A, Scranton A B, Rsou A H, Edward D E. Materials research society, Pittsburgh, 1988
    [197] Klemperer W G, Ramamurthi S D. A Flory-Stockmayer analysis of silica sol-gel polymerization, J Non-Cryst Solid, 1990, 121: 16
    [198] Brunet F, Cabane B. Populations of oligomers in sol-gel condensation, J Non-Cryst Solid, 1993, 163: 211
    [199] Assink R A, Kay B D. Sol-gel kinetics Ⅲ. Test of the statistical reaction model, J Non-Cryst Solid, 1988, 107: 35
    [200] Pouxviel J C, Boilot J P. NMR study of the sol/gel polymerization, J Non-Cryst Solid, 1987, 89: 345
    [201] Sanchez J, McCormick A V. Chemical Process of Advanced Materials, Wiley, New York, 1992
    [202] Sanchez J, Rankin R S, McCormick A V. IndEng Chem Res, 1996, 34: 117
    [203] Ng L V, McCormick A V. Acidic Sol-Gel Polymerization of TEOS: Effect of Solution Composition on Cyclization and Bimolecular Condensation Rates, J Phys Chem, 1996, 100: 12517
    [204] Ng L V, McCormick A V. Formation of Cagelike Intermediates from Nonrandom Cyclization during Acid-Catalyzed Sol-Gel Polymerization of Tetraethyl Orthosilicate, Macromolecules, 1995, 28: 6471
    [205] Rankin S E, Macosko C W, McCormick A V. Sol-gel Polycondensation Kinetic Modeling: Methylethoxysilanes, AICHE J, 1999, 44: 1141
    [1] Morton M, Kaizerman S, Altier M W. Swelling of latex particles, J. Colloid. Sci. 1954, 9: 300
    [2] Vanzo E, Marchessault R H, Stannett V. The solubility and swelling of latex particles, J. Colloid Sci. 1965, 20: 62
    [3] Gardon J L. Emulsion polymerization. Ⅵ. Concentration of monomers in latex particles, J. Polym. Sci., Polym. Chem. Ed. 1968, 6: 2859
    [4] Maxwell I A, Kurja J, Van Doremaele G H J, German A L. Thermodynamics of swelling of latex particles with two monomers, Makromol Chem. 1992, 193: 2049-2063
    [5] Maxwell I A, Kurja J, Van Doremaele G H J, German A L. Partial swelling of latex particles with monomers, Makromol Chem. 1992, 193: 2065-2079
    [6] Noel J F L, Maxwell I A and German A L. Partial swelling of latex particles by two monomers, Macromolecules, 1993, 26: 1911-2918
    [1] Bourgeat-Lami, E.;Tissot, I.;Lefebvre F. Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization, Macromolecules, 2002, 35: 6185-6191
    [2] Ni K F, Shan G R, Weng Z X, Fevotte G, Sheibat-Othman N, Bourgeat-Lami E. Synthesis of Hybrid Core-Shell Nanoparticles by Emulsion (Co)polymerization of Styrene and γ-Methacryloxypropyltrimethoxysilane, Macromolecules, 2005, 38: 7321-7329
    [3] Savard S, Vlanchard L P, Leonard J and Prud'Homme R E. Hydrolysis and condensation of silanes in aqueous solutions, Polym Composites, 1984, 5: 242~249
    [4] Brunet F. Polymerization reactions in methyltriethoxysilane studied through ~(29)Si NMR with polarization transfer, J. Non-Cryst Solid, 1998, 231: 58-77
    [5] McNeil K J, DiCapri J A, Walsh D A and Pratt R F. Kinetics and mechanism of hydrolysis of a silicate triester, tris(2-methoxyethoxy)phenylsilane, J. Am. Chem. Soc. 1980, 102: 1859
    [6] Osterholtz F D and Pohl E R. Kinetics of the Hydrolysis and Condensation of Organofunctional Alkoxsilanes: a review, J Adhedion Sci Technol, 1992, 6: 127
    [1] Ladika, M.;Rose, G. D. 2000, WO95/14700
    [2] Liles, D. T.;Murray, D. L. 1999, US Pat, 5932651
    [3] Marcu, I.;Daniels, E. S.;Dimonie, V. L.;Hagiopol, C.;EI-Aasser, M. S. Incorporation of Alkoxysilanes into Model Latex Systems: Vinyl Copolymerization of Vinyltriethoxysilane and n-Butyl Acrylate, Macromolecules, 2003, 36, 326-332.
    [4] Marcu, I.;Daniels, E. S.;Dimonie, V. L.;Roberts, J. E.;El-Aasser, M. S. Prog. Colloid Polym. Sci. 2003, 124, 31-36.
    [5] Roberts, J. E.;Marcu, I.;Dimonie, V.;Daniels, E.;El-Aasser, M. Polym. Preprint 2003, 44(1), 277-278.
    [6] Winzor C L and Sundberg D C. Conversion dependent morphology predictions for composite emulsion polymers: 1. Synthetic lattices, Polymer, 1992, 33: 3797~3806
    [7] Rao V L and Baub G N. Copolymerization of styrene, acrylonitrile and methyl methacrylate with γ-methacryloxypropyl trimethoxy silane, Eur. Polym J, 1989, 6: 605~609
    [8] Bourne T R, Bufkin B G, Wildnam C G and Grawe J R. J. Coat. Technol. 1982, 54: 69-82
    [9] Tissot I, Remond J P, Lefebvre F and Bourgeat-Lami E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chem Mater, 2002, 14: 1325~1331
    [10] Ni K(倪克钒), Shan G(单国荣), Weng Z(翁志学), Bourgeat-Lami E, Fevotte G. Synthesis of organic-inorganic hybrid core-shell nanoparticles and particle size control, J. Chem. Industry. Eng. (China) (化工学报) , 2005, 56(2): 352-357
    [11] Savard S, Vlanchard L P, Leonard J and Prud'Homme R E. Hydrolysis and condensation of silanes in aqueous solutions, Polym Composites, 1984, 5: 242-249
    [1] Gugliotta, L. M., Arzamendi G., and Asua J. Choice of monomer partition model in mathematical medeling of emulsion copolymerization systems, J. Appl. Polym. Sci, 1995, 55: 1017-1039
    [2] Rao V L, Babu G N. Copolymerization of styrene, acrylonitrile and methyl methacrylate with γ-methacryloxypropyl trimethoxy silane, Eur. Polym. J. 1989, 6: 605-609
    [3] Gao J, Penlidis A. Mathematical modeling and computer simulator/database for emulsion polymerizations, Prog. Polym. Sci. 2002, 27: 403-535
    [4] Muratore L M, Coote M L, Davis T P. Determination of the propagation rate coefficient for 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate by pulsed-laser polymerization, Polymer. 2000, 41, 1441-1447.
    [5] Nomura M, Kubo M and Fujita K. Kinetics of emulsion copolymerization: Prediction of the average number of radicals per particle in an emulsion copolymerization system, J. Appl. Polym. Sci, 1983, 28: 2767-2776
    [6] Marcu I, Daniels E S, Dimonie V L, Hagiopol C, EI-Aasser M S. Incorporation of Alkoxysilanes into Model Latex Systems: Vinyl Copolymerization of Vinyltriethoxysilane and n-Butyl Acrylate, Macromolecules. 2003, 36: 326-332
    [7] Ni K F, Shan G R, Weng Z X, Fevotte G, Sheibat-Othman N, Bourgeat-Lami E. Synthesis of hybrid core-shell nanoparticles by emulsion (co)polymerization of styrene and γ-methacryloxy propyl trimethoxy silane, Macromolecules 2005, 38, 7321-7329
    [1] Asua J M, Miniemulsion polymerization, Prog Polym Sci, 2002, 27: 1283~1346
    [2] Chamberlain B J, Napper D H, Gilbert R G. J Chem Soc Faraday Trans, 1982, 78: 591~606
    [3] Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization. Ⅳ. Nucleation in monomer droplets, J Polym Sci, Polym Chem Ed, 1979, 17: 3069~3082
    [4] Rao V. L. and Babu G. N. Copolymerization of styrene, acrylonitrile and methyl methacrylate with γ-methacryloxypropyl trimethoxy silane, Eur. Polym. J, 1989, 25: 605-609
    [1] Bourgeat-Lami E, Tissot I, Lefebvre F, Novat C. Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization, Macromolecules, 2002, 35: 6185-6191
    [2] Sahinmi M, Gavalas G R, Tsotsis T T. Statistical and continuum models of fluid-solid reactions in porous media, Chem Eng Sci, 1990, 45: 1443-1502
    [3] Tezel A, Mitragotri S. On the origin of size-dependent tortuosity for permeation of hydrophilic solutes across the stratum corneum, J Conttolled Release, 2003, 86: 183-186
    [4] Tezel A, Sens A, Mitragotri S. Description of Transdermal Transport of Hydrophilic Solutes during Low-frequency Sonophoresis Based on a modigied porous pathway model, J Pharm Sci, 2003, 92, 1-13
    [5] Ringsdorf H, Schlarb B, Tyminski P N, O'Brien D F. Permeability characteristics of liposomes in a net-membranes of dihexadecyl phosphate with polymerizable gegenions, Macromolecules, 1988, 21: 671-677
    [6] Newman J. Number Correction for the Rotating Disk, J Phys Chem, 1966, 70, 327-328
    [7] Tissot I, Remond J P, Lefebvre F, Bourgeat-Lami E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chem Mater, 2002, 14: 1325-1331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700