中亚热带人工针叶林生态系统碳水通量的观测和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统水热和CO_2传输过程是国际研究的前沿问题。理解森林生态系统水、能量和CO_2传输机制有助于了解森林生态系统在陆地生态系统碳水循环中的作用,并认识森林生态系统过程与功能对干旱与气候变化的响应规律。本研究将基于生理生态学过程,模拟生态系统下垫面与大气之间碳水通量交换的综合模型—EALCO(Ecological Assimilation of Land and Climate Observation)模型引入国内,将其应用在中亚热带人工针叶林生态系统,对模型进行参数化与初始化使其能够较好地连续模拟该生态系统三年连续的碳、水和能量通量交换状况,同时用通量观测数据对模拟结果进行检验,利用EALCO模型揭示该生态系统碳水通量的驱动机制及季节性干旱对人工针叶林生态系统碳吸收及其碳水通量耦合关系的影响,模拟和预测未来气候变化情景下人工针叶林生态系统对气候变化的响应和碳收支状况,以期为我国估计大区域尺度生态系统碳平衡的时间和空间格局特征提供模型储备。
     本文的主要研究成果如下:
     (1)将EALCO模型进行参数化和初始化,并改变模型的光合作用时段和落叶机制等,使之能够较好地模拟亚热带人工针叶林生态系统碳水通量状况,利用通量站的观测数据与模型模拟结果进行比对,检验了模型对水和能量通量特征的模拟效果:
     结果表明模型对两个重要的中间变量,即冠层温度和水势的模拟结果较为理想。通过将冠层气孔导度的模拟值与利用Penman-Monteith公式计算的表面导度进行对比发现,除2005年模型模拟的冠层导度偏高外,对其它两年的模拟效果较为理想。净辐射三年的模拟值与实测值之间的相关系数均在0.98以上,模拟效果理想。模拟结果表明,被森林地面吸收的净辐射(R_(n,s))和被冠层吸收的净辐射(R_(n,c)之间的比率也表现出比较明显的季节变化形式,比率的月平均值在4或5月份达到最大值0.35左右,之后逐渐减小,至12月或1月降至最低值0.05左右。2003年和2004年潜热通量与显热通量的模拟结果好于2005年。总体来看,三年潜热通量和显热通量模拟值与实测值的相关系数平均分别为0.82和0.62。模拟结果显示,森林地面日平均潜热通量的模拟值介于5-40W m~(-2)之间,2003-2005年森林地面年总潜热通量分别占年总冠层潜热通量(LE_s/LE_e)的8%、11%和12%。观测与模拟的生态系统潜热通量(LE_e)占净辐射(R_n)的比例在年初至春季(DOY120)之前较小,在30%-50%之间,进入生长旺季,LE_e/R_n逐渐增加,在50%-80%之间。显热通量的日平均值无明显的季节变化规律,较高的显热通量通常在春季(DOY100前后)出现。
     (2)检验了模型对碳通量特征的模拟效果:
     从碳通量的日变化来看,模型能够较好的模拟碳通量的日变化形式,对2003-2005年的模拟结果进行统计分析表明,模型对NEP的模拟相关系数为0.67,斜率及标准差分别为0.90和3.96μmol C m~(-2)s~(-1),可见模型可以在很大程度上反应出该生态系统NEP的日变化趋势。模型对土壤呼吸在半小时尺度上的模拟值接近或略高于静态箱-气象色谱法的土壤呼吸观测值。从碳通量的季节变化来看,模型对2003-2005年GPP、R_e和NEP的模拟结果也较为理想,2003年7月和10月生态系统受到干旱胁迫期间,模型对GPP和R_e均存在高估现象。利用箱式法的观测数据与模型模拟的土壤呼吸日总量进行了对比,除2005年生长季期间的模拟值与观测值差异较大,其它年份的模拟值与观测值基本一致。对生态系统各种呼吸组分的模拟结果显示,该生态系统自养呼吸占生态系统总呼吸的比例较为固定为88%。就生态系统自养呼吸来讲,在全年中,植被的维持呼吸均大于生长呼吸。2003-2005年维持呼吸占自养呼吸的比例分别为77%、72%和76%。对土壤呼吸各组分的模拟结果表明,三年中,模拟的根系自养呼吸占土壤总呼吸的70%。
     (3)分析了季节性干旱对人工针叶林生态系统碳水通量的影响:
     研究结果表明深层土壤水分含量是决定冠层导度的主要因素,进而影响GPP的大小;干旱对GPP的影响比对R_e的影响更为强烈,因此碳吸收能力的下降主要由GPP下降剧烈引起,对GPP下降的环境因素进一步分析表明,在晴天正午之前对光合作用能力产生抑制的因素主要是深层土壤水分,正午之后深层土壤水分匮缺与高温共同影响生态系统光合作用能力,两者对光合作用能力的削弱作用各占一半。2003年高温干旱期间,生态系统呼吸值下降33%左右,生态系统呼吸的降低主要是由植物自养呼吸和土壤异养呼吸的减小共同作用引起。其中自养呼吸的减小主要是由生长呼吸的减小所导致。2003年持续的夏季高温致使生态系统的碳吸收能力下降,2004年10月的水分匮缺对生态系统呼吸的影响更为强烈,因此碳吸收能力并未受到影响,可见生态系统碳平衡的两个组分R_e和GPP对干旱响应的方式与程度有所不同,是造成森林生态系统源/汇强度变化的根本原因。此外,干旱还会使植物碳水之间的耦合关系发生改变。
     (4)分析了人工针叶林生态系统对气候变化的响应;
     研究结果表明,气候变暖会增加ET,从而降低土壤的水通量。但在气候变暖与CO_2浓度升高的共同作用下,ET可能会减少,主要原因在于CO_2浓度的变化导致了冠层气孔导度的变化。气候变暖会提高生态系统的生产力。与降水增加相比,CO_2浓度的增加更能有效地提高生态系统的生产力。CO_2浓度升高所引起的总初级生产力的提高,不会被由温度增加所导致的呼吸速率增加而抵消,NEE仍然有增加趋势。
Water, heat and carbon dioxide transfer processes in the forest ecosystem arefocused intensively by the international researches. Understanding the mechanism ofwater, heat and carbon dioxide transfer in the forest ecosystem is important forassessing the role of the forest ecosystem in the water and carbon cycle of theterrestrial ecosystem and learning the ecosystem process and function of forest inresponse to the drought and climate change. EALCO model is a process-based modelused to simulate carbon, water and energy exchange between the atmosphere and landsurface. In this study, EALCO model is parameterized to simulate the ecosystemcarbon, water and energy exchange process in the man-planted evergreen forest.Modeling result was tested by use of the flux tower measurements. The mainobjective of the study was to (1) investigate the driving factors of the carbon andwater fluxes of the ecosystem (2) study the effect of seasonal drought on carbonassimilation and the coupling of carbon with water (3) simulate and evaluate thecarbon and water exchange conditions under the scenarioes of climate change.
     Main results of the study were as follows:
     (1) EALCO model is parameterized and initialized to simulate the ecosystem carbon,water and energy exchange of the man-planted forest from 2003 to 2005. Simulatedecosystem water and energy exchanges are analyzed on half-hourly, daily, and annualtime scales and compared with tower eddy correlation flux measurements.
     The results show that the simulated two critical variables, T_c andψ_c, werereasonable compare to the observations. Comparing the canopy conductance with thecalculation from the Penman-Monteith equation we found that the modeling results of2003 and 2004 are just satisfied while the results of 2005 are overestimated. Thecorrelation between the simulated and observed results of net radiation for the 3 yearsis more than 0.98. Modeling result shows that the ratio between net radiationabsorption by the forest floor and by the canopies showed an obvious seasonal pattern,with monthly mean values ranging from 0.35 in May to 0.05 in December. The modelreproduced well the annual course of daily latent heat (LE) and sensible heat flux (H)above the forest canopy as measured by EC method at 2003 and 2004. Thecorrelations between the simulated and observed results of H and LE for the 3 yearsare 0.82 and 0.62, respectively. The computed daily-averaged forest floor latent heatdensity (LE_s) ranged between 5 and 40 W m-2 throughout the three years and theseasonal sum of LEs accounted for 8, 11 and 12% of that of LE_e in 2003, 2004 and 2005, respectively. The latent heat fluxes of the whole ecosystem accounted low valueof Rn at the beginning of the year (from 30 to 50%) and increase with the growing ofthe forest (from 50 to 80%). The daily-averaged sensible heat flux did not show adiscernible seasonality. Peak-averaged values often accrued in the early spring.
     (2) Simulated plant, soil and ecosystem CO_2 exchanges are analyzed on half-hourly,daily, and annual time scales and compared with tower eddy correlation fluxmeasurements and estimates from various authors.
     At half-hourly timescale, the simulated plant CO_2 exchange explained 67% of thevariance of the measured CO_2 fluxes derived from eddy correlation measurements.The simulated soil respiration was close to or higher than the soil chambermeasurements in the three years. At a coarser timescale, the model was verysuccessful in simulating variations of GPP, Re and NEP of the three years except forthe overestimation of GPP and Re in July and October of 2003 when during thedrought period. The simulated daily soil respiration was in consistent with thechamber measurements except for the year of 2005. Modeling results of thecomponent of ecosystem respiration show that the contribution of auto-respiration toecosystem respiration was 88% for the three years. As for autotrophic respiration,maintenance respiration was morn than growth respiration through the whole year andthe contributions of maintenance respiration to auto-respiration of 2003, 2004 and2005 were 77%, 72% and 76%, respectively. Modeling results of soil respirationcomponent show that root autotrophic respiration account for 70% of the soilrespiration.
     (3) The impact of seasonal drought on carbon and water exchanges of man-plantedforest was analyzed.
     Results show that deep soil water content decided the canopy conductancegenerally and GPP depended on canopy conductance to a large extent. Drought havemore intense impact on GPP than on Re, which lead to the decrease of net carbonexchange during the water stress period. Further analysis suggests that deep soil watercontent controls the canopy photosynthesis dramatically in sunny day before noontime during soil water stress. While after noon time both high temperature and deepsoil water content eliminate the GPP and their elimination percents are equal. Duringthe drought and high temperature period of 2003, ecosystem respiration decreased33%, which was caused by the decrease of plant autotrophic respiration and soilheterotrophic respiration. Among them the decrease of autotrophic respiration wasgenerally caused by the reducing of plant growth respiration. The net carbon exchange of 2003 was decreased due to the combination effect of summer drought and heatwave while in October of 2004 the water stress has more influence on ecosystemrespiration so the net carbon exchange was not influenced largely, from which we cansee the net effect of ecosystem carbon balance depends on how these two quantifiesare affected relatively to each other. In addition, drought also has impact on thecoupling of carbon and water fluxes.
     (4) Climate change effects on the carbon and water fluxes of the man-planted forest.
     The ecosystem model EALCO was used to evaluate possible changes inecosystem carbon and water exchange and accumulation under changes inatmospheric CO_2 concentration and accompanying changes in air temperature andprecipitation. Model results indicated that warming will cause increased ET andtherefore reduced soil water flux. Combination impact of warming and increased CO_2concentration will lead to reduced ET, which attributed to the reduced stomatalconductance under the high CO_2 concentration. Warming will cause increased growth.Compared to increased precipitation, the increase of CO_2 concentration improved theecosystem production effectively. Future CO_2 induced enhancements of grossphotosynthesis would not offset by temperature-induced increases in respiration, thecombined influences of the scenario resulted in a 23% increase in NEP.
引文
Alcamo J, Van den Born GJ, Bouwman AF et al. Modeling the global society-biosphere-climate system, Part 2: Computed scenarios. Water, air, and soil pollution, 1994,76,1-35.
    Allen C D, Breshears DD. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Ecology. 1998,95: 14839-14842
    Amthor JS, Direct effect of elevated CO_2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small. Tree Physiology, 2000,20, 139-144.
    Baldocchi D D. Measuring and modeling carbon dioxide and water vapor exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell and Environment, 1997, 20: 1108-1122.
    Baldocchi D D. The carbon cycle under stress. Nature, 2005,437: 483-484
    Baldochhi, D.D. and K.B. Wilson. Modeling CO_2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal times acales. Ecol. Model. 2001,142:155-184.
    Ball J T, Woodrow I E and Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Progress in Photosynthesis Research, Vol. IV, Proceedings of the VIIth International Congress on Photosynthesis, edited by I. Biggins. 1987. 221-224, Nijhoff, Dordrecht, Netherlands.
    Belinda E. medlyn , Andrew P. Robinson, Robert Clement. On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree physiology. 2005, 25: 839-857.
    Bonan G B, Davis K J, Baldocchi D D, et al. Comparison of the NCAR LSM1 land surface model with BOREAS aspen and jack pine tower fluxes. Journal of Geophisical Research, 1997, 102: 29065-29076.
    Cao MK, Prince SD, Shugart HH, Incressing terrestrial carbon uptake from the 1980s to the 1990s with change in climate and atmosphere CO_2. Global Biogeochemical Cycles, 2002, 16, 1069,doi: 10.1029/2001 GB001553.
    Cao MK, Woodward FI, 1998. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393: 249-252.
    Carson DJ. 1982. Current parameterizations of land-surface processes in atmospheric general circulation models. In land surface processes in atmospheric general circulation models, Eagleson PS(ed.) Cambridge university Press: Cambrige.
    Collatz G J, Ball J T, Grivet C, et al. Regulation of stomatal conductance and transpiration: a physiological model of canopy processes. Agricultural and Forest Meteorology, 1991, 54: 107-136.
    Cornic G. 1994. Drought stress and high light effects on leaf photosynthesis. In Photoinhibition of Photosynthesis from Molecular to the Field( eds N.R. Baker and J.R. Bowyer), pp. 297-313. BIOS Scientific Publications, Oxford.
    Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO_2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
    DeLucia EH, Moore DJ, Norby RJ (2005) Contrasting responses of forest ecosystems to rising atmospheric CO_2: implications for the global C cycle. Global Biogeochemistry, in press.
    Dickson RE and Tomlinson PT, 1996, Oak growth, development and carbon metabolism in response to water stress. Annales Science Forestiere 53,181-196
    Dickson RE, Henderson-Sellers A, Kennedy PJ, Wilson ME 1986. Biosphere-Atmosphere transfer scheme (BATS) for the NCAR community climate model. Tech Note. National Centre for Atmospheric Research: Boulder, CO.
    Dickson RE, Henderson-Sellers A, Kennedy PJ,Giorgi F.1992. Biosphere-Atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model. Tech Note .National Ceter for Atmospheric Research: Boulder, CO.
    Dreyer E.1996. Photosynthesis and drought in forest trees. In trees- Contributions to Modern tree physiology (eds H. Rennenbery, W. Eschrich and H. Ziegler),pp. 217-240. SPB Academic Publishing, Amsterdam, The Netherlands.
    Edwards NT, Hanson PJ (2003) Aboveground autotrophic respiration. In: North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies Series, Vol. 166 (eds Hanson PJ, Wullschleger SD), pp. 48-66.Springer, New York.
    Fang J Y, Chen A P, Peng C ,et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322
    Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90.
    George K, Norby RJ, Hamilton JG et al, 2003, Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO_2. New Phytologist, 160,511-522
    Gollan T, Passioura JB and Munns R. 1986. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Australian Journal of Plant Physiology 13, 459-464.
    Grant R F, Black T A, den Hartog G, et al. Diurnal and annual exchanges of mass and energy between an aspen hazelnut forest and the atmosphere: testing the mathematical model ecosystem with data from the BOREAS experiment. Journal of Geophisical Research, 1999, 104: 27699-27717.
    Grant RF, Arain A, Arora V, Barr A, Black TA, Chen J, Wang S, Yuan F, Zhang Y (2005). Intercomparison of technique to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecological modeling,188, 217-252.
    Grant RF, Black TA, Gaumont-Guay D et al. 2006. Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modeling with Ecosys. Agricultural and forest meteorology 140,152-170
    Grassi G and Magnani F.2005. Stomatal, mesophy II conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash andoak trees. Plant,cell and enovronment, 28, 834-849.
    Gunderson CA, Sholtis JD, Wullschleger SD et al, 2002, Environmental and stomatal control of photosynthestic enhancement in the canopy of a Sweetgum plantation during 3 years of CO_2 enrichment. Plant Cell and environment, 25, 379-393
    Gunderson CA, Sholtis JD, Wullschleger SD et al. (2002) Environmental and stomatal control of photosynthetic enhancement in the canopy of a Sweetgum(Liquidambar styraciflua L.) plantation during 3 years of CO_2 enrichment. Plant Cell and Environment, 25, 379-393.
    Hanson PJ, O'Neill EG, Chambers MLS et al. (2003a) Soil Respiration and Litter Decomposition. In: North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies Series, Vol. 166 (eds Hanson PJ, Wullschleger SD), pp. 163-189. Springer, New York, NY.
    Hanson PJ, Todd DE, Amthor JS (2001) A six year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiology, 21, 345-358.
    Hanson PJ, Todd DE, Huston MA (2003b) Walker branch throughfall displacement experiment (TDE). In: North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies Series, Vol. 166 (eds Hanson PJ, Wullschleger SD), pp. 8-31. Springer, New York, NY.
    Hanson PJ, Todd DE, Huston MA et al. (1998) Description and Field Perfonnance of the Walker Branch Throughfall Displacement Experiment: 1993-1996, ORNL/TM-13586. Oak Ridge National Laboratory, Oak Ridge, TN.
    Hanson PJ, Todd DE, West DC et al. (2003c) Tree and sapling growth and mortality. In: North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies Series, Vol. 166 (eds Hanson PJ, Wullschleger SD), pp. 255-273. Springer, New York, NY.
    Hanson PJ, Weltzin JF (2000) Drought disturbances from climate change: response of United States forests. Science of the Total Environment, 262, 205-220.
    Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinske TJ and Gunderson CA. 2005 .Importance of changing CO_2, temperature, precipitation and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global change biology. 11,1402-1423.
    Harley PC and Tenhunen JD. 1991. Modeling the photosynthetic response of C3 leaves to environmental factors. In modeling photosynthesis-from biochemistry to canopy (eds K. Boote and R Loomis), pp. 17-39. American Society of Agronomy, Madison, WI.
    Houghton, R. A., Hackler, J. L., Lawrence, K. T., 1999. The US carbon budget: contributions from land-use change. Science, 285: 574-578.
    Innes JL, 1993.Forest health: its assessment and status. CAB,Wallingford,677p
    IPCC. 2001. Climate Change 2001: The Scientific Basis. J. T. Houghton et al., Eds., Cambridge University Press, Cambridge, United Kindom, and New York, NY.
    Ji J. 1995. A climate-vegetation interaction model: simulating physical and biological processes at the surface. Journal of Biogeography, 22: 445-451.
    Johnson D W, Susfalk, R B, Gholz H L, Hanson P J. 2000. Simulated effects of temperature and precipitation change in several forest ecosystems. Journal of Hydrology, 235: 183-204.
    Johnson DW, Cheng W, Joslin JD et al. (2004) Effects of elevated CO2 on nutrient cycling in a Sweetgum plantation. Biogeochemistry, 69, 379-403.
    Kattenberg, A., F. Giorgi, H. Grassl, G.A. Meehl, J.F.B. Mitchell, RJ. Stouffer, T. Tokioka, A.J. Weaver, T.M.L. Mitchell, 1996. Climate Models. Projections of future climate, hoofdstuk 6 in IPCC WGI Assessment Report 1995, Climate Change, eds. Houghton, J.F., G. Meira, B.A. Callander, N. Harris, A. Kattenberg, K. Maskell.
    Kellomaki, S., Karjalainen, T., Va¨isa¨nen, H., 1997. More timber from boreal forests under changing climate? For. Ecol. Manag. 94, 195-208.
    King JS, Hanson PJ, Bernhardt E et al. (2004) A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 10, 1027-1042.
    King, A W, Gunderson C A ,Post W M et al.,2006,Plant respiration in a warmer world. Science,28: 535-536
    Kirschbaum MUF, Fischlin A. Climate change impacts on forests. In: Watson RT, Zinyowera MC, Moss RH, editors.Climate change 1995: impacts, adaptations and mitigation of climate change: scientific technical analysis. New York:Cambridge University Press, 1996:95-129
    Kirschbaum, M.U., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753-760.
    Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary productivity in a mesic temperate grassland. Ecosystems, 4, 19-28.
    Leuning R 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant cell environment, 18: 339-355.
    Manabe S.1969. Climate and the ocean circulation: 1, the atmosphere circulation and the hydrology of the earth's surface . Monthly weather review 97: 739-805.
    Massman W J, Lee X. Eddy Covariance Flux Corrections and Uncertainties in Long Term Studies of Carbon and Energy Exchanges. Agricultural and Forest Meteorology, 2002, 113: 121-144
    
    McGuire AD, Melillo |M, Joyce LA, Kicklighter DW, Grace AL,Moore III B, Vorosmarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles, 6,101-124.
    
    McMurie, R.E. and J.J.Landsberg. 1992. Using a simulation model to evaluate the effects of water and nutrients on the growth and carbon partitioning of Pinus radiate. For. Ecol. Manage. 52: 243-260.
    McNulty, S.G., Vose, J.M., Swank, W.T., 1996. Potential climate change effects on loblolly pine forest productivity and drainage across the southern United States. Ambio 25, 449-453.
    Medlyn B E., Andrew P. Robinson, Robert Clement. 2005. On the validation of models of forest CO_2 exchange using eddy covariance data: some perils and pitfalls. Tree physiology. 25: 839-857.
    Melillo JM et al. Effects on ecosystems. In: Houghton JT, Jenkins GJ, Ephraums JJ, editors. Climate change: the IPCC scientific assessment. Cambridge University Press, 1990:282-310
    Melillo JM, McGuire AD, Kicklighter DW, Moore III B, Vorosmarty CJ, Schloss AL ,1993, Global climate change and terrestrial net primary production. Nature,363,234-240.
    Neilson R P. A model for predicting continental scale vegetation distribution and water balance. Ecol. Appl., 1995, 5:362-385.
    Neilson RP, King GA, DeVelice RL et al. (1989) Sensitivity of ecological landscapes to global climatic change. US Environmental Protection Agency, Environ. Res. Lab., EPA-600-3-89-073, NTIS-PB-90-120-072-AS, Washington, DC, 103 pp.
    Neilson, R.P. and R.J. Drapek. 1998. Potentially complex biosphere responses to transient global warming. Global Change Biology 4:505-521.
    Norby RJ, Long TM, Hartz-Rubin JS et al. (2000) Nitrogen resorption in senescing tree leaves in a warmer, CO_2-enriched atmosphere. Plant and Soil, 224,15-29.
    Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162, 281-294.
    Norby RJ, Sholtis JD, Gunderson CA et al. (2003) Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia, 136, 574-584.
    Oechel W C, Hastings S J, Vourlitis G, Jenkins M, Riechers G,Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature, 361, 520-523.
    
    Parton WJ, Scurlock JMO, Ojima DS et ai (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles. 7: 785-809.
    Pitman AJ, Yang Z-L, Cogley JG, Henderson-Sellers A. 1991. Description of bare essentials of surface transfer for the Bureau of Meteorology Research Center AGCM. BMRC Research Report No. 32, Melbourne, Victoria.
    Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM,Mooney HA, Klooster SA, 1993. Terrestrial ecosystem production: a processed model based on global satellite and surface data. Glob. Biogeochem. Cycl., 7:811-841.
    Prentice I C, Cramer W , Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties, and climate . Journal of Biogeography, 1992, 19:117-134.
    Raich JW, Rasterrer EB, Melillo JM, Kicklinghter DW, Steudler PA, Peterson BJ, Grace AL, Moore B and Vorosmarty CJ. 1991, Potential net primary productivity in South America: Application of a global model. Ecological Applications. 1: 399-429
    
    Reichstein Markus, John D. Tenhunen, Olivier Roupsard et al. 2002. Severe drought effects on ecosystem CO2 and H_2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? GCB,8: 999-1017.
    
    Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R. Potential evapotranspiration and the likelihood of future drought. J Geophys Res 1990; 95( D7) : 9983-10004
    Ross E M, Belinda E M, Roderick C D. 2001. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. Tree Physiology. 21: 831-839
    Runing SW and Coughlan JC. A general model of forest ecosystem processes for regional applications, I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model., 1988, 42: 125-154.
    Runing SW and Gower ST. FOREST-BGC, a general model of forest ecosystem processes for regional applications, II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, 1991, 9: 147-160.
    Running SW, Hunt Jr. ER (1993) Generalization of a forest ecosystem model for other biomes, BIOME-BGC, and an application for global-scaie models. In: Scaling Physiological Processes: Leaf to Globe (eds Ehleringer JR, Field CB), pp. 141-158, Academic Press, San Diego.
    Schar C, Vidale PL, Luethi D, et al. The role of increasing temperature variability in European summer heatwaves. Nature, 2004, 427: 332-336
    Schimel D S, 1995. Terrestrial ecosystems and the carbon cycle, Global change biology, 1, 77-91.
    Schulze ED 1986. Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil . Annual review of plant physiology 37, 247-274.
    Sellers PJ, Mintz Y, Sud YC, Dalcher A. 1986.A simple biosphere model (SiB) for use within general circulation models. Journal of the atmosphere sciences 43: 505-531.
    Sharpe, P.S.H., DeMichelle, D.W., 1977. Reaction kinetics of poikilothermic development. J.Theor. Biol. 64,649-670
    Shaver GR, Billings W D, Chapin F S III et al. (1992) Global change and the carbon balance of Arctic ecosystems. Bioscience, 42,433-441.
    Sholtis JD, Gunderson CA, Norby RJ et al. (2004) Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua L.) forest stand. New Phytologist, 162, 343-354.
    Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR,Nowak RS. 2000. Elevated CO_2 increases productivity and invasive species success in an arid ecosystem. Nature 208:79-82.
    Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. International Journal of Climatology, 22, 1715-1725.
    Stan D, Wullschleger and Paul J. Hanson, 2006, Sensitivity of canopy transpiration to altered precipitation in an upland oak forest evidence from a long-term field manipulation study, Global change Biology, 12: 97-109.
    Stan D. Wullschleger, Paul J. Hanson and Tim J. Tschaplinski, 1998, Whole-plant water flux in understory red maple exposed to altered precipitation regimes, Tree Physiology, 18: 71-79.
    Tardieu F and Davies WJ. 1992. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiology 98, 540-545.
    Tian HQ, Melillo JM, Kicklighter DW, Mcguire AD, Helfrich IVK, Moore B, Vorosmarty CJ, 1998, Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396,664-667
    Tian HQ, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J,1999, The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus, 51B, 414-452.
    Tissue DT, Lewis JD, Wullschleger SD et al. (2002) Leaf respiration at different canopy positions in sweetgum (Liquidambar styraci-flua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology, 22, 1157-1166.
    Torbert HA, Prior SA, Rogers HH, et al. Review of elevated atmospheric CO_2 effects on agro-ecosystems: residue decomposition processes and soil C storage. Plant and Soil, 2000, 224: 59-73
    Valentini R, De Angells P, Matteucci G, et al. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology, 1996, 2: 199-207
    Van Wijk MT, Bouten W and Verstraten JM. 2002. Comparison of different modeling strategies for simulating gas exchange of a Douglas-fir forest. Eco. Model. 158:63-81
    Verhoef A, Allen S J. A SVAT scheme describing energy and CO_2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah. Ecological Modelling, 2000, 127: 245-267.
    Verseghy DL. 1991. CLASS- a Canadian land surface scheme for GCMs. I. Soil model. International Journal of Climatology 11: 111-113.
    Verseghy, D L, McFarlane, N A, Lazare, M, 1993. CLASS-a Canadian land surface scheme for GCMs. II .Vegetation model and coupled runs. Int J. Climatol. 13, 347-370.
    Verstraeten WW, Veroustraete F, Feyen J.2006. On temperature and water limitation of net ecosystem productivity: Implementation in the C-Fix model. Ecological modeling. 199: 4-22.
    Vitousek PM (1994) Beyond global warming - ecology and global change. Ecology, 75,1861-1876.
    Wang S, Grant R., Verseghy DL, Black TA (2001). Modeling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—the Canadian Land Surface Scheme. Ecological Modeling. 142,135-155.
    Wang S, Trishchenko A, Khlopenkov K, Davidson A (2006). Comparison of IPCC AR4 climate model simulations of surface albedo with satellite products over Northern Latitudes. Jounal of geography research -Atmosphere VOL. 111, D21108, doi:10.1029/2005JD006728
    Wang, S., 2005: Dynamics of land surface albedo for a boreal forest and its simulation. Ecol. Model., 183,477-494, doi:10.1016/j.ecolmodel.2004.10.001.
    Wang, S, Trishchenko, A. P. and Sun, X., 2007b: Simulation of canopy radiation transfer and surface albedo in the EALCO model. Clim. Dynam. (In print).
    Wang S. 2007a. Simulation of evapotranspiraiton and its response to plant water and CO_2 tansfer dynamics. J. Hydrometeorol (Submitted).
    Weltzin JF, Loik ME, Schwinning S et al, 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 53(10), 941-952.
    White MA, Nemani RR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967-972.
    White MA, Nemani RR, Thornton PE et al. (2002) Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems, 5, 260-273.
    White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11,217-234.
    Williams M, Malhi Y, Nobre A D, et al. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modeling analysis. Plant Cell and Environment, 1998, 21: 953-968.
    Wilson KB, Hanson PJ (2003) Deciduous hardwood photosynthesis:species differences, temporal patterns and response to soil water deficits. In: North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Ecological Studies Series, Vol. 166 (eds Hanson PJ, Wullschleger SD), pp.35-47. Springer, New York, NY.
    Wullschleger SD, Gunderson CA, Hanson PJ et al. (2002) Sensitivity of stomatal and canopy conductance to elevated CO_2 concentration-interacting variables and perspectives of scale. New Phytologist, 153,485-496.
    Wullschleger SD, Norby RJ (2001) Sap velocity and canopy transpiration for a 12-year-old sweetgum stand exposed to free-air CO_2 enrichment. New Phytologist, 150, 489-498.
    Wullschleger SD, Wilson KB, Hanson PJ (2000) Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 104,157-168
    Wullschleger SD,Hanson PJ, Todd DE, 2003, Forest water use and the influence of precipitation change. In North American temperate Deciduous forest responses to changing precipition regimes. Ecological studies series, vol. 166(eds Hanson PJ, Wullschleger SD),pp. 363-377. Springer, New York, NY
    Yu GR, Kobayashi T, Zhuang J, Wang QF,Qu LQ.2003. A coupled model of photosynthesis-transpiration based on the stomatal behavior for maize(Zea mays L.) grown in the field. Plant and soil, 249: 401-416.
    Zak DR, Pregitzer KS, King JS, et al. Elevated atmospheric CO_2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 2000, 147:201-222
    Zhang P C, Shao G F, Zhao G., et al. China's forest policy for the 21st century. Science, 2000, 288:2135-2136
    Zhang X, Friedl MA, Schaff CB et al. (2004) Climate controls on vegetation phenological pattems in northem mid-and high latitudes inferred from MODIS data. Global Change Biology, 10, 1133-1145.
    Zhao TT, Schwartz MD (2003) Examining the onset of spring in Wisconsin. Climate Research, 24, 59-70.
    曹明奎,李克让,陆地生态系统与气候相互作用的研究进展,2000,地球科学进展,15(8):446-453
    李玉强,赵哈林,陈银萍,陆地生态系统碳源与碳汇及其影响机制研究进展.生态学杂志.2005,24(1):37-42
    孙晓敏,温学发,于贵瑞,中亚热带季节性干旱对千烟洲人工林生态系统碳吸收的影响,中国科学D辑,2006,36(增刊Ⅰ):103-110
    田汉勤,徐小锋,宋霞等,2007,干旱对陆地生态系统生产力的影响,植物生态学报。31(2),231-241
    于贵瑞,伏玉玲,孙晓敏等,2006,中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路,中国科学,36(增刊Ⅰ):1-21。
    于贵瑞主编,2003,全球变化与陆地生态系统碳循环和碳蓄积,北京:气象出版社
    周广胜,王玉辉,白丽萍等,2004。陆地生态系统与全球变化相互作用的研究进展,气象学报,62(5):692-707
    Gockede M, Corinna R, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint medelling for the characterization of complex sites. Agriculture and Forest Meteorology, 2004, 127: 175~188
    Haenel H D, Grunhage L. Footprint analysis: a closed analytical solution based on height-dependent profiles of wind speed and eddy viscosity. Boundary-Layer Meteorology, 1999, 93: 395~409
    Hollinger D Y, Aber J, Dail B, et al. Spatial and temporal variability in forest-atmosphere CO_2 exchange. Global Change Biology, 2004, 10: 1689~1706
    Horst T W and Weil J C. How far is far enough the fetch requirements for micrometeorological measurement of surface fluxes. Journal of Atmospheric Oceanic Technology, 1994, 11: 1018~1025
    Horst T W, Weil J C. Footprint estimation for scalar flux measurements in the atmospheric surface-layer. Boundary-Layer Meteorology, 1992, 59: 279~296
    Kljun N, Kastner-Klein P, Fedorovich E, et al. Evaluation of a Lagrangian footprint model for a wide range of boundary layer stratification. Agriculture and Forest Meteorology, 2004,127,189-201
    Kljun N, Rotach M W, Schmid H P. A 3-D backward Lagrangian footprint model for a wide range of boundary layer stratifications. Boundary-Layer Meteorology, 2002, 103: 205-226
    Kormann R, Meixner F X. An analytic footprint model for neutral stratification. Boundary-Layer Meteorology, 2001, 99: 207-224
    Kutsch W L, Liu C H, Hormann G, et al. Spatial heterogeneity of ecosystem carbon fluxes in a broadleaved forest in Northern Germany. Global Change Biology, 2005, 11:70-88
    Leclerc M Y, Shen S H, Lamb B. Observation and large-eddy simulation modeling of footprints in the lower convective boundary layer. Journal of Geophysical Research-Atmosphere, 1997, 102 :9323-9334
    Leclerc M Y, Thurtell G W. Footprint prediction of scalar fluxes using a Markovia analysis. Boundary-Layer Meteorology, 1990, 52: 247-258
    Nappo C J. The workshop on the representativeness of meteorological observation. June 1981, Boulder, CO. Bulletin of America Meteorology Society, 1982, 63: 761-764
    Rannik, U, Aubinet M, Kurbanmuradov O, et al. Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorology, 2000, 97:137-166
    Schmid H P, Oke T R. A model to estimate the source area contributing to turbulent exchange in the surface-layer over patchy terrain. Quartery Journal of Royal Meteorology Society, 1990, 116: 965-998
    Schmid H P. Experimental design for flux measurements: matching the scales of observations and fluxes. Agriculture and Forest Meteorology, 1997, 87: 179-200
    Schmid H P. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agriculture and Forest Meteorology, 2002,113: 159-283
    Schmid H P. Source areas for scalars and scalar fluxes. Boundary-Layer Meteorology, 1994, 67: 293-318
    Schuepp P H, Leclerc M Y, Macpherson J I, et al. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 1990,50: 353-373
    Vesala T, Rannik U, Leclerc M. Flux and concentration footprints. Agriculture and Forest Meteorology, 2004, 127: 111-116
    Wilson J D, Swaters G E. The source area influencing a measurement in the planetary boundary-layer: the footprint and the distribution of contact distance. Boundary-layer Meteorology, 1991, 55: 25~46
    赵晓松,关德新,吴家兵,等.长白山阔叶红松林通量观测的footprint及源区分布.北京林业大学学报,2005,27(3):17-23
    Amthor JS, 1989, Respiration and crop productivity. New York: Springer-Verlag Chen YR(陈永瑞)(2000). Nutrient element dynamic analysis of withered Ieayes from artificial forest of masson pine on the experimental plot in Qiangyanzhou. Jiang xi Science(江西科学),18,19-24.(in Chinese with English abstract)
    De pury DGG and Farquhar GD, 1997, Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, cell and environment, 20,537-557.
    Farquhar GD, von Caemmerer S, Berry JA(1980).Abiochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta, 149,78-90.
    Grant RF, Arain A, Arora V, Barr A, Black TA, Chen J, Wang S, Yuan F, Zhang Y (2005). Intercomparison of technique to model high temperature effects on CO_2 and energy exchange in temperate and boreal coniferous forests. Ecological modeling, 188, 217-252.
    Ito A, Oikawa T( 2002). A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry matter production theory and plot-scale validation. Ecological Modeling, 151 (2/3), 143-176.
    Kimmins JP, 1997. Forest Ecology: A Foundation for Sustainable Mnagement, 2nd .Prentice Hall, Englewod Cliffs,NJ
    
    Larcher W,1995, Physiological Plant Ecology, 3rd. Springer, Austria.
    Liu RF,Yu GR, Wen XF,Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006).Seasonal dynamics of CO_2 fluxes from sub-tropical plantation coniferous ecosystem. Science in China Series D, 49 (Sup. II ):99-109.
    Peng C, Jiang H, Apps MJ, Zhang Y(2002). Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: a process model simulation. Ecological Modeling. 155 (2/3), 177-189.
    Reid JB, Huck MG. 1990. Diurnal variation of crop hydraulic resistance: a new analysis. Agronomy Journal 82: 827-834.
    Riedo M, Gyalistras D, Fuhrer J(2000). Net primary production and carbon stocks in differently managed grasslands: simulation of site-specific sensitivity to an increase in atmospheric CO2 and to climate change. Ecological Modeling. 134 (2/3), 207-227.
    Song X(宋霞), Liu RF(刘允芬), Xu XF(徐晓锋), Yu GR(于贵瑞), Wen XF(温学 发)(2004). Comparison Study on Carbon Dioxide , Water and Heat Fluxes of the Forest Ecosystem in Red Earth Hilly Zone over Winter and Spring., Resources science (资源科学), 26(3), 96-104. (in Chinese with English abstract)
    Verberne ELJ, Hassink J, de Willigen P, Groot JJR, and Van Veen JA ,1990, Modelling organic Matter Dynamics in different soils, Netherland J. Agric. Sci. 38, 221-238.
    Verseghy DL. 1991. CLASS-a Canadian land surface scheme for GCMs. I. Soil model. International Journal of Climatology 11: 111-113.
    Veseghy, D L, McFarlane, N A, Lazare, M(1993). CLASS-a Canadian land surface scheme for GCMs. II .Vegetation model and coupled runs. Int J. Climatol. 13, 347-370.
    Wang S, Davidson A (2007). Impact of climate variations on surface albedo of a temperate grassland. Agricultural and forest meteorology, 142, 133-142.
    Wang S, Grant R., Verseghy DL, Black TA (2001). Modeling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—the Canadian Land Surface Scheme. Ecological Modeling. 142, 135-155.
    Wang S, Grant R., Verseghy DL, Black TA (2002a). Modeling carbon-coupled energy and water dynamics of a boreal aspen forest in a General Circulation Model land surface scheme. International journal of Climatology. 22, 1249-1265.
    Wang S, Grant R., Verseghy DL, Black TA (2002b). Modeling carbon dynamics of boreal forest ecosystems using the Canadian Land Surface Scheme. Climate Change, 55, 451-477.
    Wang S, Trishchenko A, Khlopenkov K, Davidson A (2006). Comparison of IPCC AR4 climate model simulations of surface albedo with satellite products over Northern Latitudes. Jounal of geography research-Atmosphere VOL. 111, D21108, doi: 10.1029/2005JD006728
    Wang S.2007a. Simulation of evapotranspiraiton and its response to plant water and CO_2 tansfer dynamics. J. Hydrometeorol (Submitted).
    Wang, S, Trishchenko, A. P. and Sun, X., 2007b: Simulation of canopy radiation transfer and surface albedo in the EALCO model. Clim. Dynam. (In print).
    Wang, S., 2005: Dynamics of land surface albedo for a boreal forest and its simulation. Ecol. Model., 183, 477-494, doi: 10.1016/j.ecolmodel. 2004.10.001.
    Zhou ZT(周志田),Chen SK(成升魁),Liu RF(刘允芬),Li JY(李家永)(2002).CO_2 emission of soil under different land-use types in subtropical red soil hilly areas in China: preliminary exploration., Resources science(资源科学),24(2),83-88. (in Chinese with English abstract)
    李轩然,刘琪璟,蔡哲,马泽清,2007.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,31(1),93-101。
    于贵瑞等著,2007,中国陆地生态系统碳通量的微气象观测及其时空特征研究。北京:科学出版社。(出版中)
    Baldocchi, D.D., Vogel, C.A., 1997. Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res. 102, 28939-28951.
    Baldocchi, D.D., Vogel, C.A., Hall, B., 1997b. Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res. 102, 28939-28951.
    Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environment conditions. In progress in photosynthesis research, vol.4, Biggens J(ed.). Martimus-Nijhoff: Dordrecht, Netherlands; 221-224.
    Betts, A. K., and J. H. Ball (1998), FIFE surface climate and site-average dataset 1987-1989, J. Atmos. Sci., 55, 1091-1108
    Blanken, P.D., Black, T.A., Yang, P.C., Neumann, H.H., Nesic, Z., Staebbler, R., den Hartog, G., Novak, M.D., Lee, X., 1997. Energy balance and canopy conductance of boreal aspen forest: partitioning overstorey and under storey components. J. Geophys. Res. 102, 28915-28927.
    Cienciala E, Kucera J and Lindroth A, 1999, Long-term measurements of stand water uptake in Swedish Boreal forest. Agriculture and Forest Meteorology, 98-9, 547-554
    Constantin, J., Grelle, A., Ibrom, A., Morgenstern, K., 1999. Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method. Agric. For. Meteorol. 98/99, 629-643.
    Denmead, O.T. and McIlroy, I.C., 1970. Measurements of non-potential evaporation from wheat. Agric. Meteorol., 7: 285-302.
    Fang J Y, Chen A P, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322
    Grrstang, M., and D. R. Fitzjarrald (1999), Observations of Surface to Atmosphere Interactions in the Tropics, 405 pp., Oxford Univ. Press,New York.
    Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H.,Moncrieff, J., Massheder, J., Wright, I., Gash, J., 1995. Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Global Change Biol. 1, 1-12.
    Granier A,Biron P,Lemoine D (2000).Water balance,transpiration and canopy conductance in two beech stands.Agricultural and Forest Meteorology, 100, 291-308
    Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond., Ser. B 273, 593-610.
    Kelliher FM, Leuning R, Raupach MR, Schulze ED. 1995. Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73: 1-16.
    Kelliher, F.M., Hollinger, D.Y., Schulze, E.D., 1997a. Evaporation from an eastern Siberian larch forest. Agric. For. Metreorol.85,135-147.
    Kelliher, F.M., Hollinger, D.Y., Schulze, E.-D., Vygodskaya, N.N.,Byers, J.N., Hunt, J.E., McSeveny, T.M., Milukova, I., Sogatchev,A., Verlargin, A., Ziegler, W., Arneth, A., Bauer, G., 1997b.Evaporation from an eastern Siberian larch forest. Agric. For.Meteorol. 85, 135-147.
    Kelliher, F.M., Lloyd, J., Arneth, A., Byers, J.N., Mcseveny, T.M.,Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Verlargin,A., Ziegler,W., Bauer, G., Schulze, E.-D., 1998. Evaporation from a central Siberian pine forest. J. Hydrol. 205, 279-296.
    Koster, R. D., et al. (2004), The GLACE team: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138- 1140.
    Kosugi Y, Tanaka H, Takanashi S, Matsuo N, Ohte N, Shoza S, Tani Makoto. 2005. Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology, 132: 329-343.
    Lindroth, A., 1985. Seasonal and diurnal variation of energy budget components in coniferous forest. J. Hydrol. 82, 1-15.
    Monteith JL and Unsworth MH, 1990, Principles of environmental physics. 2nd edn., Edward Arnold, London, 291pp
    Philip, J.R., 1957. Evaporation, and moisture and heat fields in the soil. J. Meteorol., 14: 354-366.
    Pielke, R. A., Sr. (2001), Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39, 151-177.
    Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev., 100:81-92.
    Rabin, R. M., S. Stadler, P. J. Wetzel, D. J. Stensrud, and M. Gregory (1990), Observed effects of landscape variability on convective clouds, Bull. Am. Meteorol. Soc., 71,272-280.
    Ray, D. K., U. S. Nair, R. M. Welch, Q. Han, J. Zeng, W. Su, T. Kikuchi, and T. J. Lyons (2003), Effects of land use in Southwest Australia: 1.Observations of cumulus cloudiness and energy fluxes, J. Geophys. Res., 108(D 14), 4414, doi: 10.1029/200ZID002654.
    Saugier, B., A. Granier, J.Y. Pontailer, E. Dufrene, and D.D. Baldocchi. Transpiration of a boreal pine forest, measured by branch bags, sapflow and micrometeorological methods. Tree Physiology 17:511-520 (1997).
    Segal, M., R. W. Arritt, C. Clark, R. Rabin, and J. Brown (1995), Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain, Mon. Weather Rev., 123, 383-400.
    Sellers P. J., R. E. Dickinson, D. A. Randall, A. K. Betts, F. G. Hall, J. A. Berry, G. J. Collatz, A. S. Denning, H. A. Mooney, C. A. Nobre, N. Sato, C. B. Field, A. Henderson-Sellers. 1997.Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere.Science, 275,502-509.
    Wang KY, Kellom(?)ke S, Zha TS, Peltola H (2004), Seasonal variation in energy and water flues in a pine forest: an analysis based on eddy covariance and an integrated model. Ecological modeling 179: 259-279.
    Wilson, K.B., Baldocchi, D.D., 2000. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 100, 1-18.
    Chapin FS, Matson PA, Mooney HA. Principle of Terrestrial Ecosystem Ecology.李博,赵斌,彭荣豪等译,陆地生态系统生态学原理。2005,北京:高等教育出版社。
    李菊,刘允芬,杨晓光,李俊,2006,千烟洲人工林水汽通量特征及其与环境因子的关系。生态学报,26(8):2449-2456
    李正泉,于贵瑞,温学发,张雷明,任传友,伏玉玲。2005,中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价。中国科学D辑,34:46-56
    Amthor JS, Chen JM, Clein JS, Frolking SE, Goulden ML, Grant RF, Kimball JS, King AW, Mcguire AD, Nikolov NT, Potter CS, Wang SS, Wofsy SC(2001). Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process model: intermodel comparisons and relationships to field experiments. Journal of geography research-Atmosphere. 106, 33623-33648.
    Amthor, J., Baldocchi, D.D., 2001. Terrestrial higher plant respiration and net primary production. In: Roy, J., Saugier, B., Mooney, H.A. (Eds.), Terrestrial Global Productivity. Academic Press, New York.
    Bowling DR., Mcdowell NG, Bond BJ, Law BE and Ehleringer JR. 2002, ~(13)C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131: 113-124
    Cao M, Woodward FI(1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
    Cox P, Friedlingstein P, Rayner P(2002). Modeling climate carbon cycle feedbacks: a cross disciplinary collaboration priority. IGBP Global Change Newsletter, 49, 12-14.
    Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC and Zak D. 2002a. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric. For. Meteorol. 113: 39-51.
    Dixon PK, 1994. Carbon pools and flux of global forest ecosystems. Science 265: 171
    Ekblad A and Hogberg P 2001. Natural abundance of ~(13)C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127: 305-308
    Falge E, Baldocchi D, Olson R (2001). Gap filling strategies for defensible annual suns of net ecosystem exchange. Agriculture and forest meteorology, 2001, 107, 43-69.
    Gaudinski JB, Trumbore SE, Davidson EA and Zheng SH. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33-69.
    Giardina CP, Ryan MG, Binkley D and Fownes JH. 2003. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global change Biol.9:1438-1450.
    Giardina CP, Binkley D, Ryan MG, Fownes JH and Senock RS. 2004. Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia, 139: 545-550.
    Gifford, R.M., 1994. The global carbon cycle: a viewpoint on the missing sink. Aust. J. Plant Physiol. 21, 1-15.
    Goulden ML , Munger JW, Fan SM, Daube BC and Wofsy SC. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol. 2: 169-182.
    
    Grant RF(2001), A review of the Canadian ecosystem model-ecosys. In: Shaffer MJ, Ma L,Hansen S(Eds.), Modeling carbon and nitrogen dynamics for soil management. Lewis Publishers, pp. 173-263.
    Grant RF, Arain A, Arora V, Barr A, Black TA, Chen J, Wang S, Yuan F, Zhang Y (2005). Intercomparison of technique to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecological modeling,188, 217-252.
    Grant RF, Black TA, Gaumont-Guay D, Klujn N, Barr AG, Morgenstern K, Nesic Z.2006. Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modeling with Ecosys. Agricultural and Forest Meteorology, 140, 152-170.
    Hanson PJ, Edwards CT, Garten Jr., and Andrews JA. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48: 115-146.
    Hogberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G. Ottosson -Lofvenius M. and Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789-792.
    Houghton RA, Woodwell GM (1989) Global climate change. Scientific American, 260, 36-44.
    Janssens IA, Lankreijer H, Matteucci G et al. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269-278.
    Larionova AA, Rozanova LN, Samoilov TI(1989). Dynamics of gas exchange in the profile of a gray forest soil. Soviet soil science, 3,104-110.
    Lavigne M.B., Ryan M.G., Anderson D.E., Baldocchi D.D., Crill P., Fitzjarrald D.R., Goulden M.L., Gower S.T., Massheder J.M., McCaughey J.H., Rayment M. and Striegl R.G. 1997. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements. J. Geophys. Res. 102 (D24): 28977-28986.
    Law BE, Kelliher FM, Baldocchi DD, Anthoni PM, Irvine J, Moore D, Tuyl SV, 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric. For.Meteorol. 110, 27-43.
    Law, B.E., Baldocchi, D.D., Anthoni, P.M., 1999. Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For.Meteorol. 94,171-188.
    Liu RF, Yu GR, Wen XF, Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006).Seasonal dynamics of CO2 fluxes from sub-tropical plantation coniferous ecosystem. Science in China Series D, 49 (Sup. II), 99-109.
    Ma L, Shaffer MJ(2001). A review of carbon and nitrogen processes in nine US soil nitrogen dynamic models. In: Shaffer MJ, Ma L, Hansen S.(Eds.), Modeling carbon and nitrogen dynamics for soil management. Lewis publishers,pp.55-102.
    McGechan MB, Wu L(2001). A review of carbon and nitrogen processes in European soil nitrogen dynamic models. In: Shaffer MJ, Ma L, Hansen S.(Eds.), Modeling carbon and nitrogen dynamics for soil management. Lewis publishers,pp.103-172.
    Musselman R.C. & Fox D.G., A review of the role of temperature forests in the global CO2 balance. J. Air Waster Manage.Assoc. 1991, 41:798—807.
    Musselman RC, Fox DC (1991) A review of the role of temperate forests in the global CO_2 balance. Journal of Air Waste Management Association, 41, 798-807.
    Nakadai, T.et al., 1993:Examination of the method for measuring soil respiration in cultivated land:Effect of carbon dioxide concentration on soil respiration.Ecol.Res., 8( 1 )65- 71.
    Pumpanen J, Kolari P, Ilvesniemi H, et al. 2003. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123:159-176
    Raich JW and Nadelhoffer KJ.1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70: 1346-1354.
    Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99.
    Rustad LE, Huntington TG, Boone RD (2000) Controls on soil respiration: implications for climate change. Biogeochemistry, 48, 1-6.
    Ryan MG, Binkley D,Fownes JH, Giardina CP and Senock RS. 2004. An experimental test of the causes of forest growth decline with stand age. Ecol. Monog. 74: 393-414.
    Trumbore S 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10:399-411.
    Wang QX, Masataka W, Ouyang Z.2005. Simulation of water and carbon fluxes using BIOME-BGC model over crops in China. Agricultural and forest meteorology, 131,209-224.
    Wang S, Davidson A (2007) Impact of climate variations on surface albedo of a temperate grassland. Agricultural and forest meteorology, 142, 13-142.
    Wang S, Grant R., Verseghy DL, Black TA (2001). Modeling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—the Canadian Land Surface Scheme. Ecological Modeling. 142, 135-155.
    Wang S, Grant R., Verseghy DL, Black TA (2002a). Modeling carbon-coupled energy and water dynamics of a boreal aspen forest in a General Circulation Model land surface scheme. International journal of Climatology. 22,1249-1265.
    Wang S, Grant R., Verseghy DL, Black TA (2002b). Modeling carbon dynamics of boreal forest ecosystems using the Canadian Land Surface Scheme. Climate Change, 55, 451-477.
    Wang S, Trishchenko A, Khlopenkov K, Davidson A (2006). Comparison of IPCC AR4 climate model simulations of surface albedo with satellite products over Northern Latitudes. Jounal of geography research-Atmosphere, 111, D21108, doi: 10.1029/2005JD006728.
    Waring, R.H., Landsberg, J.J., Williams, M., 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiol. 18, 129-134.
    Yan JH, Wang YP, Zhou GY, Zhang DQ.2006. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global change biology, 12,810-821.
    Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH and Zhang YP (2006). Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Science in China Series D, 49 (Sup. Ⅱ), 47-62.
    于贵瑞等著,中国陆地生态系统碳通量的微气象观测及其时空特征研究。北京:科学出版社。(出版中)
    Anthoni, P.M., Unsworth, M.H., Law, B.E., Irvine, J., Baldocchi, D.D., Van Tuyl, S., Moore, D., 2002. Seasonal differences in C and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agric. For. Meteorol. 111, 203-222.
    Baldocchi DD. The carbon cycle under stress. Nature, 2005, 437: 483-484
    Baldocchi, D., 1997. Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ. 20,1108-1122.
    Barford, C.C., Wofsy, S.C., Goulden, M.L., Munger, J.W., Pyle, E.H., Urbanski, S.P., Hutyra, L., Saleska, S.R., Fitzjarrald, D., Moore, K., 2001. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294,1688-1691.
    Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of warming climate on water availability in snow-dominated regions. Nature 438, 303-309.
    Bernier, P.Y., Breda, N., Granier, A., Raulier, F., Mathieu, F., 2002. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For. Ecol. Manage. 163,185-196.
    Bunnell, F.L., Tait, D.E.N., Flanagan, P.W., vanCleve, K., 1977. Microbial respiration and substrate weight loss. I. A general model of the influence of abiotic variables. Soil Biol. Biochem. 9, 33-40.
    Campbell GS, Norman JM. 1998. An introduction to environmental physics. New York: Springer, 286.
    Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533
    Ciais, Ph., Reichstein, M., Viovyl, N., Granier, A., Ogee, J., Allard,V., Aubinet, M., Buchmann, N., Bernhofer, Chr., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, V., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533.
    Editors choice: Highlights of the recent literature, Warmer and drier, Science 11 November 2005: Vol. 310. no. 5750, p. 945.
    Foti S, Cosentino L, Patan C, Copani V, Sanzone E. 2003. Plant indicators of available soil water in the perennial herbaceous crop Miscanthusxgiganteus Greef et Deu. Agronomie 23:29-36.
    
    Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Morgenstern K, Jassal RS, Nesic Z 2006.Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand. Agriculture and forest meteorology, 140, 203-219.
    Gaumont-Guay, D., Black, T.A., Griffis, T.J., Barr, A.G., Jassal, R.S.,Nesic, Z., 2006. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agric.For. Meteorol. 140,220-235.
    Goldstein, A.H., Hultman, N.E., Fracheboud, J.M., Bauer, M.R., Panek, J.A., Xu, M., Qi, Y., Guenther, A.B., Baugh, W., 2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric. For. Meteorol. 101,113-129.
    Goulden, M.L., Munger, J.W., Fan, S.-M., Daube, B.C., Wofsy, S.C., 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271, 1576-1578.95,153-163.
    Grant RF, Black TA, Gaumont-Guay D, Klujn N, Barr AG, Morgenstern K and NEsic Z.2006. Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys. Agriculture and forest meteorology. 140: 152-170.
    Grant, R.F., Black, T.A., Humphreys, E.R., Morgenstern, K., 2007. Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas fir forest: testing a mathematical model with eddy covariance measurements along a forest chronosequence. Tree Physiol., 27:115-131.
    Griffis T.J.;Black T.A.;Morgenstern K.;Barr A.G.;Nesic Z.;Drewitt G.B.;Gaumont-Guay D.;McCaughey J.H.2003. Ecophysiological controls on the carbon balances of three southern boreal forests, Agric. For. Meteorol. 117,(1) ,53-71
    Griffis, T.J., Black, T.A., Gaumont-Guay, D., Drewitt, G.B., Nesic, Z., Barr, A.G., Morgenstern, K., Kljun, N., 2004. Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agric. For. Meteorol. 125, 207-223.
    Griffis, T.J., Black, T.A., Morgenstern, K., Barr, A.G., Nesic, Z.,Drewitt, G.B., Gaumont-Guay, D., McCaughey, J.H., 2003. Ecophysiological controls on the carbon balances of three southern boreal forests. Agric. For. Meteorol. 117, 53-71.
    Hogg, E.H., Saugier, B., Pontailler, J.Y., Black, T.A., Chen,W., Hurdle P.A., Wu, A., 2000. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiol. 20 (11), 725-734.
    Iacobelli, A., McCaughey, J.H., 1993. Stomatal conductance in a northern temperate deciduous forest: temporal and spatial patterns.Can. J. For. Res. 23 (2), 245-252.
    IPCC, 2001. The scientific basis, contributions of working group I to the third assessment report of the intergovernmental panel on climate change. In: Climate Change 2001, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.
    Janssens, I.A., Dore, S., Epron, D., Lankreijer, H., Buchmann, N., Longdoz, B., Brossaud, J., Montagnani, L., 2003. Climatic influences on seasonal and spatial differences in soil CO2 efflux. In:Valentini, R. (Ed.), Canopy fluxes of Energy, Water and Carbon dioxide of European Forests. Springer-Verlag, Berlin, pp. 253-256.
    Jarvis PG, and McNaughton KG. 1986. stomatal control of transpiration: scaling from leaf to region. Advances in ecological research 15: 1-49.
    Krishnan, P., Black, T.A., Grant, N.J., Barr, A.G., Hogg, E.H., Jassal, R.S., Morgenstern, K., 2006. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteorol. 139,208-223.
    Law, B.E., Goldstein, A.H., Anthoni, P.M., Panek, J.A., Unsworth,M.H., Bauer, M.R., Fracheboud, J.M., Hultman, N., 2001. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiol. 21 (5) ,299-308.
    Li SG, Lai CT, Yokoyama T, 2003. Carbon dioxide and water vapor exchange over a Miscantbus-type grassland: Effects of development of the canopy. Ecological research. 18,661-175.
    McNaughton KG, Jarvis PG, 1983. Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT(Ed.), Water Deficits and Plant Growth, vol. VII. Academic Press, pp.2-47.
    Rambal, S., Ourcival, J.M., Joffre, R., Mouillot, F., Nouvellon, Y., Reichstein, M., Rocheteau, A., 2003. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Global Change Biol. 9, 1813-1824.
    Reichstein, M., Tenhunen, J.D., Roupsard, O., Ourcival, J.M., Rambal, S., Miglietta, F., Peressotti, A., Pecchiari, M., Tirone, G., Valentini, V., 2002. Severe drought effects on ecosystem CO_2 and H_2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biol. 8, 999-1017.
    Stewart, J.B., 1988. Modelling surface conductance of pine forest. Agric. For. Meteorol.43.19-35.
    宋霞,于贵瑞,刘允芬等,2006,亚热带人工林水分利用效率的季节变化及其环境因子的影响。中国科学D辑,36(增Ⅰ),111-118
    孙晓敏,温学发和于贵瑞等,2006,中亚热带季节性干旱对千烟洲人工林生态系统碳吸收的影响。中国科学D辑,36(增Ⅰ),103-110
    Badeck, F.W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W., Schaber, J., Sitch, S., 2004. Responses of spring phenology to climate change. New Phytol. 162, 295-309.
    Becker, M., Nieminen, T.M., Ge're'mia, F., 1994. Short-term variations and long term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann. Forest Sci. 51,477-492.
    Bradley, R.S., Diaz, H.F., Eischeid, J.K., Jones, P.D., Kelly, P.M., Goodess, C.M., 1987. Precipitation fluctuations over Northern Hemisphere land areas since the mid-19th century. Science 237,171-175
    Cannell, MGR, Yhomley, JHM, MObbs DC, Friend AD. 1998. UK conifer forests may be growing faster in response to increased N deposition, atmospheric CO2 and temperature. Forestry 71, 277-296.
    Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C, Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald,T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D.,Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533.
    Coops, N.C., Waring, R.H., 2001. Assessing forest growth across southwestern Oregon under a range of current and future global change scenarios using a process model, 3-PG. Glob. Change Biol. 7, 15-29.
    Covey C, AchutaRao KM, Cubasch U et al. (2003) An overview of results from the coupled model intercomparison project. Global and Planetary Change, 37, 103-133.
    Cramer W, Bondeau A, Woodward FT et al. (2001a) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
    Cramer, W., Bondeau, A., Woodward, I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J., Friend, A.D., Kucharik, C, Lomas,M.R., Ramankutty, N., Sitch, S., Smith, B., White, A., Young-Moiling, C, 2001b. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7,357-373.
    Cramer, W., Kicklighter, D.W., Bondeau, A., Churkina, G., Nemry, B., Ruimy, A., Schloss, A.L., Intercomparison, T.P.O.T.P.N.M., 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5,1-15
    D'Arrigo, R.D., Jacoby, G.C., Fung, I.Y., 1987. Boreal forests and atmosphere-biosphere exchange of carbon dioxide. Nature 329, 321-323.
    Grant, R.F., Nalder, I.A., 2000. Climate change effects on net carbon exchange of a boreal aspen-hazelnut forest: estimates from the ecosystem model ecosys. Glob. Change Biol. 6, 183-200.
    Hager, C.,Wurth, G., Kohlmaier, G.H., 1999. Biomass of forest stands under climatic change: a German case study with the Frankfurt biosphere model (FBM). Tellus B 51,385-401.
    Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinske TJ and Gunderson CA. 2005 .Importance of changing CO2, temperature, precipitation and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global change biology. 11,1402-1423.
    Intergovernmental Panel on Climate Change [IPCC] (1992) Climate change 1992: the supplementary report to the IPCC scientific assessment. In: (eds Houghton JT, Callander BA, Varney SK), Cambridge University Press, Cambridge, UK.
    IPCC (2001) Climate Change 2001: The Scientific Basis - Contribution of Working group I to the IPCC Third Assessment Report, R. Watson, J. Houghton, D. Yihui, New York.
    Joos, F., Prentice, I.C., House, J.I., 2002. Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data. Glob. Change Biol. 8, 299-303
    Kauppi, P.E., Mileikakainen, K., Kuusela, K., Ehleringer, J., Bjo¨rkman, O., 1977. Quantum yields for CO_2 uptake in 1992. Biomass and carbon budget of European forests, 1971-1990.Science 256(5053), 70-74.
    Kicklighter, D.W., Bruno, M., Donges, S., Esser, G., Heimann, M.,Helfrich, J., Ift, F., Joos, F., Kaduk, J., Kohlmaier, G.H., Mcguire,A.D., Melillo, J.M., Meyer, R., Iii, B.M., Nadler, A., Prentice, I.C.,Sauf,W., Schloss, A.L., Sitch, S.,Wittenberg, U.,Wurth, G., 1999.A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrialbiosphere models. Tellus B 51, 343-366
    Kirschbaum, M.U.F., 1999. Modelling forest growth and carbon storage in response to increasing CO2 and temperature o Tellus B, 51, 871-888.
    Meehl GA, Boer GJ, Covey C et al. (2000) The coupled model intercomparison roject (CMIP). Bulletin of American Meteorological Society, 81,313-318.
    Minkkinen, K., Korhonen, R., Savolainen, I., Laine, J., 2002. Carbon balance and radiative forcing of Finnish peatlands 1900-2100—the impact of forestry drainage. Glob. Change Biol. 8, 785-799. Geophys. Res. 108 (D3), 4726.
    Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E.,Liski, J., Zhou, L., Alexeyev, V., Hughes, M.K., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl.Acad. Sci. U.S.A. 98 (26), 14784-14789.
    Nabuurs, G.J., Pussinen, A., Karjalainen, T., Erhard, M., Kramer, K., 2002. Stemwood volume increment changes in European forests due to climate change-a simulation study with the EFISCEN model. Glob. Change Biol. 8,304-316.
    Nabuurs, G.J., Schelhaas, M.J., Mohren, G.F.M.J., Field, C.B., 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob. Change Biol. 9,152-160.
    National Assessment Synthesis Team [NAST] (2000) Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change. US Global Change Research Program, Washington, DC.
    Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature, 361, 520-523.
    Paoletti E; Grulke NE,2005. Does living in elevated CO_2 ameliorate tree response to ozone? A review on stomatal response. Environment Pollution, 137: 483-493
    Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G.,Berry, J.A., Collatz, G.J., Denning, A.S., Mooney, H.A., Nobre,C.A., Sato, N., Field, C.B., Henderson-Sellers, A., 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275, 502-509.
    Shaver GR, Billings WD, Chapin FS III et al. (1992) Global change and the carbon balance of Arctic ecosystems. Bioscience, 42, 433-441.
    Wang S, Grant R., Verseghy DL, Black TA (2001). Modeling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—the Canadian Land Surface Scheme. Ecological Modeling. 142, 135-155.
    White, A., Cannell, M.G.R., Friend, A.D., 2000a. The high-latitude terrestrial carbon sink: a model analysis. Glob. Change Biol. 6, 227-245.
    White, A., Cannell, M.G.R., Friend, A.D., 2000b. CO2 stabilization, climate change and the terrestrial carbon sink. Glob. Change Biol. 6, 817-833.
    Wullschleger SD, Hanson PJ (2006) Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Global Change Biology 12:97-109
    许吟隆,黄晓莹,张勇等,2005中国21世纪气候变化情景的统计分析。气候变化研究进展,1(2):80-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700