Co基和Y基非晶合金成分设计及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金以其优异性能而引起了广泛的关注和极大的兴趣。寻找非晶形成能力强的合金成分系列,一直是许多科研者的努力方向。由于缺乏一个完善的预测合金GFA理论,本文利用元素替代法以某一元素或多个元素替代A_xB_yC_(100-x-y)型合金的部分元素,而不改变其它元素的原子百分含量,以Co_(45)Fe_(25)Nb_(10)B_(20)和Y_(56)Al_(24)Co_(20)两个合金体系为研究对象,采用单辊快淬法和铜模吸铸法制备了多种非晶合金,并研究了其晶化动力学和力学行为,得到以下主要结论:
     (1)研究了Zr元素对Co_(45)Fe_(25-x)Zr_xNb_(10)B_(20)(x=0,2,4,6 at.%)合金的母合金铸态组织、非晶形成能力和热稳定性的影响。其中Zr元素含量为4 at.%时,合金具有最均匀细小的铸态组织、最强的非晶形成能力和最高的热稳定性。采用Kissinger法对Co_(45)Fe_(21)Zr_4Nb_(10)B_(20)合金的表观激活能进行了计算,得到其玻璃转变激活能E_g和初始晶化激活能E_(x1)分别为720.3kJ/mol和424.5kJ/mol。
     (2)研究表明适量添加Y元素可以提高Co_(45)Fe_(21)Zr_4Nb_(10)B_(20)合金的非晶形成能力和热稳定性。其主要原因是Y原子对氧有很强的亲和力,大大减少了氧对合金非晶形成能力的不利影响。由Kissinger法计算得到(Co_(45)Fe_(21)Zr_4Nb_(10)B_(20))_(96)Y_4合金的初始晶化激活能E_(x1)和晶化峰激活能E_(p1)分别高达940.7 kJ/mol和825.0 kJ/mol,是目前所有非晶合金中的最高值。本工作研究的Co基合金体系不仅具有较高的非晶形成能力,而且具有较好的软磁性能,有望作为实用型软磁非晶材料。
     (3)基于相似元素替代法,利用单辊快淬法制备了Y_(56-x)(Ce,Nd,Pr)_xAl_(24)Co_(20)(x=0,5,10,15,20at.%)、Y_(36)Ce_(10)Nd_(10)Al_(24)Co_(20)、Y_(36)Ce_(10)Pr_(10)Al_(24)Co_(20)和Y_(36)Nd_(10)Pr_(10)Al_(24)Co_(20)非晶薄带,热分析表明这些合金均具有高的GFA和热稳定性,并且随着添加元素含量的增加,合金的GFA和热稳定性得到提高。该Y基非晶合金体系的过冷液相区ΔT_x与反映合金混合热变化的3个键参数之间存在如下关系:ΔT_x=-273.5+639.6Δx~2+1074.5δ~2+363.1Δn~(2/3),相关系数为95.6%。
     (4)研究了元素Zr和Sc对Y_(56)Al_(24)Co_(20)合金的非晶形成能力和热稳定性的影响,发现元素Sc较Zr更能提高Y_(56)Al_(24)Co_(20)合金的GFA,其主要原因是Sc原子与合金其它元素相比,对氧具有更强的亲和力,大大减少了氧对合金非晶形成能力的不利影响。同时提出了一个修正理论计算参数ε~*(ε~*=-ΔAS~(mix)/ΔH~(form)),可以用来预测合金的GFA。
     (5)用铜模吸铸法制备了直径分别为3mm和5mm的Y_(56)Al_(24)Co_(20)和Y_(41)Sc_(15)Al_(24)Co_(20)大块非晶合金。基于不同冷却速率条件下合金液体熔点偏移的计算方法得到Y_(41)Sc_(15)Al_(24)Co_(20)大块非晶合金的临界实际冷却速率为36K/s。在玻璃转变温度T_g和晶化温度T_x之间的等温晶化过程中,该大块非晶合金的主要晶化过程Avrami指数n(x)>3,为三维形核长大过程。
     (6)由VFT方程拟合得到Y_(41)Sc_(15)Al_(24)Co_(20)大块非晶合金的脆性参数m=24,小于典型非晶形成能力很强Zr基和Pd基合金的m值,表明该合金具有很好的非晶形成能力。该大块非晶合金是目前最脆的金属玻璃,其泊松比为0.254,是研究脆性问题的理想材料。
     (7)以Y基非晶合金为研究对象,研究表明,随着冷却速率的降低,非晶合金的硬度增大。同时在压痕周围伴有多重剪切带(pile-up)现象,这是由压痕形变区域内自由体积显著增加造成的。基于自由体积模型,高的冷却速率引起更高的缺陷浓度,导致原子的跃迁和扩散的可能性越大,从而增加了原子的通量和降低流变应力,最终导致非晶合金软化。
Bulk metallic glasses(BMGs)have attracted increasing interests due to their outstanding properties.The major goal is to design new alloy systems with superior glass forming ability(GFA).Due to lack of complete theory predicting GFA for new metallic glasses,Co-based and Y-based amorphous alloys were fabricated by the element substitution method in this wprk.The conclusions are drawn as below:
     (1)The effects of Zr on the microstructure,GFA and thermal stability of Co_(45)Fe_(25-x)Zr_xNb_(10)B_(20)(x=0,2,4 and 6at.%)alloys have been studied.Co_(45)Fe_(21)Zr_4Nb_(10)B_(20)alloy shows the most homogeneous microstructure,the best GFA and the highest thermal stability.The apparent activation energies of Co_(45)Fe_(21)Zr_4Nb_(10)B_(20)amorphous alloy from Kissinger equation are 720.3kJ/mol for T_g and 424.5kJ/mol for T_(x1), respectively.
     (2)The addition of Y can improve greatly GFA and thermal stability of Co_(45)Fe_(21)Zr_4Nb_(10)B_(20)alloy.The main reason is that the reaction between yttrium and oxygen is thermodynamically favored compared to the reaction between oxygen and the other elements in the system.Therefore, the stability of the remaining liquid could be enhanced by the alleviation of the harmful effect of oxygen,and the GFA of Co-based alloys can be improved.The apparent activation energies of(Co_(45)Fe_(21)Zr_4Nb_(10)B_(20))_(96)Y_4 amorphous alloy are 940.7kJ/mol for T_(x1)and 825.0kJ/mol for T_(p1) respectively,which are the highest for all known amorphous alloys.The studied Co-based amorphous alloys not only have high GFA,but also have preferable soft magnetic properties,which are potential functional materials.
     (3)Based on equiatomic substitution,the additions of Ce,Pr and Nd element(5~20at.%)improve GFA of Y_(56)Al_(24)Co_(20)alloy,GFA of Y_(56-x)M_xAl_(24)Co_(20)(M=Ce,Pr,Nd;x=5,10,15,20)alloys increase with the increasing of M content.It seems that for the supercooled liquid region (ΔT_x)of Y-based amorphous alloy has a close correlation to bond parameters.It increases with the electronegativity difference(Δx),atomic size parameter(δ)and electron concentration(Δn)of Y-based alloys.An equation was deduced for the first time by a linear regression analysis,i.e.,ΔT_x=-273.5+639.6Δx~2+1074.5δ~2+363.1Δn~(2,3).The regression coefficient (R)for this fit is computed to be 0.956.
     (4)The effects of Zr and Sc elements on GFA of Y_(56)Al_(24)Co_(20)alloy have been studied.The results show that Sc element improves better the GFA than Zr element.The reason is that the heat of formation of the Sc_2O_3 is about -1908.8 kJ/mol,which is lower than that of the oxides of other constituent elements(e.g.Y_2O_3,-1903.6 kJ/mol;ZrO_2, -1100.5kJ/mol;Al_2O_3,-1653.5kJ/mol;CoO,-237.7 kJ/mol).Therefore, the chemical affinity between scandium and oxygen is higher than that between oxygen and other component elements,and the formation of scandium oxide is thermodynamically favored compared to other oxidation reactions.At the same time,a modified calculable parameterε~*,defined as a negative ratio of mixing entropy to formation enthalpy, is proposed,which can predict the GFA of amorphous alloys prepared by the element substitution.
     (5)Y_(56)Al_(24)Co_(20)and Y_(41)Sc_(15)Al_(24)Co_(20)bulk cylindrical specimens with diameters of 3 and 5 mm were prepared by the method of copper mold suction casting,respectively.The actual cooling rate for Y_(41)Sc_(15)Al_(24)Co_(20) BMG is 36K/s according to the offset temperature of fusion and the onset temperature of solidification.On the other hand,the isothermal kinetics was modeled by the Johnson-Mehl-Avrami(JMA)equation,the Avrami exponents were calculated to be larger than 3.This implies that the main crystallization of Y_(41)Sc_(15)Al_(24)Co_(20)BMG is governed by diffusion-controlled three-dimensional growth.
     (6)The fragility parameter m for Y_(41)Sc_(15)Al_(24)Co_(20)BMG from the Vogel-Fulcher-Tammann(VFT)equation is 24,which is smaller than those values for typical Zr_(46.75)Ti_(8.25)Cu_(7.4)Ni_(10)Be_(27.5)and Pd_(40)Ni_(10)Cu_(30)P_(20) BMGs.This confirms that the Y_(41)Sc_(15)Al_(24)Co_(20)alloy can be classified into one of the best metallic glass formers.The Poisson's ratio of Y_(41)Sc_(15)Al_(24)Co_(20)BMG is 0.254,which is the smallest for all known BMGs,which implies it is ideal material for studying the fragility of the BMGs.
     (7)For Y-based amorphous alloys,the hardness increases with the decrease of the cooling rate.There are multiple shear bands or pile-ups around indentations.The reason is that the increase of free volume in the deformation area of indentation.Based on the free volume mode,the higher cooling rate is,the defect concentration is expected to be higher. Higher defect concentrations enhance the probability that an atom will jump and diffuse,which in turn is expected to increase the flux of atoms and decrease the flow stress,thereby induces the softening of amorphous alloys.
引文
[1]Moorjani K,Coey J M D.Magnetic glasses.Amsterdam:Elservier Science Publishers,1984.赵见高,詹文山,王荫君,李国栋译.磁性玻璃[M].北京:科学出版社、1984:9-12.
    [2]王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社,1989.
    [3]Brenner A,Couch D E,Williams E K.Electrodeposition of alloys of phosphous with nickel or Cobalt[J].J.Res.Natn.Bur.Stand.,1950,44(1):109-119.
    [4]Klement W,Willens R H and Duwez P.Non-crystalline Structure in Solidified Gold-silicon Alloys[J].Nature,1960,187:869-870.
    [5]Schwarz R B and Johnson W L.Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals[J].Physical Review Letters,1983,51(5):415-418.
    [6]Yermakov A Y,Yurchikov Y Y and Barinov V A.Magnetic properties of amorphous powders of Y-Co alloys produced by gringding[J].Physics of Metals and Metallography,1981,52(6):50-58.
    [7]Koch C C,Cavin O B,Mckamey C G,et al.Preparation of "amorphous" Ni_(60)Nb_(40)by mechanical alloying[J].Applied Physics Letters,1983,43(11):1017-1019.
    [8]Schwarz R B,Petrich R R and Saw C K.The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying[J].Journal of Non-Crystalline Solids,1985,76(2-3):281-302.
    [9]Atzmon M,Veerhoven J R,Gibson E R,et al.Formation and growth of amorphous phases by solid-state reaction in elemental composites prepared by cold working[J].Applied Physics Letters,1984,45(10):1052-1053.
    [10]Schultz L.Proc.5th Int.Conf.On Rapidly Quenched Metals,(edited by Steeb S and Warlimont H),North-Holland,Amsterdam,1985,p.1585.
    [11]Inoue A,Ohtera K,Kita K,et al.New amorphous Mg-Ce-Ni Alloys with high strength and good ductility[J].Japanese Journal of Applied Physics,1988,27(12):2248-2251.
    [12]Ma H,Xu J and Ma E.Mg-based bulk metallic glass composites with plasticity and high strength[J].Applied Physics Letters,2003,83(14):2793-2379.
    [13]Xu Y K,Ma H,Xu J,et al.Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J].Acta Materialia,2005,53(6):1857-1866.
    [14]Inoue A,Zhang T and Masumoto T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J].Materials Transactions,JIM,1989,30(12):965-972.
    [15]Inoue A,Zhang T and Masumoto T.Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J].Materials Transactions,JIM,1990,31(3):177-183.
    [16]Peter A and Johnson W L.A highly process able metallic glass:Zr_(41.2)Ti_(13.8)Cu_(12.5)-Ni_(10.0)Be_(22.5)[J].Applied Physics Letters,1993,63(17):2342-2344.
    [17]Inoue A and Gook J S.Fe-based ferromagnetic glassy alloys with wide supercooled liquid region[J].Materials Transactions,JIM,1995,36(9):1180-1183.
    [18]Inoue A,Zhang T,Itoi T,et al.New Fe-Co-Ni-Zr-B Amorphous alloys with wide supercooled liquid regions and good soft magnetic properties[J].Materials Transactions,JIM,1997,38(4):359-362.
    [19]Novak L,Lovas A and Kiss L F.Change in soft magnetic properties of Fe-based metallic glasses during hydrogen absorption and desorption[J].Joumal of Applied Physics,2005,98(4):43904/1-43904/5.
    [20]Inoue A,Nishiyama N and Masumoto T.Preparation of bulk glassy Pd_(40)Ni_(10)Cu_(30)P_(20)alloy of 40 mm in diameter by water quenching[J].Materials Transactions,JIM,1996,37(2):181-184.
    [21]Inoue A and Nishiyama N.Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys[J].Materials Science & Engineering A,1997,226-228:401-405.
    [22]Schwarz R B and He Y.Formation and properties of bulk amorphous Pd-Ni-P alloys[J].Materials Science Forum,1997,235-238(1):231-240.
    [23]Yao K F,Ruan F,Yang Y Q,et al.Superductile bulk metallic glass[J].Applied Physics Letters,2006,88(12):122106/1-122106/3.
    [24]Zhang T and Inoue A.Thermal and Mechanical Properties of Ti-Ni-Cu-Sn Amorphous alloys with a Wide Supercooled Liquid Region before Crystallization[J].Materials Transactions,JIM,1998,39(10):1001-1006.
    [25]Zhang T and Inoue A.Preparation of Ti-Cu-Ni-Si-B Amorphous alloys with a large supercooled liquid region[J].Materials Transactions,JIM,1999,40(4):301-306.
    [26]Akatsuka R,Zhang T,Koshiba M,et al.Preparation of new Ni-based amorphous alloys with a large supercooled liquid region[J].Materials Transactions,JIM,1999,40(3):258-261.
    [27]Schroers J and Johnson W L.Ductile bulk metallic glass[J].Physical Review Letters,2004,93(25):255506/1-255506/4.
    [28]Schroers J and Johnson W L.Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system[J].Applied Physics Letters,2004,84(18):3666-3668.
    [29]Lee J C,Kim Y C,Ahn J P,et al.Strain hardening of an amorphous matrix composite due to deformation-induced nanocrystallization during quasistatic compression[J].Applied Physics Letters,2004,84(15):2781-2783.
    [30]Xu D H,Lohwongwatana B,Duan G,et al.Bulk metallic glass formation in binary Cu-rich alloy series-Cu_(100-x)Zr_x(x=34,36,38.2,40 at.%)and mechanical properties of bulk Cu_(64)Zr_(36)glass[J].Acta Materialia,2004,52(9):2621-2614.
    [31]Turnbull D.Under what conditions can a glass be formed?[J].Contemporary Physics,1969,10(5):473-488.
    [32]Busch R,Kim Y J,Johnson W L.Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5)alloy[J].Journal of Applied Physics,1995,77(8):4039-4043.
    [33]Busch R,Johnson W L,Liu W.Thermodynamics and kinetics of the Mg_(65)Cu_(25)Y_(10)bulk metallic glass forming liquid[J].Journal of Applied Physics,1998,83(8):4134-4141.
    [34]Glade S C,Busch R,Lee D S,et al.Thermodynamics of Cu_(47)Ti_(34)Zr_(11)Ni_8,Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_5 and Zr_(57)Cu_(15.4)Ni_(12.6)Al_(10)Nb_5 bulk metallic glass forming alloys [J].Journal of Applied Physics,2000,87(10):7242-7248.
    [35]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社,1984.
    [36]Inoue A,Hashimoto K.Amorphous and Nanocrystalline Materials:Preparation,Properties,and Applications[M].Berlin:Springer,2001.
    [37]Matsubara E,Tamura T,Waseda Y,et al.A Structural Study of Amorphous Mg_(50)Ni_(30)La_(20)Alloys by the Anomalous X-ray Scattering(AXS)Method[J].Materials Transactions,JIM,1991,31(3):228-231.
    [38]Masumoto T,Kimura H,Inoue A,et al.Structural Stability of Amorphous Metals[J].Materials Science and Engineering,1976,23(2-3):141-144.
    [39]Holland-Moritz D.Short-range Order and Solid-liquid Interfaces in Under-cooled Metallic Metals[J].Materials Science and Engineering A,2001,304-306(1-2):108-113.
    [40]边赞.大体积非晶材料的研究[D].北京:北京科技大学,2000.
    [41]Greer A L.Confusion by design[J].Nature,1993,366:303-304.
    [42] Lee M H, Bae D H, Kim W T, et al. Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders [J]. Journal of Non-Crystalline Solids, 2003, 315 (1-2): 89-96.
    
    [43] Uenishi K, Kobayashi K F. Fabrication of bulk amorphous alloy by rolling of mechanically alloyed Al-Cr powders [J]. Material Science and Engineering A, 1994, 181-182(2):1165-1168.
    
    [44] Cline C F and Hopper R W. Explosive fabrication of rapidly quenched materials [J]. Scripta Metallurgica, 1977, 11(2): 1137-1138.
    
    [45] Kawamura Y, Takagi M, Denoo M, et al. Preparation of bulk amorphous alloys by high temperature sintering under a high pressure [J]. Material Science and Engineering, 1988, 98: 415-418.
    
    [46] Sherif El-Eskandarany M, Inoue A. Hot pressing and characterizations of mechanically alloyed Zr_(52)Al_6Ni_8Cu_(14)W_(20) glassy powders [J]. Journal of Materials Research, 2006,21(4): 976-987.
    
    [47] Lee J K, Kim H J, Kim T S, et al. Deformation behavior of Ni-based bulk metallic glass synthesized by spark plasma sintering [J]. Journal of Materials Processing Technology 2007,187-188:801-804.
    
    [48] Zhang L C, Xu J, Ma E. Consolidation and properties of ball-milled Ti_(50)Cu_(18)Ni_(22)Al_4Sn_6 glassy alloy by equal channel angular extrusion [J]. Materials Science and Engineering A, 2006,434 (1-2): 280-288.
    
    [49] Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing [J]. Applied Physics Letters, 1984,45(6): 615-616.
    
    [50] Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd_(40)Cu_(30)Ni_(10)P_(20) alloy cylinder of 72 mm in diameter [J]. Materials Transactions, JIM, 1997, 38(2): 179-183.
    
    [51] Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5) alloy [J]. Materials Transactions, JIM, 1993, 34(12): 1234-1237.
    
    [52] Inoue A and Zhang T. Fabrication of bulk glassy Zr_(55)Al_(10)Ni_5Cu_(30) alloy of 30 mm in diameter by a suction casting method [J].Materials Transactions, JIM, 1996, 37(2): 185-187.
    
    [53] Xu D H, Duan G, Johnson W L. Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper [J]. Physical review letters, 2004,92(24): 245504/1-245504/4.
    [54]Jia P,Guo H,Li Y,et al.A new Cu-Hf-A1 ternary bulk metallic glass with high glass forming ability and ductility[J].Scripta Materialia,2006,54(12):2165-2168
    [55]Guo F Q,Poon S J,Shiflet G J.Metallic glass ingots based on yttrium[J].Applied Physics Letters,2003,83(13):2575-2577.
    [56]Tan H,Zhang Y,Ma D,et al.Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni)pseudo ternary system[J].Acta Materialia,2003,51(15):4551-4561.
    [57]Li R,Pang S J,Men H,et al.Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability[J].Scripta Materialia,2006,54(6):1123-1126.
    [58]Ma H,Shi L L,Xu J,et al.Discovering inch-diameter metallic glasses in three-dimensional composition space[J].Applied Physics Letters,2005,87(18):181915/1-181915/3.
    [59]Park E S,Kim D H.Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere[J].Journal of Materials Research,2005,20(6):1465-1469.
    [60]Ponnambalam V,Poon S J,Shiflet G J.Fe-based bulk metallic glasses with diameter thickness larger than one centimeter[J].Journal of Materials Research,2004,19(5):1320-1323.
    [61]Lu Z P,Liu C T,Thompson J R,et al.Structural amorphous steels[J].Physical Review Letters,2004,92(24):245503/1-245503/4.
    [62]Shen J,Chen Q J,Sun J F,et al.Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy[J].Applied Physics Letters,2005,86(15):151709/1-151709/3.
    [63]Men H,Pang S J,Zhang T.Effect of Er doping on glass-forming ability of Co_(50)Cr_(15)Mo_(14)C_(15)B_6 alloy[J].Journal of Materials Research,2006,21(4):958-961.
    [64]Guo F Q,Wang H J,Poon S J,et al.Ductile titanium-based glassy alloy ingots[J].Applied Physics Letters,2005,86(9):91907/1-91907//3.
    [65]Park E S,Kim D H.Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold[J].Journal of Materials Research,2004,19(3):685-688.
    [66]许应儿,孙帼显.无容器过程中Pd-Ni-P系合金的过冷及非晶合金形成[J].物理学报,1990,39(5):836-842.
    [67]许应儿,王文魁.Pd-Ni-P大块非晶合金的形成及其转变动力学[J].物理学报,1990,39(4):555-560.
    [68]Dunst A,Herlach D M,Gillessen F.Formation of glassy spheres of Fe-Ni-P-B by containerless processing[J].Materials Science & Engineering A,1991,133(1):785-789
    [69]邢力谦,杨根仓.净化对非晶形成能力和非晶热稳定性的影响[J].金属学报,199l,27(4):255-259.
    [70]Inoue A,Yokoyama Y,Shinohara T,et al.Preparation of bulky Zr-based amorphous alloys by a zone melting method[J].Materials Transactions,JIM,1994,35(12):923-926.
    [71]Konovalov I I,Komissarov V A,Maslov A A,et al.Bulk amorphous plate production by a casting process[J].Journal of Non-Crystalline Solids,1996,205-207(2):536-539.
    [72]Inoue A.Bulk amorphous alloys with soft and hard magnetic properties[J].Materials Science & Engineering A,1997,226-228:357-363.
    [73]Li Y,Ng S C,Ong C K,et al.Glass forming ability of bulk glass forming alloys [J].Scripta Materialia,1997,36(7):783-787.
    [74]Cohen M H and Turnbull D.Molecular transport in liquids and glasses[J].Journal of Chemical Physics,1959,31:1164-1169.
    [75]Lu Z P,Li Y and Ng S C.Reduced glass transition temperature and glass forming ability of bulk glass forming alloys[J].Journal of Non-Crystalline Solids,2000,270(1-3):103-114.
    [76]Wunderlich R K and Fecht H J.Thermophysical properties of bulk metallic glass forming alloys in the stable and undercooled liquid-A microgravity investigation[J].Materials Transactions,JIM,2001,42(4):565-578.
    [77]Inoue A.High strength bulk amorphous alloys with low critical cooling rates (overview)[J].Materials Transactions,JIM,1995,36(7):866-875.
    [78]Lu Z P,Liu C T.A new glass-forming ability criterion for bulk metallic glasses [J].Acta Materialia.2002,50(13):3501-3512.
    [79]Inoue A.Bulk Amorphous Alloys:Preparation and Fundamental Characteristics[M].Trans Tech Publications LTD,2000.
    [80]Lu Z P and Liu C T.Glass formation criterion for various glass-forming system [J].Physical Review Letters.2003,91(11):115505-115509.
    [81]蔡安辉,潘冶,孙国雄.大块非晶合金非晶形成能力参数表征探讨[J].特种铸造及有色合金,2004(2):19-29.
    [82]蔡安辉,潘冶,孙国雄,等.基于动力学的大块非晶合金形成能力研究[J].中国工程科学,2004,6(1):68-73.
    [83]Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].Acta Materialia,2000,48(1):279-306.
    [84]Donald I W,Devies H A.Prediction of glass-forming ability for metallic system [J].Journal of Non-Crystalline Solids,1978,30(1):77-85.
    [85]Park E D,Kim D H,Kim W T.Parameters for glass forming ability of ternary alloy systems[J].Applied Physics Letters,2005,86(6):061907/1-061907/3.
    [86]Park E D,Kim D H.Effect of atomic configuration and stability on the glass-forming ability of Ca-based metallic glass[J].Applied Physics Letters,2005,86(20):201912/1-201912/3.
    [87]Debenedettl P G,Stillinger F H.Supercooled liquids and the glass transition[J].Nature,2001,410:259-267.
    [88]Xia M X,Zhang S G,Ma C L,et al.Evaluation of glass-forming ability for metallic glasses based on order-disorder competition[J].Applied Physics Letters,2006,89(9):091917/1-091917/3.
    [89]Donald I W,Davies H A.Prediction of glass-forming ability for metallic systems[J].Journal of Non-Crystalline Solids,1978,30(1):77-85.
    [90]Guo F Q,Poon S J and Shiflet G J.Glass formability in Al-based multinary alloys[J].Materials Science Forum,2000,331(1):31-42.
    [91]Gangopadhyay A K and Kelton K F.Effect of rare-earth atomic radius on the devitrification of A188REsNi4 amorphous alloys[J].Philosophical Magazine A,2000,80(5):1193-1206.
    [92]Guo F Q,Enouf S,Shiflet G,et al.Role of atomic size on glass formability and thermal stability of Al-based amorphous alloys[J].Materials Transactions,JIM,2000,41(11):1406-1409.
    [93]Murty B S,Hono K.Formation of nanocrystalline particles in glassy matrix in melt-spun Mg-Cu-Y based alloys[J].Materials Transactions,JIM,2000,41(11):1538-1544.
    [94]Wang Y M,Qiang J B,Wong C H,et al.Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion[J].Journal of Materials Research,2003,18(3):642-648.
    [95]Wang Y M,Xu W P,Qiang J B,et al.The e/a criterion of Zr-based bulk metallic glasses[J].Materials Science and Engineering A,2004,375-377(1-2):411-416.
    [96]Chen W,Wang Y,Qiang J,et al.Bulk metallic glasses in the Zr-Al-Ni-Cu system [J].Acta Materialia,2003,51(7):1899-1907.
    [97]张新房,王英敏,彭敏,等.Zr-Al-Co块体非晶的成分优化[J].金属学报,2004,40(10):1099-1103.
    [98]王清,王英敏,羌建兵,等.Cu基Cu-Zr-Al块体非晶合金的成分设计[J].金属学报,2004,40(11):1183-1188.
    [99]Jiang Q,Chi B Q,Li J C.A valence electron concentration for glass-formation ability of metallic liquids[J].Applied Physics Letters,2003,82(18):2984-2986.
    [100]迟宝全.合会非晶形成能力的研究[D].长春:吉林大学,2006.
    [101]Inoue A,Zhang T,Masumoto T.Amorphous Zr-Al-TM(TM=Co,Ni,Cu)alloys with significant supercooled liquid region of over 100 K[J].Materials Transactions,JIM,1991,32(11):1005-1010.
    [102]Inoue A,Kawase D,Tsai A P,et al.Stability and transformation to crystalline phases of amorphous Zr-Al-Cu alloys with significant supercooled liquid region[J].Materials Science and Engineering A,1994,178(1-2):255-263.
    [103]Inoue A.In:Bulk Amorphous Alloys.Switzerland:Trans Tech Publication Ltd;1998.p.3-8.
    [104]Inoue A,Nakamura T,Sugita T,et al.Bulky La-AI-TM(TM= transition metal)amorphous alloys with high tensile strength produced by a high-pressure die casting method[J].Materials Transactions,JIM,1993,34(4):351-358.
    [105]Ohnuma M,Linderoth S,Pryds N,Eldrup M,Pedersen AS,1999.In:Johnson W L,Inoue A,Liu C T,editors.Bulk metallic glasses.Warrendale,PA:Material Research Society,pp.119-124.
    [106]Qiu K Q,Zhang H F,Wang A M,et al.Glass-forming ability and thermal stability of Nd_(70-x)Fe_(20)Al_(10)Y_x alloys[J].Acta Materialia,2002,50(14):3567-3578.
    [107]Xi X K,Wang R J,Zhao D Q,et al.Glass-forming Mg-Cu-Re(RE=Gd,Pr,Nd,Tb,Y,and Dy)alloys with strong oxygen resistance in manufacturability[J].Journal of Non-Crystalline Solids,2004,344(3):105-109.
    [108]Cantor B,Kim K B,Warren P J.Novel multicomponent amorphous alloys[J].Materials Science Forum,2002,386-388:27-32.
    [109]Kim K B,Warren P J,Cantor B.Glass-forming ability of novel multicomponent (Ti_(33)Zr_(33)Hf_(33))-(Ni_(50)Cu_(50))-Al alloys developed by equiatomic substitution[J].Materials Science and Engineering A,2004,375-377(1-2):317-321.
    [110]Kim K B,Warren P J,Cantor B.Metallic glass formation in multicomponent (Ti,Zr,Hf,Nb)-(Ni,Cu,Ag)-Al alloys[J].Journal of Non-Crystalline Solids,2003,317(1-2):17-22.
    [111]陈国钧,彭伟锋,陈殿金,等.块体非晶合金(金属玻璃)的形成、性能和应用[J].磁性材料及器件,2005,36(5):10-16.
    [112]Inoue A,Zhang T and Takeuchi A.Ferrous and nonferrous bulk amorphous alloys[J].Materials Science Forum,1998,269-272(2):855-864.
    [113]高玉来,沈军,孙剑飞,等.大块非晶合金的性能、制备及应用[J].材料科学与工程,2003,11(2):215-219.
    [114]Inoue A,Zhang W,Zhang T,et al.High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems[J].Acta Materialia,2001,49(14):2645-2652.
    [115]张海峰,丁炳哲,胡壮麒.块状非晶合金研究与进展[J].金属学报,2001,37(11):1131-1140.
    [116]潘明祥,汪卫华.不透明玻璃显现出的曙光-块体非晶合金的发现与应用[J].物理,2002,31(7):453-460.
    [117]Inoue A,Zhang T.Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems[J].Journal of Non-Crystalline Solids,1999,250-252(2):552-559.
    [118]何国,陈国良.大体积非晶态合金材料[J].材料导报,1999,13(3):15-17.
    [119]姜淑文,齐民.大块非晶合金的变形和断裂[J].金属材料研究,2003,29(1):44-48.
    [120]龙毅,叶荣昌,万发荣,等.磁性非晶合金研究进展[J].金属功能材料,2002,9(4):1-5.
    [121]Zhang T,Inoue A.Bulk glassy alloys in(Fe,Co,Ni)-Si-B system[J].Materials Transactions,2001,42(6):1015-1018.
    [122]Makino A,Inoue A,Mizushima T.Soft magnetic properties of Fe-based bulk amorphous alloys[J].Materials Transactions,JIM,2000,41(11):1471-1477.
    [123]肖华星,陈光.大块非晶研究的现状和动念[J].材料导报,2002,16(7):18-21.
    [124]熊玉华,李培杰,曾大本.大块非晶合金的研究进展[J].材料工程,2002,10:43-47.
    [125]Pang S J,Zhang T,Asami K,et al.Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance[J].Acta Materialia,2002,50(3):489-497.
    [126]陆伟,严彪,殷俊林,等.大块非晶合金的制备、性能与应用研究进展[J].上海钢研,2004,3:47-54.
    [127]http://www.liquidmetal.com/applications/
    [128]Wang W H,Dong C,Shek C H.Bulk metallic glasses[J].Materials Science &Engineering R,2004,44(2-3):45-89.
    [129]Inoue A,Takeuchi A.Recent progress in bulk glassy alloys[J].Materials Transactions,JIM,2002,43(8):1892-1906.
    [130]Itoi T,Inoue A.Soft magnetic properties of Co-based amorphous alloys with wide supercooled liquid region[J].Materials Transactions,JIM,1998,39(7):762-768.
    [131]Egami T.Universal criterion for metallic glass formation[J].Materials Science & Engineering A,1997,226-228:261-267.
    [132]Itoi T,Takamizawa T,Kawamura Y,et al.Fabrication of Co_(40)Fe_(22)Nb_8B_(30)bulk metallic glasses by consolidation of gas-atomized powders and their soft-magnetic properties[J].Scripta Materialia,2001,45(10):1131-1137.
    [133]Inoue A,Shen B L,Koshiba H,et al.Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys[J].Acta Materialia,2004,52(6):1631-1637.
    [134]Lu Z P,Liu C T,Porter W D.Role of yttrium in glass formation of Fe-based bulk metallic glasses[J].Applied Physics Letters,2003,83(11):2581-2583.
    [135]Zhang Y,Pan M X,Zhao D Q.Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition[J].Materials Transactions,JIM,2000,41(11):1410-1414.
    [136]Ma H,Ma E,Xu J.A new Mg_(65)Cu_(7.5)Ni_(7.5)Zn_5Ag_5Y_(10)bulk metallic glass with strong glass-forming ability[J].Journal of Material Research,2003,18(10):2288-2291.
    [137]Yan M,Shen J,Zhang T.Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping[J].Journal of Non-Crystalline Solids,2006,352(28-29):3109-3112.
    [138]鲁小川,徐晖,阳松平,等.Nd_(60)Fe_(20)Al_(10)Co_(10)非晶粉木晶化过程及动力学研究[J].中国稀土学报,2003,21(5):537-540.
    [139]Liu L,Wu Z F,Zhang J.Crystallization kinetics of Zr_(55)Cu_(30)Al_(10)Ni_5 bulk amorphous alloy[J].Journal of Alloys and Compounds,2002,339(1-2):90-95.
    [140]Wang H R,Gao Y L,Hui X D,et al.Effect of cooling rate on crystallization of metallic Zr-Cu-Ni glass[J].Journal of Alloys and Compounds,2003,350(122):194-198.
    [141]http://www.webelements.com/
    [142]de Boer F R,Boom R,Mattems W C M,et al.Cohesion in Metals[M].North-Holland:Amsterdam,1989.
    [143]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.
    [144]Zhang L,Wu Y S,Bian X F,et al.Effect of quenching temperature on the chemical short-range order in Al-Fe-Ce amorphous alloys[J].Journal of Materials Science Letters,1999,18(24):1977-1979.
    [145]Senkov O N,Scott J M.Formation and thermal stability of Ca-Mg-Zn and Ca-Mg-Zn-Cu bulk metallic glasses[J].Materials Letters,2004,58(7-8):1375-1378.
    [146]Kissinger H E.Variation of peak temperature with heating rate in different thermal analysis[J].Joumal of Research of the National Bureau of Standards,1956,57(4):217-221.
    [147]Ozawa T.Kinetic analysis of derivative curves in thermal analysis[J].Joumal of Thermal Analysis and Calorimetry,1970,2(3):301-324.
    [148]Ozawa T.Kinetics of non-isothermal crystallization[J].Polymer,1971,12(3):150-158.
    [149]Qin F X,Zhang H F,Ding B Z,Hu Z Q.Nanocrystallization kinetics of Ni-based bulk amorphous alloy[J].Intermetallics,2004,12(10-11):1197-1203.
    [150]郗学奎.镁基大块非晶的合成、形成能力、塑性流变及断裂行为研究[D].北京:中国科学院物理所,2005.
    [151]Yuan Z Z,Chen X D,Wang B X,et al.Crystallization kinetics of melt-spun Co_(43)Fe_(20)Ta_(5.5)B_(31.5)amorphous alloy[J].Journal of Alloys and Compounds,2005,399(1-2):166-172.
    [152]秦凤香,张海峰,陈鹏,等.镍基块状非晶合金的晶化动力学行为[J].金属学报,2004,40(12):1285-1289.
    [153]Lasocka M.The effect of scanning rate on glass transition temperature of splat-cooled Te_(85)Ge_(15)[J].Material Science and Engineering,1976,23(2-3):173-177.
    [154]Flynn J H.The isoconversional method for determination of energy of activation at constant heating rate corrections for the Doyle approximation[J].Journal of Thermal Analysis,1983,27(1):95-103.
    [155]Buschow K H J.Short-range order and thermal stability in amorphous alloys [J].Journal of Physics F:Metal Physics,1984,14(3):593-607.
    [156]Sakata M,Cowlam N,Davies H A.Relations Between Chemical Short Range Order and Stability in CuTi Glasses[A].Masumoto M,Suzuki K.Rapidly Quenched Metals[C].Sendai:Japan Institute of Metals,1982:327-330.
    [157]Chen Q J,Shen J,Zhang D L,et al.A new criterion for evaluating the glass-forming ability of bulk metallic glasses[J].Materials Science and Engineering A,2006,433(1-2):155-160.
    [158]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985.
    [159]刘群先,王新林,陈占恒.FeCuNbSiB-La非晶软磁合金的静态磁性能[J].稀土,1997,18(5):41-43.
    [160]谭毅,李敬锋.新材料概论[M].北京:冶金工业出版社,2004.
    [161]Itoi T,Inoue A.Thermal stability and soft magnetic properties of Co-Fe-M-B (M=Nb,Zr)amorphous alloys with large supercooled liquid region[J].Materials Transactions,JIM,2000,41(9):1256-1262.
    [162]Inoue A,Kita K,Zhang T,et al.An amorphous La_(55)Al_(25)Ni_(20)alloy prepared by water quenching[J].Materials Transactions,JIM,1989,30(7):722-728.
    [163]Inoue A,Zhang T,Zhang W,et al.Bulk Nd-Fe-Al amorphous alloys with hard magnetic properties[J].Materials Transactions,JIM,1996,37(2):99-108.
    [164]Inoue A,Zhang T,Takeuchi A.Preparation of bulk Pr-Fe-Al amorphous alloys and characterization of their hard magnetic properties[J].Materials Transactions,JIM,1996,37(12):1731-1740.
    [165]Fan G J,Loser W,Roth S,et al.Glass-forming ability of RE-Al-TM alloys (RE=Sm,Y;TM=Fe,Co,Cu)[J].Acta Materialia,2000,48(15):3823-3831.
    [166]汪卫华,王文魁.新型多组元大块非晶合金材料的发现与研究进展[J].物理,1997,27(7):398-403.
    [167]肖纪美.材料能量学[M].北京:科学出版社,2000.
    [168]Fang S S,Zhou Z Q,Zhang J L,et al.Two mathematical models for the hydrogen storage properties of AB_2 type alloys[J].Journal of Alloys and Compounds,1999,293-295:10-13.
    [169]Fang S S,Lin G W,Zhang J L,et al.The maximum solid solubility of the transition metals in palladium[J].International Journal of Hydrogen Energy,2002,27(3):329-332.
    [170]车云霞,申泮文.化学元素周期系[M].天津:南开大学出版社,1999.
    [171]Fang S S,Xiao X S,Xia L,et al.Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses[J].Journal of Non-Crystalline Solids,2003,321(1-2):120-125.
    [172]方守狮,肖学山,王庆,等.Pd基大块金属玻璃过冷液相区与键参数的关系[J].稀有金属材料与工程,2004,33(11):1132-1135.
    [173]Fang S S,Xiao X S,Xia L,et al.Effects of bond parameters on the widths of supercooled liquid regions of ferrous BMGs[J].Intermetallics,2004,12(10-11):1069-1072.
    [174]秦凤香,张海峰,李宏,等.Zr_(55)Al_(10)Cu_(30)Ni_(5-x)Pd_x块状非晶合金的玻璃形成能力和热稳定性[J].金属学报,2003,39(3):305-309.
    [175]嵇罡,季颖斐,马学鸣,等.大块非晶合金的形成能力[J].材料科学与工程,1999,17(3):55-58.
    [176]Lad K N,Raval K G,Pratap A.Estimation of Gibbs free energy difference in bulk metallic glass forming alloys[J].Journal of Non-Crystalline Solids,2004,334-335:259-262.
    [177]Lu Z P,Lu X,Li Y.Thermodynamic of La-AI-Ni-Cu alloys studied by temperature modulated DSC[J].Intermetallic,2000,8(5-6):477-480.
    [178]Cai A H,Pan Y,Sun G X.New thermodynamic parameter describing glass forming ability of bulk metallic glasses[J].Materials Science and Technology,2005,21(10):1222-1226.
    [179]Lad K N,Pratap A,G.Raval K.Estimation of the free energy change on crystallization of multicomponent glass forming alloys[J].Journal of Materials Science Letters,2002,21(18):1419-1422.
    [180]Yakeuchi A,Inoue A.Calculations of amorphous-forming composition range for ternary alloy system and analyses of stabilization of amorphous phase and amorphous-forming ability[J].Materials Transaction,JIM,2001,42(7):1435-1444.
    [181]Bakker H.Enthalpies in alloys-miedema's semi-empirical model,materials science foundations[M].Switzerland:Trans Tech Publications Ltd.,1998.
    [182]Xiao X S,Fang S S,Wang G M,et al.Influence of beryllium on thermal stability and glass-forming ability of Zr-Al-Ni-Cu bulk amorphous alloys[J].Journal of Alloys and Compounds,2004,376(1-2):145-148.
    [183]Liu C T,Chisholm M F,Miller M K.Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy[J].Intermetallics,2002,10(11-12):1105-1112.
    [184]Gebert A,Eckert J,Schultz L.Effect of oxygen on phase formation and thermal stability of slowly cooled Zr_(65)Al_(7.5)Cu_(17.5)Ni_(10)metallic glass[J].Acta Materialia,1998,46(15):5475-5482.
    [185]Lin X H,Johnson W L,Rhim W K.Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy[J].Materials Transactions,JIM,1997,38(5):473-477.
    [186]Eckert J,Mattem N,Zinkevitch M,et al.Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen[J].Materials Transactions,JIM,1998,39(6):623-632.
    [187]Chen H S,Tumbull D.Formation,stability and structure of palladium-silicon based alloy glasses[J].Acta Metallurgica,1969,17(8):1021-1031.
    [188]Inoue A,Kimura H M,SasamoriK,et al.Synthesis and high mechanical strength of Al-based alloys consisting mainly of nanogranular amorphous particles[J].Materials Science & Engineering A,1996,217-218:401-406.
    [189]Zhang Y,Zhao D Q,Pan M X,et al.Glass forming properties of Zr-based bulk metallic alloys[J].Joumal of Non-Crystalline Solids,2003,315(1-2):206-210.
    [190]Barandiaran J M,Colmenero J.Continuous cooling approximation for the formation of a glass[J].Joumal of Non-Crystalline Solids,1981,46(3):277-287.
    [191]Hng H H,Li Y,Ng S C,et al.Critical cooling rate for glass formation in Zr-Al-Cu-Ni alloys[J].Journal of Non-Crystalline Solids,1996,208(1-2):127-138.
    [192]Inoue A,Zhang T,Masumoto T.Glass-forming ability of alloys[J].Joumal of Non-Crystalline Solids,1993,156-158(2):473-480.
    [193]Chen Q J,Fan H B,Shen J,et al.Critical cooling rate and thermal stability of Fe-Co-Zr-Y-Cr-Mo-B amorphous alloy[J].Journal of Alloys and Compounds,2006,407(1-2):125-128.
    [194]戴兰宏,蒋敏强.液体的及其玻璃固体力学性能的关联[J].力学进展,2007,37(3):346-360.
    [195]王焕荣,滕新营,石志强,等.非晶态Cu_(56)Zr_(44)合金的结构及其等温退火晶化过程的研究[J].物理学报,2001,50(11):2192-2197.
    [196]Zhang B,Pan M X,Zhao D Q,et al."Soft" bulk metallic glasses based on cerium[J].Applied Physics Letters,2004,85(1):61-63.
    [197]Zhao Z F,Zhang Z,Wen P,et al.A highly glass-forming alloy with low glass transition temperature[J].Applied Physics Letters,2003,82(26):4699-4701.
    [198]Xia L,Ding D,Shan S T,et al.Evaluation of the thermal stability of Nd60Al20Co20 bulk metallic glass[J].Applied Physics Letters,2007,90(11):111903/1-111903/3.
    [199]Li S,Wang R J,Wang W H.Bulk metallic glasses based on rare-earth elements in lanthanum series[J].Journal of Non-Crystalline Solids,2006,352(36-37):3942- 3946.
    [200]Li S,Wang R J,Pan M X,et al.Heavy rare earth based bulk metallic glasses with high thermal stability[J].Intermetallics,2006,14(6):592-595.
    [201]Malek J.The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses[J].Thermochimica Acta,1995,267(1):61-73.
    [202]Woldt E.Relationship between isothermal and non-isothermal descryiption of Johson-Mehl-Avrami-Kolmogorov kinetics[J].Journal of Physics and Chemistry of Solids,1992,53(4):521-527.
    [203]Henderson D W.Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids[J].Journal of Non-Crystalline Solids,1979,30(3):301-315.
    [204]Aronin A S,Abrosimova G E,Gurov A F,et al.Nanocrystallization of bulk Zr-Cu-Ti metallic glass[J].Materials Science and Engineering A,2001,304-306(1-2):375-379.
    [205]Bohmer R,Ngai K L,Angell C A,et al.Nonexponential relaxations in strong and fragile glass formers[J].The Journal of Chemical Physics,1993,99(5):4201-4209.
    [206]Angell C A.Formation of glasses from liquids and biopolymers[J].Science,1995,267(5206):1924-1935.
    [207]Ediger M D,Angell C A,Nagel S R.Supercooled liquids and glasses[J].Journal of Physical Chemistry,1996,100(31):13200-13212.
    [208]Bruning R and Samwer K.Glass transition on long time scales[J].Physical Review B,1992,46(18):11318-11322.
    [209]Glade S C and Johnson W L.Viscous Flow of the Cu_(47)Ti_(34)Zr_(11)Ni_8 Glass Forming Alloy[J].Journal of Applied Physics,2000,87(10):7249-7251.
    [210]Bohmer R.Nanoscale heterogeneity of glass forming liquids:experimental advances[J].Current Opinion in Solid State & Material Science,1998,3(4):378-385.
    [211]Gerhard W.Thermodynamic,viscous flow and relaxation dynamics of bulk glass-forming Pd alloys[J].Annales de Chimie Science des Materiaux,2002,27(5):49-54.
    [212]Busch R,Johnson W L.Kinetic glass transition of the Zr_(46.75)Ti_(8.25)Cu_(7.5)Ni_(10)-Be_(27.5)bulk metallic glass former-supercooled liquids on a long time scale[J].Applied Physics Letters,1998,72(21):2695-2697.
    [213]L6effler J F,Johnson W L,Wagner W,et al.Comparison of the decomposition and crystallization behavior of Zr and Pd based bulk amorphous alloys[J].Materials Science Forum,2000,343(1):179-184.
    [214]Jiang M Q,Dai L H.Intrinsic correlation between fragility and bulk modulus in metallic glasses[J].Physical Review B,2007,76(5):054204/1-054204/7.
    [215]Novikov V N and Sokolov A P.Correlation of fragility and Poisson's ratio:Difference between metallic and nonmetallic glass formers[J].Physical Review B,2006,74(6):064203/1-064203/7.
    [216]Busch R,Schroers J and Wang W H.Thermodynamics and Kinetics of Bulk Metallic Glass[J].MRS Bulletin,2007,32(8):620-623.
    [217]Lewandowski J J,Wang W H,Greer A L.Intrinsic plasticity or brittleness of metallic glasses[J].Philosophical Magazine Letters,2005,85(2):77-87.
    [218]Wang W H.Elastic moduli and behaviors of metallic glasses[J].Journal of Non-Crystalline Solids,2005,351(16-17):1481-1485.
    [219]Kawamura Y,Nakamura T,Kato H,et al.Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses[J].Materials Science and Engineering A,2001,304-306(1-2):674-678.
    [220]Johnson W L and Samwer K.A Universal Criterion for Plastic Yielding of Metallic Glasses with a(T/T_g)~(2/3)Temperature Dependence[J].Physical Review Letters,2005,95(19):195501/1-195501/4.
    [221]Zhao Y,Bian X F,Yin K B,et al.Relations of the characteristic temperatures and fragility parameters in glass-forming metallic system[J].Physica B,2004,349(1-4):327-332.
    [222]Chen H S,Kato H,Inoue A.A fictive stress model and nonlinear viscoelastic behaviors in metallic glasses[J].Materials Transactions,JIM,2001,42(4):597-605.
    [223]Nieh T G,Wadsworth J,Liu C T,et al.Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region[J].Acta Materialia,2001,49(15):2887-2896.
    [224]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004.
    [225]Grum J and Sturm R.Microstructure analysis of nodular iron 400-12 after laser surface melt hardening[J].Materials Characterization,1996,37(2-3):81-88.
    [226]Song R G,Zhang K,Chen G N.Electron beam surface treatment.Part Ⅰ:surface hardening of AISI D3 tool steel[J].Vacuum,2003,69(4):513-516.
    [227]Song R G,Zhang K,Chen G N.Electron beam surface treatment.Part Ⅱ:Microstructure evolution of stainless steel and aluminum alloy during electron beam rapid solidification[J].Vacuum,2003,69(4):517-520.
    [228]甘章华,王敬丰,肖建中.块体非晶合金Fe-Ni-P-B-Ga的制备与性能[J].金属学报,2003,39(10):1085-1088.
    [229]虞伟良.硬度测试技术的新动念与发展趋势[J].理化检验.物理分册,2003,39(8):401-405.
    [230]Oliver W C,Pharr G M.improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1580.
    [231]Oliver W C,Pharr G M.Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology [J].Journal of Materials Research,2004,19(1):3-20.
    [232]Uzun O,Karaaslan T and Keskin M.Hardness evaluation of Al-12Si-0.5Sb melt-spun ribbons[J].Journal of Alloys and Compounds,2003,358(1-2):104-111.
    [233]武晓峰,张海峰,李宏,等.Zr基大块非晶合金的微区变形及力学性能[J].中国有色金属学报,2003,13(6):1368-1373.
    [234]Golovin Y I,Ivolgin V I,Khonik V A,et al.Serrated plastic flow during nanoindentation of a bulk metallic glass[J].Scripta Materialia,2001,45(8):947-952.
    [235]Vaidyanathan R,Dao M,Ravichandran G,et al.Study of mechanical deformation in bulk metallic glass through instrumented indentation[J].Acta Materialia,2001,49(18):3781-3789.
    [236]Jiang W H,Atzmon M.Rate dependence of serrated flow in a metallic glass[J].Journal of Materials Research,2003,18(4):755-757.
    [237]Xing L Q,Bertrand C,Dallas J D.Nanocrystal evolution in bulk amorphous Zr_(57)Cu_(20)Al_(10)Ni_8Ti_5 alloy and its mechanical properties[J].Materials Science and Engineering A,1998,241(1-2):216-225.
    [237]Kronmuller H.Micromagnetism and microstructure of amorphous alloys[J].Journal of Applied Physics,1981,52(3):1859-1864.
    [239]Johnson W L.Fundamental aspects of bulk metallic glass formation in multicomponent alloys[J].Materials Science Forum,1996,225(9):35-49.
    [240]张凌晨,邢冬梅,张泰华,等.Ce基大块非晶合金在纳米压入过程中的变形行为[J].科学通报,2006,51(11):1348-1351.
    [241]Schuh C A,Argon A S,Nieh T G,Wadsworth J.The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal[J].Philosophical Magazine,2003,83(22):2585-2597.
    [242]Schuh C A,Nieh T G.A nanoindentation study of serrated flow in bulk metallic glasses[J].Acta Materialia,2003,51(1):87-99.
    [243]Wei B C,Zhang T H,Li W H,et al.Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses[J].Intermetallics,2004,12(10-11):1239-1243.
    [244]Wang J G,Choi B W,Nieh T G,et al.Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy[J].Journal of Materials Research,2000,15(3):798-807.
    [245]Nieh T G,Schuh C A,Wadsworth J,et al.Strain rate-dependent deformation in bulk metallic glasses[J].Intermetallics,2002,10(11-12):1177-1182.
    [246]Schuh C A,Lund A C,Nieh T G.New regime of homogeneous flow in the deformation map of metallic glasses:elevated temperature nanoindentation experiments and mechanistic modeling[J].Acta Materialia,2004,52(20):5879-5891.
    [247]Kawamura Y,Shibata T,Inoue A,et al.Stress overshoot in stress-strain curves of Zr_(65)Al_(10)Ni_(10)Cu_(15)metallic glass[J].Applied Physics Letters,1997,71(6):779-781.
    [248]Nieh T G,Wadsworth J,Liu C T,et al.Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region[J].Acta Materialia,2001,49(15):2887-2896.
    [249]李会强,杨院生,章文辉,等.大块非晶合金真空吸铸制备过程的温度场模拟[J].2005年全国计算材料、模拟与图像分析学术会,2005年8月23-25日.秦皇岛
    [250]Mayr S G.Impact of ion irradiation on the thermal,structural,and mechanical properties of metallic glasses[J].Physical Review B,2005,71(14):144109-144115.
    [251]Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J].Acta Metallurgica,1977,25(4):407-415.
    [252]Taub A I,Spaepen F.Kinetics of structure relaxation of a metallic glass[J].Acta Metallurgica,1980,28(12):1781-1788.
    [253]Wright W J,Saha R,Nix W D.Deformation mechanisms of the Zr_(40)Ti_(14)Ni_(10)Cu_(12)Be_(24)bulk metallic glass[J].Materials Transactions,JIM,2001,42(4):642-649.
    [254]Spaepen F.Homogeneous flow of metallic glasses:A free volume perspective [J].Scripta Materialia,2006,54(3):363-367.
    [255]Liu Y,Bei H,Liu C T,et al.Cooling-rate induced softening in a Zr_(50)Cu_(50)bulk metallic glass[J].Applied Physics Letters,2007,90(7):071909/1-071909/3.
    [256]Bei H,Xie S and George E P.Softening caused by profuse shear banding in a bulk metallic glass [J]. Physical Review Letters, 2006, 96(10): 105503/1-105503/4.
    
    [257] Johnson W L, Lu J, and Demetriou M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self consistent dynamic free volume model [J]. Intermetallics, 2002,10(11-12): 1039-1046.
    
    [258] Mukai T, Nieh T G, Kawamura Y, et al. Effect of strain rate on compressive behavior of a Pd_(40)Ni_(40)P_(20) bulk metallic glass [J]. Intermetallics, 2002,10(11-12): 1071-1077.
    
    [259] Allemand J P, Fouquet F, Perez J, et al. Development of Mechanical and Micromechanical Properties of the Metallic Glass Fe-Cr-C-P-Si with Quench Rate [J]. Physica Status Solidi (A) Applied Research, 1988,105(2): 427-439.
    
    [260] Concustell A, Alcala G, Mato S, et al. Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu_(60)Zr_(22)Ti_(18) bulk metallic glass [J]. Intermetallics, 2005,13(11): 1214-1219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700