减小避雷线电能损耗的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究减少避雷线电能损耗的方法,研究双避雷线结构输电线路电磁感应电压和静电感应电压以及各种损耗分量的计算方法。采用了多导体磁链方法改进避雷线感应电流环流分量的计算,使避雷线电能损耗计算更加准确。分析了影响避雷线电能损耗大小的因素和几种减小损耗的方法,并对加入复合阻抗减小避雷线电能损耗进行了ATP仿真计算,仿真结果证明了该方法的可行性。
     考虑到大地的非均匀性,为准确计算高压输电线路避雷线中的电能损耗,建立了土壤水平分层模型,以两层土壤为例,基于麦克斯韦方程组推导出了电磁场等效作用宽度的计算公式,提出了考虑土壤水平分层结构时避雷线各阻抗参数的计算方法。实验测量了两层水平分层土壤结构下的接地电阻和土壤电阻率,证实了土壤分层模型的有效性和可靠性。
Power loss caused by lightning protection reasons is deeply studied in this thesis, a method of calculating electromagnetic and electrostatic induced voltage as well as the components of power loss is summed up. The calculation of circulation current is improved by utilizing the theory of flux in multi-conductor lines, making power loss calculation more precisely. The influencing factors and measurements for reducing power loss in lightning shield line are analyzed, an ATP simulated calculation model is built-up to analyze the feasibility of multiple impendence, and the results indicates that this method can certainly reduce the inductive current in lightning line.
     Considering the heterogeneity of the soil, a multi-layer horizontal soil model is built in order to calculate the power loss accurately in lightning-shield line. Based on Maxwell's equations, the formulas of equivalent width for the electromagnetic field are deduced, this article also puts forward a way of the calculation for impedance in the lightning-shield line when considering the two-layer horizontal soil. Finally grounding resistance and soil resistivity are measured under the condition of two-layer horizontal soil, and the model is proved to be reasonable.
引文
[1]张纬钹,何金良,高玉明.过电压防护及绝缘配合[M].北京:清华大学出版社,2002
    [2]杨保初,刘晓波.高电压技术[M].重庆:重庆大学出版社,2002
    [3]潘忠林.现代防雷技术[M].成都:电子科技大学出版社,2001
    [4]王学峰,吕艳萍.减小避雷线中电能损耗方法的研究[J].高电压技术,2005,33(9):28-30
    [5]熊一权.超高压线路架空地线降耗措施[J].内蒙古电力技术,2001,19(2):33-34
    [6]李奎涛,谢君.关于降低电网电能损耗的几种方法[J].水利水电技术,2000,31(3):44-45.
    [7]郝莉,孙巍.降低电能损耗的方法和措施[J].吉林水利,2000,(12):39-40.
    [8]龙俸来.浅谈配电网的降损措施[J].华中电力,1999,12(6):46-47.
    [9]梁文莉,陈亮.降低江西电网电能损耗的主要措施[J].江西电力,2002,(2):35-36
    [10]孙菊海.高压送电线路上的感应电压及电能损失[J].西北电力技术,2001,29(4):31-33
    [11]陈青,汪世芳等.架空地线感应电量分布状态的探讨.电力自动化设备,1995,(3):18-20
    [12]李光琦.电力系统暂态分析(第二版).北京:中国电力出版社,1995
    [13]Li Dechao, Li Jinglu, Zhang Yuhuan. Field measurement studies on shunt coefficient of lightning shield line. International conference on intelligent computation and automation.2008,1052-1055
    [14]王泽中,全玉生,卢斌先.工程电磁场.北京:清华大学出版社,2004
    [15]姜仁波.多导体传输线电磁兼容的分析与研究.[硕士学位论文].北京:华北电力大学电气与电子工程学院,2005
    [16]东北电力设计院.电力工程高压送电线路设计手册.北京:水利电力出版社.1993
    [17]R. C. Madge, S. Barrett, H. Grad. Performance of optical ground wires during fault current tests. IEEE Transactions on Power Delivery, 1989,4(3):1552-1557
    [18]J.Reichman. Insulated overhead ground wires protective carrier relaying investigations. IEEE Transactions on power apparatus and systems. January 1968:179-185
    [19]陈青,江世芳等.利用绝缘避雷线实现高频保护的研究--架空地线绝缘间隙值的探讨[J].电力系统自动化,1995,19(6):38-42
    [20]张亚婷,高博等.750kV输电线路架空地线损耗的影响因素及降低方法研究[J].电瓷避雷器,2008,(1):18-21
    [21]韦钢,陈广,张子阳,姜祥生.多回输电线并架时避雷线损耗的研究[J].电力建设,(2005)03:39-41.
    [22]程慕尧.架空输电线路导线换位及绝缘地线运行方式的优化方案[J].中国电力,(2000)01:57-59.
    [23]S.Yokoyama. Calculation of lighting-induced voltages on overhead multiconductor system. IEEE Transaction on Power Apparatus and Systems, 1984,103(1):100-106
    [24]黄道春,阮江军,赵华.同塔并架4回输电线路相导线排列方式研究[J].高电压技术,2006,33(3):18-20
    [25]张新林.光纤复合架空地线(OPGW)应用中若干问题探讨[J].电线电缆,2008,(5):33-38
    [26]李杰,陈希等.光纤复合架空地线(OPGW)热性能的研究[J].电网技术,2006,30(1):89-93
    [27]王平.OPGW光缆在电力系统中的应用[J].电力设计,2006,(3):65-69
    [28]周响凌.OPGW与输电线路损耗之间的关系探讨[J].电力系统通信,2001,(6):14-16
    [29]曹佩荣,曹君.光纤复合架空地线结构设计中的几个问题[J].电力建设,2006,27(8):6-12
    [30]Louis Lamarche, Daniel Gagnon, Michel Miron. Long term attenuation on optical ground wires, IEEE Transaction on Power Systems, 1996,11(4):1863-1867
    [31]K. Urasawa, K. Kanemaru. New fault location system for power transmission lines using composite fiber-optical overhead ground wire. IEEE Transaction on Power Delivery,1989,4(4):2005-2011
    [32]唐勇,王大忠等.对架空避雷线进行技术改造的综合实施方案[J].高电压技术,1997,23(1):77-82
    [33]张弘,杜振东等.OPGW复合地线光缆短路电流计算分析[J].浙江电力,1998,(5):8-11
    [34]王学峰,吕艳萍等.复合阻抗在OPGW中的应用[J].电力系统通信,2005,26(150):17-19
    [35]P.M.安德逊著,王际强等译.电力系统故障分析.北京:电力工业出版社,1980
    [36]周晓虎,周秧.多层水平分层土壤电阻率模型[J].现代电力,2007,24(2):48-51
    [37]赵志斌,李林,崔翔.电力线路架空地线分流电流的计算[J].华北电力大学学报,2002,29(4):5-7
    [38]齐磊,卢铁兵,张重远,崔翔.考虑多层土壤时架空线的瞬态分析[J].中国电机工程学报,2003,23(5):66-69
    [39]Takehiko, Takahaski. Caculation of earth resistance of a deep-driver rod in a multi-layer earth structure. IEEE Transaction on Power Delivery, 1991,6(2):608-614
    [40]陈德智,黄振华等.水平分层土壤中点电流源电流场的计算[J].高电压技术,2008,34(7):1379-1382
    [41]孙结中,刘力.运用等值复数镜像法求解复合分层土壤结构的格林函数[J].中国电机工程学报,2003,23(9):146-151
    [42]Chow Y L, Yang J J, Srivastava K D. Complex image of grounding electrode in layered soils[J]. Journal of Applied Physics,1992,15(1): 1120-1125.
    [43]Li Zhongxin, Yuan Jiansheng, Zhang Liping. Numerical calculation of substation grounding system[J]. Proceedings of the CSEE,1999,19(5): 76-80.
    [44]Deri A, Teven G, Symlyen A, et al. The complex ground return plane-A simplified model for homogeneous and multi-layer earth return [J]. IEEE Trans, on PAS,1981,100(8):3686-3693.
    [45]J. Nahman, D. Salamon. A practical method for the interpretation of earth resistivity data obtained from driven rod tests. IEEE Transactions on Power Delivery,1988,3(4):1375-1379
    [46]西南电业管理局试验研究所.高压电气设备试验方法.北京:水利电力出版社,1984
    [47]任继东,刘伯刚等.垂直分层土壤中接地极接地电阻的测量[J].黑龙江电力,2005,27(1):15-16
    [48]向铁元,丁坚勇等.接地的重要性[J].电力系统及其自动化学报,2001,13(1):26-30
    [49]Li Shuchen, He Wei, et al. Research on soil resistivity with four probe method. Journal of Yunnan Normal University,2008,28(1):53-57
    [50]C. J. Blattner. Study of driven ground rods and four point soil resistivity tests. IEEE Transactions on Power Apparatus and Systems, 1982,101(8):2837-2845

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700