衬底偏压对磁头表面超薄DLC膜的结构和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以磁过滤真空阴极弧(Filtered Cathodic Vacuum Arc)技术制备的DLC薄膜为研究对象。通过改变衬底偏压和沉积时间研究磁头表面不同厚度DLC薄膜的结构、表面状态和性能随着衬底偏压的变化规律。以此为基础,我们可以更好的改进磁头表面超薄DLC的结构和性能并且优化超薄DLC的制备工艺,最终能够改进磁头的性能并延长磁头的使用寿命。目前,对于2nm左右的超薄DLC薄膜的研究还比较少,并且2nm的超薄DLC膜与较厚的DLC薄膜在结构上表现出较大的差异,结构的差异又会引起性能上的变化,所以本课题的研究内容具有较强的创新性和前沿性。
     采用Vis-Raman和UV-Raman对薄膜的物理结构进行了分析。结果显示衬底偏压和薄膜厚度对DLC薄膜的物理结构有明显的影响。且2nm的超薄DLC薄膜的结构表现出与较厚DLC薄膜不同的变化规律。2nm DLC的sp~3键含量随衬底偏压的增大而减少。5nm、10nm和35nm DLC的sp~3键含量随衬底偏压的增大而先增大后减少。sp~3键含量随薄膜厚度的增加而增加。采用XPS对薄膜的成分和化学结构进行了分析。大部分的C元素以sp~3C和sp~2C形式存在。其sp~3键含量都在72%以上,随着衬底偏压和厚度的变化而成规律性变化。
     采用原子力显微镜分析了DLC薄膜的表面粗糙度和表面形貌,发现薄膜RMS表面粗糙度仅在0.13nm-0.23nm之间变动,表面三维形貌显示薄膜表面均匀连续。
     采用草酸腐蚀实验研究了DLC薄膜的抗腐蚀性。结果显示DLC薄膜的抗腐蚀性与表面粗糙度和薄膜的结构有关。对于2nm的DLC薄膜,表面粗糙度对其腐蚀率影响较大。对于5nm和10nm的DLC薄膜,薄膜结构对其腐蚀率影响较大。
     采用摩擦设备测量了DLC薄膜的摩擦系数,研究薄膜的摩擦学性能;对于2nm的DLC薄膜,摩擦系数随衬底偏压的增大而减小。薄膜越厚,摩擦系数越小。采用水接触角测量仪对磁头表面吸附性能进行了表征。2nm的DLC薄膜的吸附性随着衬底偏压的增大而先增大后减小。而较厚薄膜的吸附性变化趋势与此相反。采用电阻测量仪和椭偏仪对DLC薄膜的电阻率和折射率进行了研究。电阻率和折射率受薄膜结构影响较大。
     本次研究反映了2nm超薄DLC膜不同于较厚DLC薄膜的新的特性。全面研究了DLC薄膜的结构、表面状态和各项性能。2nm超薄DLC膜在结构上的差异引起了表面粗糙度及抗腐蚀性能、摩擦性能、吸附性能等性能的变化。
The ultra-thin DLC films which were deposited by FCVA (Filter Cathodic Vacuum Arc) method were studied in this thesis. The variety trend of structure, surface morphology and property with the substrate bias were studied. In the process of DLC film growth, the bombardment of energetic ion acts as an important effect. It can not only affect the surface morphology of films, but also affect the structure and eventually affect the property. Based in this study, we can improve the structure of ultra-thin DLC film and optimize the techniques, and finally the property of slider can be improved and the life can be prolonged. At present, there is a little study for ultra-thin films, and the structure of 2nm DLC film is different from thicker films, so this study is innovative.
     The physical structures of DLC films were analyzed by Vis-Raman and UV-Raman. The results show that the substrate bias has an important effect on physics structure. The variety trend is different between 2nm DLC film and thicker DLC film. The sp~3 binding content of 2nm DLC films decrease with the substrate biases increase. But the sp~3 binding content of 5nm, 10nm and 35nm DLC films increase and then decrease with the substrate biases increase. The film thickness can affect the structure too. With the film thickness increases the sp~3 binding content increases. The component and chemical structure were analyzed by XPS. Almost all C element forms sp~3 and sp~2 binding. The sp~3 binding content all above 72%, and it vary regularly with the substrate bias and thickness change.
     The surface roughness and surface morphology were detected by AFM. The result shows that the RMS surface roughness varies between 0.12nm and 0.23nm, and the 3-D morphology is uniform and continuous.
     The anti-corrosion property is analyzed through oxalic acid corrosion test. The result shows that the anti-corrosion property has a relation with the surface roughness and structure. For 2nm DLC films, the corrosive percentage is mainly affected by surface roughness. For 5nm and 10nm DLC films, the corrosive percentage is mainly affected by structure.
     The friction coefficient is measured by friction equipment. For 2nm DLC films,the friction coefficient decrease with the substrate bias increase. The thicker the DLC films, the smaller the friction coefficient. The adhesive property can be analyzed by water contact angle. For 2nm DLC films, the adhesive property decreases with the substrate bias increases. For thicker DLC films, the variety trend is reversed. The resistivity and refractive index are measured by resistance measure instrument and ellipsometer respective. They are mainly affected by structure.
     This study shows that the 2nm DLC films have new characters which are different from the thicker DLC films. The film structure, surface morphology and property are all studied in detail. For 2nm DLC films, the difference in structure causes the surface roughness and properties vary.
引文
1 Andrea Carlo Ferrari. Diamond-like carbon for magnetic storage disk. Surface and Coatings Technology. 2004, 180-181: 190-206.
    3 P.R. Goglia, J. Berkowitz, J. Hoehn, A. Xidis, L. Stover. Optimum Incident Angle of Ar Cluster Ion Beam for Superhard Carbon Film Deposition. Diamond Relat. Mater. 2001, 10: 271.
    4 D. Li, M.U. Guruz, C.S. Bhatia, Y. Chung. Doping and Alloying Effects on DLC Coatings. Appl. Phys. Lett. 2002, 81: 1113.
    5 Robertson J. Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films. 2001, 383: 81.
    6 S. Fujimaki, T. Yatsue, Y. Kokaku, T. Ohno, T. Kanbe. Preparation of ultra-thin carbon overcoat for magnetic recording medium by filtered cathodic vacuum arc technology. Vacuum. 2004, 74: 711-716.
    7 Han H, Ryan F, McClure M. Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording. Surface and Coatings Technology. 1999, 120-121: 576.
    8 Casiraghi C, Ferrari A C, Ohr Retal. A new generation of X-ray detectors based on silicon carbide. Phys.Rev.Lett. 2003, 91: 226104.
    9 Robertson J. Amorphous carbon. Adv. Phys. 1986, 35: 317-374.
    10彭鸿雁,赵立新.类金刚石薄膜的制备、性能与应用.科学出版社,2004.
    11 W. Jaeob, W. Molle. Appl.Phys. 1993, 63: 17-71.
    12 Aisenberg S, Chabor S. Ion-beam deposition of thin films of diamond like carbon. Appl. Phys. 1971, 42 (7): 2953-2958.
    13.刘贵昂.类金刚石膜极其淀积条件的研究.大自然探索.1998, 17(4): 71-74.
    14 S. Fujimaki, H. Kashiwase, Y. Kokaku. New DLC coating method using plasma in an unbalanced magnetic field. Uacuum. 2000, 59: 657-664.
    15 T. Katsuno, S. Nitta, K. Ueda. New preparation method of diamond-likecarbon thelayer by layer method. Journal of Non-Crystalline Solid. 2002, 299-302: 830-834.
    16 N. Savvides, B. Windows. Unbalanced magnetron ion-assisted deposition and pro-perty modification of thin films. J.ac.Sci.Technol. 1986, 4(3): 504-508.
    17 Feng Ma, Gang Li, Heqing Li, et.a1. Diamond-like carbon gradient film prepared by unbalanced magnetron sputtering and plasma immersion ion implantation hybrid technique. Materials Letters. 2002, 57: 82-86.
    18肖剑荣,徐慧,郭爱敏,王焕友.含氮氟化类金刚石(FN-DLC)薄膜的研究.物理学报. 2007, 56(3): 1802-1807.
    19王鹏,陈友明,张广安,刘维民,张俊彦. Ti掺杂DLC薄膜的制备及其结构研究.第六届全国表面工程学术会议. 2006, 8: 369-372.
    20张瑞军,马洪涛.掺氮类金刚石薄膜的纳米力学及纳米摩擦特性研究.摩擦学学报. 2005, 25(6): 530-533.
    21 Richard Lossy, David L, et al. Filtered arc deposition of amorphous diamond. Appl. Phys. Lett. 1992, 61(2):171-173.
    22 Friedmann T A, Sullivan J P, Knapp J A, et al. Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond. Appl. Phys. Lett. 1997, 71(26): 3820-3822.
    23卫中山,左敦稳.类金刚石薄膜的制备及应用.航空精密制造技术. 2004, 40(1): 20-23.
    24陈灵,刘正义,邱万奇等.类金刚石膜的制备及其影响因素.中国表面工程. 2002, (1): 32-35.
    25马国佳,邓新绿.类金刚石膜的应用及制备.真空. 2002, (5): 27-31.
    26 Ken Yukimura, Motoya Kumagai, Masao Kumagai, et al. Deposition of Amorphous Carbon Using a Shunting Arc Discharge. Surface and Coatings Technology. 2003, 174-175: 1187-1190.
    27丁万昱,高鹏,邓新绿等.类金刚石磁盘保护膜的性能、应用与制备.真空科学与技术学报. 2005, 25(1): 41-49.
    28 Robertson J. Diamond-like carbon for data and beer storage. Tribol Int, 2003,36: 405-415.
    29 S. Aisenberg,R. Chabot. Deposition of carbon films with diamond properties. Appi.Phys. 1971, 42: 29-53.
    30王茂祥,吴宗汉.多弧离子镀技术中的真空放电过程.物理. 1997, 26(7): 432-433.
    31 Y.H. Cheng, B.K. Tay, S.P. Lau, X. Shi. Influence of substrate bias on the structure and mechanical properties of ta-C: W films deposited by filtered cathodic vacuum arc. Surface and Coatings Technology. 2001, 146–147: 398-404.
    32 Prawer S, Nugent K W, Lifshitz Y, et al. Systematic variation of the Raman spectra of DLC films as a function of sp2/sp3 composition. Diamond and Related Materials. 1996, 5(3-5): 433-438.
    33 Ogwu A A, Lamberton R W, Morley S, et al. Characterisation of thermally annealed diamond like carbon DLC and silicon modified DLC films by Raman spectroscopy. Phys. B. 1999, 269(3-4): 335-344.
    34 Stanishevsky A V, Khriachtev L Yu, Rasanen M, et al. On correlation between the shape of Raman spectra and short-range order structure of hydrogen-free amorphous carbon films. Diamond and Related Materials. 1997, 6(8): 1026-1030.
    35 Lejeune M, Durand-Drouhin O, Henocque J, et al. Optical investigations and Raman scattering characterisation of carbon bonding in hard amorphous hydrogenated carbon films. Thin Solid Films. 2001, 389(1-2): 233-238.
    36 Papadimitriou D, Roupakas G, Xue C, et al. Raman and photoluminescence study of magnetron sputtered amorphous carbon films. Thin Solid Films. 2002, 414(1): 18-24.
    37 Tay B K, Shi X, Tan H S, et al. Raman studies of tetrahedral amorphous carbon films deposited by filtered catholic vacuum arc. Surf. Coat. Technol. 1998, 105(1-2):155-158.
    38 Chen J Q, Freitas Jr J A, Meeker D L. Optical characterization of amorphous hydrogenated carbon filins. Diamond and Related Materials. 2000, 9(1): 48-55.
    39 Corbella C, Pascual E, Canillas A, et.al. Visible and infrared ellipsometry applied to the study of metal-containing diamond-like carbon coatings. ThinSolid Films. 2004, 455-456(1): 370-375.
    40 Mukhopadhyay K, Krishna K M, Sharon M. A simple method and new source for getting diamond-like carbon film and polycrystalline diamond film. Mater. Chem. Phys. 1997, 49(3): 252-257.
    41 Tamor M A, Vassell W C, Carduner K R. Atomic constraint in hydrogenated diamond-like carbon. Appl. Phys. Lett. 1991, 58(6): 592-594.
    42 Ponsonnet L, Donnet C, Varlot K, et al. EELS analysis of hydrogenated diamond-like carbon films. Thin Solid Films. 1998, 319(1-2): 97-100.
    43 Kleinsorge B, Rodil S E, Adamopoulos G, et al. Hydrogen and disorder in diamond-like carbon. Diamond and Related Materials. 2001, 10(3-7): 965-969.
    44 Andrea, Carlo, Ferrari. Diamond-like Carbon for Magnetic Storage Disks. Surface and Coatings Technology. 2004, 180-181: 190-206.
    45 Kenji K. Hirakuri, Masayuki Yoshimura, Gernot Fried bacherb. Application of DLC Films as Masks for Integrated Circuit Fabrication. Diamond and Related Materials. 2003, 12: 1013-1017.
    46 Ferrari A C, Robertson J. Interpretation of Raman of disordered and amorphous carbon. Phys. Rev. B. 2000, 61(20): 14095-14107.
    47 Robertson J. Properties of diamond-like carbon. Surface and Coatings Technology. 1992, 50: 185-203.
    48 Schwan J, Ulrich S, Batori V, et al. Raman spectroscopy on amorphous carbon films. Appl. Phys. 1996, 80(1): 440-447.
    49 Marcus B, Fayette L, Mermoux M, et al. Analysis of the structure of multi-component carbon films by resonant Raman scattering. Appl. Phys. 1994, 76(6): 3463-3470.
    50 Capano M A, McDevitt N T, Singh R K, et al. Characterization of amorphous carbon thin films. Vac. Sci. Technol. 1996, 14(2): 431-435.
    51 Zhang S, Zeng X T, Xie H, et al. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films. Surface and Coatings Technology. 2000, 123(2-3): 256-260.
    52 Beeman D, Silverman J, Lynds R, et al. Modeling studies of amorphous carbon. Phys. Rev. B. 1984, 30(2): 870-875.
    53 Bowling D P, Ahem M J, Kelly T C. Characterization study of diamond and diamond-like carbon. Surface and Coatings Technology. 1992, 53:177-183.
    54 Lu C J, Bogy D B, Rosenblum S S, et al. Nano-tribological investigations of carbon overcoats: Correlation with Raman spectra. Thin Solid Films. 1995, 268(1-2): 83-90.
    55 M. Tan, et al. Relative fraction of sp3 bonding in boron incorporated amorphous carbon films determined by X-ray photoelectron spectroscopy. Materials Research Bulletin. 2007, 33: 1-9.
    56 R. Haerle, A. Pasquarello, A. Baldereschi. Characterisation of quaternary AlInGaN thick layers and quantum wells grown by MOVPE. Comput. Mater. Sci. 2001, 22: 67-72.
    57 P. Merel, M. Tabbal, M. Chaker, S. Moisa, J. Margot. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136: 105-110.
    58 J. Diaz, G. Paolicelli, S. Ferrer, F. Comin. Comparison of Film Properties between Hydrogenated and Unhydrogented Diamond-Like Carbon Films Prepare by Radio-Frequencey Magnetron Sputtering. Phys. Rev. B 1996, 54: 8064.
    59 Cho N H, Krishnan KM,Veirs D K, et al. Raman characterization of amorphous carbon films. J Mater Res, 1990, 5: 2543.
    60 Bhushan B. Nanoscratch Studies of Uncoated and Coated Ceramic Matrix Composite Materials. Diamond and Related Materals. 1985, 8: 1999.
    61 Cutiongco E C, Li D, Chung YW, et al. Nanohardness measurement of carbon nitride thin films. J Tribol. 1996, 118: 543.
    62 Bhatia C S, Fong W, Chen C Y, et al. Tribochemistry at the head/disk interface. IEEE Trans Magn. 1999, 35: 910.
    63 Yen B K, Thiele J U , Geissler M, et al. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording. Journal of Magnetism and Magnetic Materials. 2001, 37: 1786.
    64 Li D J, Chung Y W. Ultrasmooth CNx Overcoats for Next-Generation Hard Disks. IEEE Trans Magn. 2003, 39: 765.
    65 Yun X, Hsaio R C, Bogy B, et al. Nanohardness measurement of carbon nitride thin films. IEEE Trans Magn. 1997, 33: 938.
    66 Tomcik B, Seng S C, Balakrisnan B, et al. Diamond-DLC double layer used in corrosive protective coating. Diamond and Related Materals. 2002, 11: 1049.
    67 C.S. Bhatia, S. Anders, I.G. Brown, K. Bobb, R. Hsiao, D.B. Bogy. Investigation of scratch resistance of thin carbon overcoat media using micro-scratch testing. Tribol. 1998, 120: 795.
    68 J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng. Rep. R. 2002, 37: 129.
    69 Menon A K. Interface tribology for 100 Gb/in2. Tribol Int. 2000, 33: 299.
    70 Casiraghi C, Ferrari A C, Ohr R, et al. Dynamic Roughening of Tetrahedral Amorphous Carbon. Phys Rev Lett. 2003, 91: 226104.
    71 X. Shi, L. Cheah, J.R. Shi, S. Zun, B.K. Tay. The Ultrasmoothness of Diamond-like Carbon Surfaces. Phys: Condens. Matter. 1999, 11: 185.
    72 Y. Lifshitz, G.D. Lempert, E. Grossman. Substantiation of subplantation model for diamondlike film growth by atomic force microscopy. Phys. Rev. Lett. 1994, 72: 2753.
    73 Peng X L, Barber Z H, Clyne T W. Surface roughness of diamond-like carbon films prepared using various techniques. Surface and Coatings Technology. 2001, 138(1): 23-32.
    74 Y. Lifshitz. Diamond-like carbon-Present Status. Diamond and Related Materials. 1999, 8: 1659.
    75 Y. Lifshitz, S.R. Kasi, J.W. Rabalais. Subplantation model for film growth from hyperthermal species: Application to diamond. Phys. Rev. Lett. 1989, 62: 1290.
    76 Y. Lifshitz, R. Edrei, A. Hoffman, E. Grossman, G.D. Lempert, J. Berthold, B. Schultrich, H.U. J?ger. Surface roughness evolution and growth mechanism of carbon films from hyperthermal species. Diamond and Related Materials. 2007.
    77 X. Shi, B.K. Tay, H.S. Tan, Li. Zhong, Y.Q. Tu, S.R.P. Silva, W.I. Milne. Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. Appl. Phys. 1996, 79: 7234-7239.
    78 J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering R. 2002, 37: 129-281.
    79 C. Casiraghi, A.C. Ferrari, R. Ohr, et al. Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diamond and Related Materials. 2004, 13: 1416-1421.
    80 Zajickova L, Bursikova V, Perina, et al. Correlation between SiOX content and properties of DLC: SiOX films prepared by PECVD. Surface and Coatings Technology. Technol. 2003, 174-175: 281-285.
    81 Monteiro O R, Delplancke-Ogletree M P. Investigation of non-hydrogenated DLC: Si prepared by catholic arc. Surface and Coatings Technology. 2003, 163-164: 144-148.
    82 I.J. Park, L. Soobok, K.C. Chang, et al. Surface properties and structure of poly. Joural of Colloid and Interface Science. 1996, 181(1): 284-288,.
    83 N. Akita, Y. Konishi, S. Ogura, et al. Comparison of deposition methods for ultra thin DLC overcoat film for MR head. Diamond and Related Materials. 2001, 10: 1017-1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700