大块无序金属的设计以及高温高压诱导其结构演变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属玻璃是材料家族中相对较年轻的成员,由于其不同于传统晶态合金材料的结构,自从发现以来,一直成为人们研究的热点问题。强玻璃形成能力的合金.体系的开发以及强玻璃形成能力的原因一直是金属玻璃研究的核心内容之一;金属玻璃独特无方向性金属键“无序”密堆结构为研究非平衡态中的诸如非晶态转变、玻璃结构、玻璃转变以及熔体过冷行为等一系列重大基础问题提供了独特的研究机会;另外,金属玻璃一般由金属熔体快速冷却制备,所以金属玻璃的结构和性能也取决于熔体的结构,研究金属熔体的结构及其在变温过程中的变化也一直是材料科学家和凝聚态物理领域的热门课题。本论文的主要研究工作是围绕强玻璃形成能力合金体系开发,金属玻璃非晶态相变以及金属熔体结构变化这三个基础科学问题展开,获得以下主要结果:
     (1)本文通过在ZrCuAgAl合金基础上添加Be成分,并通过成分优化,成功的开发出了一系列大尺寸的金属玻璃材料,其中Zr46Cu30.14Ag8.36Al8Be7.5成分的最大临界尺寸达到73mm,是目前世界上最大的通过铜模直接浇铸方法得到的金.属玻璃。通过对其结构、热力学等方面的研究发现Be含量的添加,抑制了原ZCuAgAl四元合金的相分离,使得新的五元合金更加稳定,同时小原子Be的添加使熔体结构更加紧密,粘度增大,抑制了原子的长程迁移,降低形核率,从而提高玻璃形成能力,另外晶相和过冷液相之间相对较小的吉布斯自由能差也是其强玻璃形成能力的原因。同时对该合金体系进行了详细的力学、物理和化学性能的研究。
     (2)通过原位高压同步辐射技术研究了Ca-Al金属玻璃在高压下的结构变化,首次发现了在不含f电子的金属玻璃中存在压力诱导的非晶-非晶结构变化,通过实验与理论相结合,提出s、p电子向d轨道转移是该金属玻璃体系在高压下发生相变的原因。进一步对Ca72.7Al27.3金属玻璃高压下的电阻测量结果发现,在压力下该合金确实发生了一个电子结构转变。并且通过与前人工作进行比较,·以及理论计算表明Ca72.7Al=金属玻璃的输运性能在压力下经历了从简单金属玻璃到类过渡元素金属玻璃的转变,进一步证实了Ca-Al金属玻璃中s、p电子向d轨道转移的现象。
     (3)金属熔体的结构因为其在物质的熔化、凝固、玻璃转变等过程中扮演的重要角色而一直是材料领域、凝聚态物理领域研究的重点问题之一。本文通过先进的原位高温同步辐射技术,研究了A1?In、Sn、Zn四种单质金属熔体的结构变化,发现随着温度的升高,液体中的第一近邻原子间距不是通常意义上的膨胀,反而是收缩的。通过系统的实验和理论模拟研究,提出如果金属液体结构是由多种大小不一的团簇组成的话,在温度升高时,大团簇由于体积较大,能量较高,其金属键更容易被打破,从而形成小团簇。从整体上看,随着温度的升高,大团簇的含量越来越少,小团簇的含量越来越多,而小团簇的平均原子间距比大团簇的小,从而使得熔体中第一近邻的平均原子距离缩短。
Metallic glass (MG), as a relative new member of materials family, has been at the cutting edge of material researches since its discovery due to its unique structure. Searching for bulk metallic glasses (BMGs) with high glass forming ability (GFA) and understanding the mechanism for the high GFA is one of the most important issues. The unique nondirectional metallic bonding and closesly packed structure of metallic glass provides an ideal model system for the studies of some fundamental issues in condensed matter physics, e.g. polyamorphism, glass structure, glass transition, supercooled liquid etc. Moreover, because MGs are usually prepared by rapid cooling from metallic melts, the structure of metallic melts largely affects structure and properties of MGs. Thus, the study of the structure of metallic melts is of great important because it is a fundamental issue in materials science and condensed matter physics due to its critical role in understanding the processes of melting, solidification and glass transition. In this thesis, we focus on (ⅰ) the development of new BMG systems with high GFA,(ⅱ) polyamorphism in MGs and (ⅲ) the atomic structure evolution of metallic melts. The main results are summarized as follows.
     (1) Starting from quaternary Zr46Cu37.64Ag8.36Al8alloy system, we developed a series of ZrCuAgAlBe BMGs with critical size over35mm by optimizing the Cu/Be ratio, among which the best glass former is Zr46Cu30.14Ag8.36Al8Be7.5with the critical size of73mm. Up to now it is still the largest BMG prepared by direct copper mould casting that has been reported. The enhanced GFA of this alloy system is due to that the Be addition not noly hinders the phase separation but also sustains the relatively low difference in Gibbs free-energy between the crystalline and the supercooled liquid phase.
     (2) By applying in situ high-pressure synchrotron x-ray diffraction techniques, we investigated high-pressure behavior of Ca-Al binary MGs, pressure-induced amorphous-to-amorphous configuration changes were observed in the Ca-rich part. This is for the first time that polyamorphism has ever been reported in a non-f-electron-containing MG system. The transfer of s and p electrons into d orbitals under pressure, reported for the pressure-induced phase transformations in pure polycrystalline Ca, is suggested to explain the observation of the polyamorphism in this Ca-Al MG system. We further studied the pressure-and temperature-dependent resistance behaviors of a Ca72.7Al27.3MG. One distict change from positive to negative coefficient of pressure-induced resistivity was detected during compression at ambient temperature. By comparing with the previous works reported in the literature and by theoretical simulations, we verify that the Ca72.7Al27.3amorphous alloy does change from a simple-metal-like amorphous alloy at lower pressures to a transition-metal-like amorphous alloy at high pressures during compression via a charge transfer mechanism.
     (3) Using synchrotron X-ray diffraction technique, we find a general trend that the average distance between a center atom and atoms in the first nearest-neighbor shell contracts for several metallic melts upon heating. By applying molecular dynamics simulations, we elucidate that this anomaly is caused by the redistribution of polyhedral clusters affected by temperature. In metallic melts, the high-coordinated polyhedra are inclined to evolve into low-coordinated ones with increasing temperature. As the coordination number decreases, the average atomic distance between a center atom and atoms in the first shell of polyhedral clusters is reduced. This phenomenon is a ubiquitous feature for metallic melts consisting of various-sized polyhedra.
引文
1. W.L. Johnson, Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials. Progress in Materials Science,1986. 30(2):p.81-134.
    2. A. Inoue, High-Strength Bulk Amorphous-Alloys with Low Critical Cooling Rates. Materials Transactions Jim,1995.36(7):p.866-875.
    3. W.L. Johnson, Bulk glass-forming metallic alloys:Science and technology. Mrs Bulletin,1999.24(10):p.42-56.
    4. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000.48(1):p.279-306.
    5. J.F. Loffler, Bulk metallic glasses. Intermetallics,2003.11(6):p.529-540.
    6. W.H. Wang, C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports,2004.44(2-3):p.45-89.
    7. A.L. Greer and E. Ma, Bulk metallic glasses: At the cutting edge of metals research. Mrs Bulletin,2007.32(8):p.611-615.
    8. W. Klement, R.H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960.187(4740):p.869-870.
    9. H.S. Chen, Thermodynamic Considerations on Formation and Stability of Metallic Glasses. Acta Metallurgica,1974.22(12):p.1505-1511.
    10. H.W. Kui, A.L. Greer, and D. Turnbull, Formation of Bulk Metallic-Glass by Fluxing. Applied Physics Letters,1984.45(6):p.615-616.
    11. A. Inoue, T. Zhang, and T. Masumoto, Al-La-Ni Amorphous-Alloys with a Wide Supercooled Liquid Region. Materials Transactions Jim,1989.30(12):p. 965-972.
    12. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mg-Cu-Y Amorphous-Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method. Materials Transactions Jim,1991.32(7):p.609-616.
    13. T. Zhang, A. Inoue, and T. Masumoto, Amorphous Zr-Al-Tm (Tm= Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of over 100 K. Materials Transactions Jim,1991.32(11):p.1005-1010.
    14. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy. Materials Transactions Jim,1993.34(12):p.1234-1237.
    15. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Extremely Wide Supercooled Liquid Region and Large Glass-Forming Ability in Zr65-XA;7.5Cu17.5NilOBex Amorphous Alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1994.179:p.210-214.
    16. Y. Yokoyama, E. Mund, A. Inoue, and L. Schultz, Production of Zr55Cu30Ni5Al10 glassy alloy rod of 30 mm in diameter by a cap-cast technique. Materials Transactions,2007.48(12):p.3190-3192.
    17. W. Zhang, Q.S. Zhang, C.L. Qin, and A. Inoue, Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass-forming ability. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2008.148(1-3): p.92-96.
    18. Q.S. Zhang, W. Zhang, and A. Inoue, Unusual Glass-Forming Ability of New Zr-Cu-Based Bulk Glassy Alloys Containing an Immiscible Element Pair. Materials Transactions,2008.49(11):p.2743-2746.
    19. A. Peker and W.L. Johnson, A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993.63(17):p. 2342-2344.
    20. Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.J. Fecht, J. Bednarcik, H. Franz, Y.G. Liu, Q.P. Cao, and J.Z. Jiang, Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Materialia,2008.56(8):p.1785-1796.
    21. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang, Super plastic bulk metallic glasses at room temperature. Science,2007.315(5817):p. 1385-1388.
    22. A. Inoue, M. Kohinata, A.P. Tsai, and T. Masumoto, Mg-Ni-La Amorphous-Alloys with a Wide Supercooled Liquid Region. Materials Transactions Jim,1989.30(5):p.378-381.
    23. E.S. Park and D.H. Kim, Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. Journal of Materials Research,2005.20(6):p.1465-1469.
    24. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters,2005. 87(18).
    25. Q. Zheng, J. Xu, and E. Ma, High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys. Journal of Applied Physics,2007.102(11).
    26. A. Inoue, N. Nishiyama, and T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions Jim,1996.37(2):p.181-184.
    27. A. Inoue, N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions Jim,1997.38(2):p.179-183.
    28. R.B. Schwarz and Y. He, Formation and properties of bulk amorphous Pd-Ni-P alloys. Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2-Ismanam-96,1997.235-2:p.231-240.
    29. Y. He, R.B. Schwarz, and J.I. Archuleta, Bulk glass formation in the Pd-Ni-P system. Applied Physics Letters,1996.69(13):p.1861-1863.
    30. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, and A. Inoue, Undercooling behavior and critical cooling rate of Pd-Pt-Cu-P alloy. Materials Transactions, 2005.46(12):p.2807-2810.
    31. P. Jia, H. Guo, Y. Li, J. Xu, and E. Ma, A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia,2006. 54(12):p.2165-2168.
    32. X.H. Lin and W.L. Johnson, Formation of Ti-Zr-Cu-Ni Bulk Metallic Glasses. Journal of Applied Physics,1995.78(11):p.6514-6519.
    33. T. Zhang and A. Inoue, Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Materials Transactions Jim,1999.40(4):p. 301-306.
    34. D.H. Xu, G. Duan, and W.L. Johnson, Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Physical Review Letters, 2004.92(24).
    35. Q.S. Zhang, W. Zhang, and A. Inoue, Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Materials Transactions,2007.48(3):p.629-631.
    36. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. Journal of Materials Research,2004.19(5):p.1320-1323.
    37. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter, Structural amorphous steels. Physical Review Letters,2004.92(24).
    38. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters, 2005.86(15).
    39. X.M. Huang, C.T. Chang, Z.Y. Chang, X.D. Wang, Q.P. Cao, B.L. Shen, A. Inoue, and J.Z. Jiang, Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system. Journal of Alloys and Compounds,2008.460(1-2): p.708-713.
    40. Z.Y. Chang, X.M. Huang, L.Y. Chen, M.Y. Ge, Q.K. Jiang, X.P. Nie, and J.Z. Jiang, Catching Fe-based bulk metallic glass with combination of high glass forming ability, ultrahigh strength and good plasticity in Fe-Co-Nb-B system. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009.517(1-2):p.246-248.
    41. S. Yi, J.K. Lee, W.T. Kim, and D.H. Kim, Ni-based bulk amorphous alloys in the Ni-Ti-Zr-Si system. Journal of Non-Crystalline Solids,2001.291(1-2):p. 132-136.
    42. L.Y. Chen, H.T. Hu, G.Q. Zhang, and J.Z. Jiang, Catching the Ni-based ternary metallic glasses with critical diameter up to 3 mm in Ni-Nb-Zr system. Journal of Alloys and Compounds,2007.443(1-2):p.109-113.
    43. H.T. Hu, L.Y. Chen, X.D. Wang, Q.P. Cao, and J.Z. Jiang, Formation of Ni-Nb-Zr-X (X= Ti, Ta, Fe, Cu, Co) bulk metallic glasses. Journal of Alloys and Compounds,2008.460(1-2):p.714-718.
    44. A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, and T. Masumoto, Ti-Based Amorphous-Alloys with a Wide Supercooled Liquid Region. Materials Letters, 1994.19(3-4):p.131-135.
    45. G. He, J. Eckert, and M. Hagiwara, Glass-forming ability and crystallization behavior of Ti-Cu-Ni-Sn-M (M=Zr, Mo, and Ta) metallic glasses. Journal of Applied Physics,2004.95(4):p.1816-1821.
    46. G.J. Hao, J.P. Lin, Y. Zhang, G.L. Chen, and Z.P. Lu, Ti-Zr-Be ternary bulk metallic glasses correlated with binary eutectic clusters. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010.527(23):p.6248-6250.
    47. M.Q. Tang, H.F. Zhang, Z.W. Zhu, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, TiZr-base Bulk Metallic Glass with over 50 mm in Diameter. Journal of Materials Science & Technology,2010.26(6):p.481-486.
    48. F.Q. Guo, S.J. Poon, and G.J. Shiflet, Metallic glass ingots based on yttrium. Applied Physics Letters,2003.83(13):p.2575-2577.
    49. H. Tan, Y. Zhang, D. Ma, Y.P. Feng, and Y. Li, Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Materialia,2003.51(15): p.4551-4561.
    50. Q.K. Jiang, G.Q. Zhang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J.Z. Jiang, La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Materialia,2007.55(13):p.4409-4418.
    51. Q.K. Jiang, G.Q. Zhang, L.Y. Chen, Q.S. Zeng, and J.Z. Jiang, Centimeter-sized (La0.5Ce0.5)-based bulk metallic glasses. Journal of Alloys and Compounds,2006.424(1-2):p.179-182.
    52. Q.S. Zeng, J.F. Liu, G.Q. Zhang, L.N. Wang, and J.Z. Jiang, Synthesis of LaCe-based bulk metallic glasses with low glass transition temperature. Intermetallics,2007.15(5-6):p.753-756.
    53. Q. Luo and W.H. Wang, Rare earth based bulk metallic glasses. Journal of Non-Crystalline Solids,2009.355(13):p.759-775.
    54. R. Li, S.J. Pang, C.L. Ma, and T. Zhang, Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Materialia, 2007.55(11):p.3719-3726.
    55. Q. Zhang, W. Zhang, and A. Inoue, Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm. Materials Transactions,2007. 48(11):p.3031-3033.
    56. A. Inoue, T. Zhang, and T. Masumoto, Zr-Al-Ni Amorphous-Alloys with High Glass-Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions Jim,1990.31(3):p.177-183.
    57. A. Inoue and T. Zhang, Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems. Journal of Non-Crystalline Solids, 1999.250:p.552-559.
    58. D. Turnbull, Under What Conditions Can a Glass Be Formed. Contemporary Physics,1969.10(5):p.473-&.
    59. Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Materialia,2000.42(7):p.667-673.
    60. Z.P. Lu, Y. Li, and S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 2000.270(1-3):p.103-114.
    61. Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia,2002.50(13):p.3501-3512.
    62. Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems. Physical Review Letters,2003.91(11).
    63. G.L. Chen, X.D. Hui, G. He, and Z. Bian, Multicomponent chemical short range order undercooling and the formation of bulk metallic glasses. Materials Transactions,2001.42(6):p.1095-1102.
    64. Y.M. Wang, J.B. Qiang, C.H. Wong, C.H. Shek, and C. Dong, Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion. Journal of Materials Research,2003.18(3):p.642-648.
    65. Y.M. Wang, C.H. Shek, J.B. Qiang, C.H. Wong, Q. Wang, X.F. Zhang, and C. Dong, The e/a criterion for the largest glass-forming abilities of the Zr-Al-Ni(Co) alloys. Materials Transactions,2004.45(4):p.1180-1183.
    66. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters,2005.86(19).
    67. L. Bragg and J.F. Nye, A Dynamical Model of a Crystal Structure. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1947.190(1023):p.474-&.
    68. G.S. Cargill, Structural Investigation of Noncrystalline Nickel-Phosphorus Alloys. Journal of Applied Physics,1970.41(1):p.12-&.
    69. J.D. Bernal, Geometrical Approach to the Structure of Liquids. Nature,1959. 183(4655):p.141-147.
    70. D.E. Polk, Structure of Glassy Metallic Alloys. Acta Metallurgica, 1972.20(4): p.485-&.
    71. J. A. Barker, M.R. Hoare, and J.L. Finney, Relaxation of Bernal Model. Nature, 1975.257(5522):p.120-122.
    72. P.H. Gaskell, New Structural Model for Transition Metal-Metalloid Glasses. Nature,1978.276(5687):p.484-485.
    73. D.B. Miracle, W.S. Sanders, and O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses. Philosophical Magazine, 2003.83(20):p.2409-2428.
    74. D.B. Miracle, A structural model for metallic glasses. Nature Materials,2004. 3(10):p.697-702.
    75. D.B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses. Acta Materialia,2006.54(16):p.4317-4336.
    76. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature,2006.439(7075): p.419-425.
    77. D. Ma, A.D. Stoica, and X.L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nature Materials,2009.8(1):p. 30-34.
    78. T. Burgess and M. Ferry, Nanoindentation of metallic glasses. Materials Today, 2009.12(1-2):p.24-32.
    79. M.F. Ashby and A.L. Greer, Metallic glasses as structural materials. Scripta Materialia,2006.54(3):p.321-326.
    80. HJ. Leamy, H.S. Chen, and T.T. Wang, Plastic-Flow and Fracture of Metallic Glass. Metallurgical Transactions,1972.3(3):p.699-&.
    81. B.L. Shen, A. Inoue, and C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. Applied Physics Letters,2004.85(21):p.4911-4913.
    82. J.M. Borrego, A. Conde, S. Roth, and J. Eckert, Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. Journal of Applied Physics,2002.92(4):p.2073-2078.
    83. H.W. Chang, Y.C. Huang, C.W. Chang, C.C. Hsieh, and W.C. Chang, Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=Al, Hf, Nb, Ta, and Ti). Journal of Alloys and Compounds,2009.472(1-2):p. 166-170.
    84. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Materialia,2004.52(6):p.1631-1637.
    85. T. Itoi, T. Takamizawa, Y. Kawamura, and A. Inoue, Fabrication of Co40Fe22Nb8B30 bulk metallic glasses by consolidation of gas-atomized powders and their soft-magnetic properties. Scripta Materialia,2001.45(10): p.1131-1137.
    86. T.D. Shen and R.B. Schwarz, Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Materialia,2001.49(5):p.837-847.
    87. W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, and H.Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by micro alloying. Journal of Physics-Condensed Matter,2004.16(21):p. 3719-3723.
    88. Y. Yoshizawa, S. Oguma, and K. Yamauchi, New Fe-Based Soft Magnetic-Alloys Composed of Ultrafine Grain-Structure. Journal of Applied Physics,1988.64(10):p.6044-6046.
    89. A. Inoue, Y. Kawamura, and Y. Saotome, High strain rate superplasticity of supercooled liquid for amorphous alloys. Towards Innovation in Superplasticity I,1997.233-2:p.147-153.
    90. M.D. Demetriou, C. Veazey, J. Schroers, J.C. Hanan, and W.L. Johnson, Thermo-plastic expansion of amorphous metallic foam. Journal of Alloys and Compounds,2007.434:p.92-96.
    91. G. Kumar and J. Schroers, Write and erase mechanisms for bulk metallic glass. Applied Physics Letters,2008.92(3).
    92. R. Martinez, G. Kumar, and J. Schroers, Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Materialia,2008.59(2):p.187-190.
    93. J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia,2008.56(3):p.471-478.
    94. J. Schroers, T. Nguyen, and A. Desai, Superplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication. MEMS 2006: 19th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest,2006:p.298-301.
    95. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis, Blow molding of bulk metallic glass. Scripta Materialia,2007.57(4):p.341-344.
    96. J. Schroers, T. Nguyen, S. O'Keeffe, and A. Desai, Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007.449:p.898-902.
    97. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Materialia,1998.46(1):p.253-263.
    98. A. Inoue and N. Nishiyama, New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. Mrs Bulletin,2007. 32(8):p.651-658.
    99. C.A. Tulk, R. Hart, D.D. Klug, C.J. Benmore, and J. Neuefeind, Adding a length scale to the polyamorphic ice debate. Physical Review Letters,2006. 97(11).
    100. O. Mishima and Y. Suzuki, Propagation of the polyamorphic transition of ice and the liquid-liquid critical point. Nature,2002.419(6907):p.599-603.
    101. E. Soignard, S.A. Amin, Q. Mei, C.J. Benmore, and J.L. Yarger, High-pressure behavior of As(2)O(3):Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B,2008.77(14).
    102. J.S. Tse, D.D. Klug, and Y. Lepage, High-Pressure Densification of Amorphous Silica. Physical Review B,1992.46(10):p.5933-5938.
    103. M. Guthrie, C.A. Tulk, C.J. Benmore, J. Xu, J.L. Yarger, D.D. Klug, J.S. Tse, H.K. Mao, and R. J. Hemley, Formation and structure of a dense octahedral glass. Physical Review Letters,2004.93(11).
    104. J.P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, and H. Tolentino, Pressure-Induced Coordination Changes in Crystalline and Vitreous Geo2. Physical Review Letters,1989.63(4):p.398-401.
    105. Q. Mei, C.J. Benmore, R.T. Hart, E. Bychkov, P.S. Salmon, C.D. Martin, F.M. Michel, S.M. Antao, P.J. Chupas, P.L. Lee, S.D. Shastri, J.B. Parise, K. Leinenweber, S. Amin, and J.L. Yarger, Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy x-ray and neutron diffraction measurements. Physical Review B,2006.74(1).
    106. W.A. Crichton, M. Mezouar, T. Grande, S. Stolen, and A. Grzechnik, Breakdown of intermediate-range order in liquid GeSe2 at high pressure. Nature,2001.414(6864):p.622-625.
    107. P.F. Mcmillan, M. Wilson, D. Daisenberger, and D. Machon, A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Materials,2005.4(9):p.680-684.
    108. V.V. Vasisht, S. Saw, and S. Sastry, Liquid-liquid critical point in supercooled silicon. Nature Physics,2011.7(7):p.549-553.
    109. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, and G.N. Greaves, Polyamorphism and liquid-liquid phase transitions: challenges for experiment and theory. Journal of Physics-Condensed Matter,2007. 19(41).
    110. A.F. Wells, Structural inorganic chemistry.5th ed.1984, Oxford Oxfordshire New York: Clarendon Press;Oxford University Press, ⅹⅹⅹⅰ,1382 p.,1387 p. of plates.
    111. P.H. Poole, T. Grande, F. Sciortino, H.E. Stanley, and C.A. Angell, Amorphous Polymorphism. Computational Materials Science,1995.4(4):p.373-382.
    112. M. Choukroun and O. Grasset, Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. Journal of Chemical Physics,2007.127(12).
    113. M. Cogoni, B. D'Aguanno, L.N. Kuleshova, and D.W.M. Hofmann, A powerful computational crystallography method to study ice polymorphism. Journal of Chemical Physics,2011.134(20).
    114. A.G. Lyapin, O.V. Stal'gorova, E.L. Gromnitskaya, and V.V. Brazhkin, Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression. Journal of Experimental and Theoretical Physics,2002.94(2):p.283-292.
    115. O. Mishima and H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature,1998.396(6709):p.329-335.
    116. L. Liu, S.H. Chen, A. Faraone, C.W. Yen, and C.Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Physical Review Letters,2005.95(11).
    117. O. Mishima, L.D. Calvert, and E. Whalley, Melting Ice-I at 77-K and 10-Kbar a New Method of Making Amorphous Solids. Nature,1984.310(5976):p. 393-395.
    118. O. Mishima, L.D. Calvert, and E. Whalley, An Apparently 1st-Order Transition between 2 Amorphous Phases of Ice Induced by Pressure. Nature, 1985.314(6006):p.76-78.
    119. O. Mishima, K. Takemura, and K. Aoki, Visual Observations of the Amorphous-Amorphous Transition in H20 under Pressure. Science,1991. 254(5030):p.406-408.
    120. O. Mishima, Reversible 1st-Order Transition between 2 H2o Amorphs at Similar-to-0.2 Gpa and Similar-to-135-K. Journal of Chemical Physics,1994. 100(8):p.5910-5912.
    121. L. Bosio, G.P. Johari, and J. Teixeira, X-Ray Study of High-Density Amorphous Water. Physical Review Letters,1986.56(5):p.460-463.
    122. J.S. Tse and M.L. Klein, Pressure-Induced Amorphization of Ice I-H. Journal of Chemical Physics,1990.92(6):p.3992-3994.
    123. J.S. Tse, D.D. Klug, C.A. Tulk, I. Swainson, E.C. Svensson, C.K. Loong, V. Shpakov, V.R. Belosludov, R.V. Belosludov, and Y. Kawazoe, The mechanisms for pressure-induced amorphization of ice I-h. Nature,1999.400(6745):p. 647-649.
    124. J.S. Tse and M.L. Klein, Pressure-Induced Phase-Transformations in Ice. Physical Review Letters,1987.58(16):p.1672-1675.
    125. V.V. Brazhkin, S.V. Popova, and R.N. Voloshin, High-pressure transformations in simple melts. High Pressure Research,1997.15(5):p. 267-305.
    126. M. Grimsditch, Polymorphism in Amorphous SiO2. Physical Review Letters, 1984.52(26):p.2379-2381.
    127. M. Grimsditch, Annealing and Relaxation in the High-Pressure Phase of Amorphous Sio2. Physical Review B,1986.34(6):p.4372-4373.
    128. K.H. Smith, E. Shero, A. Chizmeshya, and G.H. Wolf, The Equation of State of Polyamorphic Germania Glass-a 2-Domain Description of the Viscoelastic Response. Journal of Chemical Physics,1995.102(17):p.6851-6857.
    129. C. Meade, R.J. Hemley, and H.K. Mao, High-Pressure X-Ray-Diffraction of Sio2 Glass. Physical Review Letters,1992.69(9):p.1387-1390.
    130. R.J. Hemley, A.P. Jephcoat, H.K. Mao, L.C. Ming, and M.H. Manghnani, Pressure-Induced Amorphization of Crystalline Silica. Nature,1988. 334(6177):p.52-54.
    131. Q. Williams and R. Jeanloz, Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate-Glasses and Melts. Science,1988. 239(4842):p.902-905.
    132. I. Saika-Voivod, F. Sciortino, and P.H. Poole, Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition. Physical Review E, 2001.63(1).
    133. I. Saika-Voivod, P.H. Poole, and F. Sciortino, Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature,2001. 412(6846):p.514-517.
    134. I. Saika-Voivod, F. Sciortino, and P.H. Poole, Fragile-to-strong crossover and polyamorphism in liquid silica: changes in liquid structure. Philosophical Magazine,2004.84(13-16):p.1437-1445.
    135. P.H. Poole, T. Grande, C.A. Angell, and P.F. McMillan, Polymorphic phase transitions in liquids and glasses. Science,1997.275(5298):p.322-323.
    136. C.A. Angell, Formation of Glasses from Liquids and Biopolymers. Science, 1995.267(5206):p.1924-1935.
    137. P. McMillan, Phase transitions-Jumping between liquid states. Nature,2000. 403(6766):p.151-152.
    138. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, A first-order liquid-liquid phase transition in phosphorus. Nature, 2000.403(6766):p.170-173.
    139. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Macroscopic separation of dense fluid phase and liquid phase of phosphorus. Science,2004.306(5697):p.848-851.
    140. D. Hohl and R.O. Jones, Polymerization in Liquid Phosphorus-Simulation of a Phase-Transition. Physical Review B,1994.50(23):p.17047-17053.
    141. T. Morishita, Liquid-liquid phase transitions of phosphorus via constant-pressure first-principles molecular dynamics simulations. Physical Review Letters,2001.87(10):p. art. no.-105701.
    142. Y. Senda, F. Shimojo, and K. Hoshino, The metal-nonmetal transition of liquid phosphorus by ab initio molecular-dynamics simulations. Journal of Physics-Condensed Matter,2002.14(14):p.3715-3723.
    143. M.E. Cates, Theory of the Viscosity of Polymeric Liquid Sulfur. Europhysics Letters,1987.4(4):p.497-502.
    144. A. Donaldson and A.D. Caplin, Refractive-Index of Molten Sulfur. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties,1985.52(2):p.185-197.
    145. J.N. Glosli and F.H. Ree, Liquid-liquid phase transformation in carbon. Physical Review Letters,1999.82(23):p.4659-4662.
    146. M.O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate, D.C. Jacobson, A.G. Cullis, and N.G. Chew, Melting Temperature and Explosive Crystallization of Amorphous-Silicon during Pulsed Laser Irradiation. Physical Review Letters,1984.52(26):p.2360-2363.
    147. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, and D.C. Jacobson, Heat of Crystallization and Melting-Point of Amorphous-Silicon. Applied Physics Letters,1983.42(8):p.698-700.
    148. Shimomur.O, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, Fukushim.J, and H. Endo, Pressure-Induced Semiconductor-Metal Transitions in Amorphous Si and Ge. Philosophical Magazine,1974.29(3):p.547-558.
    149. Q.S. Zeng, Y.C. Li, C.M. Feng, P. Liermann, M. Somayazulu, G.Y. Shen, H.K. Mao, R. Yang, J. Liu, T.D. Hu, and J.Z. Jiang, Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure. Proceedings of the National Academy of Sciences of the United States of America,2007.104(34):p.13565-13568.
    150. Q.S. Zeng, Y. Ding, W.L. Mao, W.G. Yang, S.V. Sinogeikin, J.F. Shu, H.K. Mao, and J.Z. Jiang, Origin of Pressure-Induced Polyamorphism in Ce75Al25 Metallic Glass. Physical Review Letters,2010.104(10).
    151. Q.S. Zeng, Y. Ding, W.L. Mao, W. Luo, A. Blomqvist, R. Ahuja, W. Yang, J. Shu, S.V. Sinogeikin, Y. Meng, D.L. Brewe, J.Z. Jiang, and H.K. Mao, Substitutional alloy of Ce and Al. Proceedings of the National Academy of Sciences of the United States of America,2009.106(8):p.2515-2518.
    152. Q.S. Zeng, H.W. Sheng, Y. Ding, L. Wang, W.G. Yang, J.Z. Jiang, W.L. Mao, and H.K. Mao, Long-Range Topological Order in Metallic Glass. Science, 2011.332(6036):p.1404-1406.
    153. Q.S. Zeng, Y.Z. Fang, H.B. Lou, Y. Gong, X.D. Wang, K. Yang, A.G. Li, S. Yan, C. Lathe, F.M. Wu, X.H. Yu, and J.Z. Jiang, Low-density to high-density transition in Ce75Al23Si2 metallic glass. Journal of Physics-Condensed Matter,2010.22(37).
    154. Q.S. Zeng, C.R. Rotundu, W.L. Mao, J.H. Dai, YM. Xiao, P. Chow, X.J. Chen, C.L. Qin, H.K. Mao, and J.Z. Jiang, Low temperature transport properties of Ce-Al metallic glasses. Journal of Applied Physics,2011.109(11).
    155. Q.S. Zeng, W.L. Mao, H.W. Sheng, Z.D. Zeng, Q.Y. Hu, Y Meng, H.B. Lou, F. Peng, W.G. Yang, S.V. Sinogeikin, and J.Z. Jiang, The effect of composition on pressure-induced devitrification in metallic glasses. Applied Physics Letters, 2013.102(17).
    156. H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, and E. Ma, Polyamorphism in a metallic glass. Nature Materials,2007.6(3):p. 192-197.
    157. A.R. Yavari, The changing faces of disorder. Nature Materials,2007.6(3):p. 181-182.
    158. X.R. Liu and S.M. Hong, Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses. Applied Physics Letters,2007.90(25).
    159. M.J. Duarte, P. Bruna, E. Pineda, D. Crespo, G. Garbarino, R. Verbeni, K. Zhao, W.H. Wang, A.H. Romero, and J. Serrano, Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation. Physical Review B,2011. 84(22).
    160. G. Li, Y.Y. Wang, P.K. Liaw, Y.C. Li, and R.P. Liu, Electronic Structure Inheritance and Pressure-Induced Polyamorphism in Lanthanide-Based Metallic Glasses. Physical Review Letters,2012.109(12).
    161. A. Cadien, Q.Y. Hu, Y. Meng, Y.Q. Cheng, M.W Chen, J.F. Shu, H.K. Mao, and H.W. Sheng, First-Order Liquid-Liquid Phase Transition in Cerium. Physical Review Letters,2013.110(12).
    162. Y. Waseda, The structure of non-crystalline materials: liquids and amorphous solids.1980, New York; London: McGraw-Hill International Book Co. xv, 326 p.
    163. D. Holland-Moritz, T. Schenk, R. Bellissent, S. V, K. Funakoshi, J.M. Merino, T. Buslaps, and S. Reutzel, Short-range order in undercooled Co melts. Journal of Non-Crystalline Solids,2002.312-14:p.47-51.
    164. J.M. Haile, Molecular dynamics simulation: elementary methods.1992, New York: Wiley, xvii,489 p.
    165. D.C. Rapaport, The art of molecular dynamics simulation.2nd ed.2004, Cambridge, UK; New York, NY: Cambridge University Press, ⅹⅲ,549 p.
    166. G. Kresse and J. Hafner, Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition-Elements. Journal of Physics-Condensed Matter, 1994.6(40):p.8245-8257.
    167. R.L. McGreevy, Reverse Monte Carlo modelling. Journal of Physics-Condensed Matter,2001.13(46):p. R877-R913.
    168. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review B, 1964.136(3B):p. B864-&.
    169. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965.140(4A):p.1133.
    170. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters,1996.77(18):p.3865-3868.
    171. A. Seidl, A. Gorling, P. Vogl, J.A. Majewski, and M. Levy, Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B,1996. 53(7):p.3764-3774.
    172. G.E. Engel, Linear response and the exchange-correlation hole within a screened-exchange density functional theory. Physical Review Letters,1997. 78(18):p.3515-3518.
    173. F.C. Frank, Supercooling of Liquids. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1952.215(1120):p. 43-46.
    174. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann, and G. Reiter, Observation of five-fold local symmetry in liquid lead. Nature,2000. 408(6814):p.839-841.
    175. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D.M. Herlach, Icosahedral short-range order in deeply undercooled metallic melts. Physical Review Letters,2002.89(7).
    176. S. Hosokawa, J. Greif, F. Demmel, and W.C. Pilgrim, Quasielastic lineshape of liquid Sn studied by inelastic X-ray scattering. Chemical Physics,2003. 292(2-3):p.253-261.
    177. L. Hui and F. Pederiva, Local atomic structural order in the supercooled liquid and glassy Al under normal and high pressures. Journal of Chemical Physics, 2003.118(23):p.10707-10711.
    178. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, and D.S. Robinson, First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Physical Review Letters,2003. 90(19).
    179. A. Di Cicco, A. Trapananti, S. Faggioni, and A. Filipponi, Is there icosahedral ordering in liquid and undercooled metals? Physical Review Letters,2003. 91(13).
    180. N. Jakse and A. Pasturel, Local order of liquid and supercooled zirconium by ab initio molecular dynamics. Physical Review Letters,2003.91(19).
    181. N. Jakse and A. Pasturel, Ab initio molecular dynamics simulations of local structure of supercooled Ni. Journal of Chemical Physics,2004.120(13):p. 6124-6127.
    182. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, and D.S. Robinson, Difference in icosahedral short-range order in early and late transition metal liquids. Physical Review Letters,2004.93(3).
    183. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, and M. Ruhle, Ordered liquid aluminum at the interface with sapphire. Science,2005.310(5748):p. 661-663.
    184. P. Ganesh and M. Widom, Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass. Physical Review B,2008. 77(1).
    185. P. Ganesh and M. Widom, Signature of nearly icosahedral structures in liquid and supercooled liquid copper. Physical Review B,2006.74(13).
    186. D. Holland-Moritz, S. Stuber, H. Hartmann, T. Unruh, T. Hansen, and A. Meyer, Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Physical Review B,2009.79(6).
    187. L. Huang, C.Z. Wang, and K.M. Ho, Structure and dynamics of liquid Ni36Zr64 by ab initio molecular dynamics. Physical Review B,2011.83(18).
    188. Y.T. Shen, T.H. Kim, A.K. Gangopadhyay, and K.F. Kelton, Icosahedral Order, Frustration, and the Glass Transition: Evidence from Time-Dependent Nucleation and Supercooled Liquid Structure Studies. Physical Review Letters, 2009.102(5).
    189. N.A. Mauro, V. Wessels, J.C. Bendert, S. Klein, A.K. Gangopadhyay, M.J. Kramer, S.G. Hao, G.E. Rustan, A. Kreyssig, A.I. Goldman, and K.F. Kelton, Short-and medium-range order in Zr80Pt20 liquids. Physical Review B,2011. 83(18).
    190. S. Wu, M.J. Kramer, X.W. Fang, S.Y. Wang, C.Z. Wang, K.M. Ho, Z.J. Ding, and L.Y. Chen, Structural and dynamical properties of liquid Cu80Si20 alloy studied experimentally and by ab initio molecular dynamics simulations. Physical Review B,2011.84(13).
    191. J.G. Kang, J.Y. Zhu, S.H. Wei, E. Schwegler, and Y.H. Kim, Persistent Medium-Range Order and Anomalous Liquid Properties of All-xCux Alloys. Physical Review Letters,2012.108(11).
    192. N. Mattern, H. Hermann, S. Roth, J. Sakowski, M.P. Macht, P. Jovari, and J.Z. Jiang, Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition. Applied Physics Letters,2003.82(16):p. 2589-2591.
    193. Q.K. Jiang, Z.Y. Chang, X.D. Wang, and J.Z. Jiang, Structures at Glassy, Supercooled Liquid, and Liquid States in La-Based Bulk Metallic Glasses. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2010.41A(7):p.1634-1639.
    194. K. Georgarakis, D.V. Louzguine-Luzgin, J. Antonowicz, G. Vaughan, A.R. Yavari, T. Egami, and A. Inoue, Variations in atomic structural features of a supercooled Pd-Ni-Cu-P glass forming liquid during in situ vitrification. Acta Materialia,2011.59(2):p.708-716.
    195. D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, and C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36 38.2,40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Materialia,2004.52(9):p.2621-2624.
    196. P. Yu, H.Y. Bai, M.B. Tang, and W.L. Wang, Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids,2005. 351(14-15):p.1328-1332.
    197. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Bulk metallic glass formation in the binary Cu-Zr system. Applied Physics Letters,2004.84(20):p. 4029-4031.
    198. G.Q. Zhang, Q.K. Jiang, L.Y. Chen, M. Shao, J.F. Liu, and J.Z. Jiang, Synthesis of centimeter-size Ag-doped Zr-Cu-Al metallic glasses with large plasticity. Journal of Alloys and Compounds,2006.424(1-2):p.176-178.
    199. X.D. Wang, S. Yin, Q.P. Cao, J.Z. Jiang, H. Franz, and Z.H. Jin, Atomic structure of binary Cu(64.5)Zr(35.5) bulk metallic glass. Applied Physics Letters,2008.92(1).
    200. X.D. Wang, H.B. Lou, Y. Gong, U. Vainio, and J.Z. Jiang, Heterogeneities in CuZr-based bulk metallic glasses studied by x-ray scattering. Journal of Physics-Condensed Matter,2011.23(7).
    201. G. Duan, A. Wiest, M.L. Lind, J. Li, W.K. Rhim, and W.L. Johnson, Bulk metallic glass with benchmark thermoplastic processability. Advanced Materials,2007.19(23):p.4272-+.
    202. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature,2008.451(7182):p.1085-U1083.
    203. J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, and K. Hono, Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Materialia,2005.53(2):p. 165-169.
    204. Y. Li, Q. Guo, J.A. Kalb, and C.V. Thompson, Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science,2008.322(5909):p. 1816-1819.
    205. T. Ishikawa, P.F. Paradis, T. Itami, and S. Yoda, Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator Measurement Science & Technology,2005.16(2):p.443-451.
    206. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and A. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction. Acta Materialia,2005.53(6):p. 1611-1619.
    207. O.L. Anderson, D.G. Isaak, and S. Yamamoto, Anharmonicity and the Equation of State for Gold. Journal of Applied Physics,1989.65(4):p. 1534-1543.
    208. P.A. Lee and J.B. Pendry, Theory of Extended X-Ray Absorption Fine-Structure. Physical Review B,1975.11(8):p.2795-2811.
    209. C.R. Natoli, M. Benfatto, C. Brouder, M.F.R. Lopez, and D.L. Foulis, Multichannel Multiple-Scattering Theory with General Potentials. Physical Review B,1990.42(4):p.1944-1968.
    210. A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Physical Review B,1998.58(12):p.7565-7576.
    211. Q.F. Gu, G. Krauss, Y. Grin, and W. Steurer, Experimental confirmation of the stability and chemical bonding analysis of the high-pressure phases Ca-Ⅰ, Ⅱ, and Ⅲ at pressures up to 52 GPa. Physical Review B,2009.79(13).
    212. B.Q. Huang and J.D. Corbett, Two new binary calcium-aluminum compounds: Ca13Al14, with a novel two-dimensional aluminum network, and Ca8Al3, an Fe3Al-type analogue. Inorganic Chemistry,1998.37(22):p.5827-5833.
    213. B. Ravel, ATOMS: crystallography for the X-ray absorption spectroscopist. Journal of Synchrotron Radiation,2001.8:p.314-316.
    214. T.A. Tyson, K.O. Hodgson, C.R. Natoli, and M. Benfatto, General Multiple-Scattering Scheme for the Computation and Interpretation of X-Ray-Absorption Fine-Structure in Atomic Clusters with Applications to Sf6, Gecl4, and Br2 Molecules. Physical Review B,1992.46(10):p.5997-6019.
    215. P.E. Blochl, Projector Augmented-Wave Method. Physical Review B,1994. 50(24):p.17953-17979.
    216. H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations. Physical Review B,1976.13(12):p.5188-5192.
    217. H. Olijnyk and W.B. Holzapfel, Phase-Transitions in Alkaline-Earth Metals underPressure. Physics Letters A,1984.100(4):p.191-194.
    218. R. Ahuja, O. Eriksson, J.M. Wills, and B. Johansson, Theoretical Confirmation of the High-Pressure Simple Cubic Phase in Calcium. Physical Review Letters, 1995.75(19):p.3473-3476.
    219. T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, New high-pressure phase of calcium. Journal of the Physical Society of Japan,2005.74(9):p. 2391-2392.
    220. E.G. Maksimov, M.V. Magnitskaya, and V.E. Fortov, Non-simple behavior of simple metals at high pressure. Physics-Uspekhi,2005.48(8):p.761-780.
    221. B. Maroni, D. Di Castro, M. Hanfland, J. Boby, C. Vercesi, M.C. Mozzati, S. Weyeneth, H. Keller, R. Khasanov, C. Drathen, P. Dore, P. Postorino, and L Malavasi, Pressure Effects in the Isoelectronic REFe0.85Ir0.15AsO System. Journal of the American Chemical Society,2011.133(10):p.3252-3255.
    222. S. Sergeenkov, Influence of chemical pressure effects on nonlinear thermal conductivity of intrinsically granular superconductors. Journal of Applied Physics,2007.102(6).
    223. C.S. Lue, R.F. Liu, M.Y. Song, K.K. Wu, and Y.K. Kuo, Chemical pressure effect on the transport and electronic band structure of Fe(2)V(1-x)Nb(x)Al. Physical Review B,2008.78(16).
    224. N. Ru, C.L. Condron, G.Y. Margulis, K.Y. Shin, J. Laverock, S.B. Dugdale, M.F. Toney, and I.R. Fisher, Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe(3). Physical Review B,2008. 77(3).
    225. T. Horii, S. Shimada, T. Nakano, S. Murayama, H. Takano, M. Hedo, and Y. Uwatoko, Chemical pressure effect in the heavy fermion compound Cel-yLay(Ru0.85Rh0.15)(2)Si2. Journal of Magnetism and Magnetic Materials,2007.310(2):p.313-315.
    226. S.R. Nagel, Thermoelectric-Power and Resistivity in a Metallic Glass. Physical Review Letters,1978.41(14):p.990-993.
    227. D.G. Naugle, Electron-Transport in Amorphous Metals. Journal of Physics and Chemistry of Solids,1984.45(4):p.367-388.
    228. J. Hafner, Resistivity of Liquid, Supercooled Liquid and Amorphous-Alloys under Elevated Pressure. Journal of Non-Crystalline Solids,1985.69(2-3):p. 325-345.
    229. D. Okai, A. Nanbu, T. Fukami, T. Yamasaki, T. Zhang, Y. Yokoyama, G. Motoyama, Y. Oda, H.M. Kimura, and A. Inoue, Temperature dependence of electrical resistivity of Zr-Cu-Al-Ni-Nb bulk metallic glasses below 300 K. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007.449:p.548-551.
    230. U. Mizutani, Experimental Studies of Electron Transport Properties in Non-Magnetic Metallic Glasses. Key Engineering Materials,1987.13-15:p. 365-376.
    231. D.P. Love, F.C. Wang, D.G. Naugle, C.L. Tsai, B.C. Giessen, and T.O. Callaway, Electrical-Properties of Cal-xAlx Metallic Glasses. Physics Letters A,1982.90(6):p.303-308.
    232. U. Mizutani and T. Matsuda, Electronic-Properties of Cal-xAlx Metallic Glasses. Journal of Physics F-Metal Physics,1983.13(10):p.2115-2125.
    233. J. Erwin, R. Delgado, H. Armbruster, D.G. Naugle, D.P. Love, F.C. Wang, C.L Tsai, and T.O. Callaway, Thermopower of Cal-xAlx Metallic Glasses. Physics Letters A,1984.100(2):p.97-100.
    234. N.V. Melnikova, V.E. Egorushkin, and V.A. Varnavskii, Low-temperature kinetic properties of the amorphous alloy CaxAl1-x (0.2    235. G. Fritsch, J. Willer, A. Wildermuth, and E. Luscher, Pressure-Dependence of the Electrical-Resistivity of Some Metallic Glasses. Journal of Physics F-Metal Physics,1982.12(12):p.2965-2974.
    236. E. Luescher, J. Willer, and G. Fritsch, Transport-Properties of Metallic Glasses at High-Pressures. Journal of Non-Crystalline Solids,1984.61-2(Jan):p. 1109-1114.
    237. L.V. Meisel, P.J. Cote, T. Matsuda, and U. Mizutani, Pressure-Dependence of Electrical-Resistivity for Mg-Based Amorphous-Alloys. Journal of Physics F-Metal Physics,1986.16(9):p.1219-1226.
    238. J.K. Vassiliou, Pressure-Dependence of the Resistivity of Mg70zn30 Metallic-Glass. Journal of Applied Physics,1986.59(2):p.482-484.
    239. Q.S. Zeng, V.V. Struzhkin, Y.Z. Fang, C.X. Gao, H.B. Luo, X.D. Wang, C. Lathe, W.L. Mao, F.M. Wu, H.K. Mao, and J.Z. Jiang, Properties of polyamorphous Ce75Al25 metallic glasses. Physical Review B,2010.82(5).
    240. M. Fukuhara, C. Gangli, K. Matsubayashi, and Y. Uwatoko, Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy. Applied Physics Letters,2012.100(25).
    241. P.J. Cote and L.V. Meisel, Effect of Pressure on Electrical-Resistance of Transition-Metal-Based Alloys. Physical Review B,1982.25(4):p. 2138-2143.
    242. L.E. McNeil and D. Lazarus, Effect of Pressure on the Resistivity and Hall-Coefficient of Amorphous Metallic Alloys. Physical Review B,1983. 27(10):p.6007-6018.
    243. U. Mizutani, M. Tanaka, and H. Sato, Studies of Negative TCR and Electronic-Structure of Nonmagnetic Metallic Glasses Based on Y and La. Journal of Physics F-Metal Physics,1987.17(1):p.131-141.
    244. U. Mizutani, M. Sasaura, Y. Yamada, and T. Matsuda, Electronic-Structure and Electron-Transport of Ca-Mg-Al Metallic Glasses. Journal of Physics F-Metal Physics,1987.17(3):p.667-678.
    245. G. Henkelman, A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006.36(3):p.354-360.
    246. S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Physical Review B,1986.33(12):p.7983-7991.
    247. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 2004.69(14).
    248. H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, and M.W. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals. Physical Review B,2011.83(13).
    249. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics. Journal of Computational Physics,1995.117(1):p.1-19.
    250. J.L. Finney, Modeling Structures of Amorphous Metals and Alloys. Nature, 1977.266(5600):p.309-314.
    251. T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino, Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation:A comparison to liquid Pb. Physical Review B,2003. 67(6).
    252. N.A. Mauro, W. Fu, J.C. Bendert, Y.Q. Cheng, E. Ma, and K.F. Kelton, Local atomic structure in equilibrium and supercooled liquid Zr75.5Pd24.5. Journal of Chemical Physics,2012.137(4).
    253. S. Mukherjee, Z. Zhou, J. Schroers, W.L. Johnson, and W.K. Rhim, Overheating threshold and its effect on time-temperature-transformation diagrams of zirconium based bulk metallic glasses. Applied Physics Letters, 2004.84(24):p.5010-5012.
    254. C. Way, P. Wadhwa, and R. Busch, The influence of shear rate and temperature on the viscosity and fragility of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic-glass-forming liquid. Acta Materialia,2007.55(9):p.2977-2983.
    255. J. Mao, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, The Effects of Casting Temperature on the Glass Formation of Zr-Based Metallic Glasses. Advanced Engineering Materials,2009.11(12):p.986-991.
    256. G Kumar, T. Ohkubo, and K. Hono, Effect of melt temperature on the mechanical properties of bulk metallic glasses. Journal of Materials Research, 2009.24(7):p.-2353-2360.
    257. Y. Hu, J.F. Li, T. Lin, and Y.H. Zhou, Plasticity improvement of Zr55Al10Ni5Cu30 bulk metallic glass by remelting master alloy ingots. Journal of Materials Research,2009.24(12):p.3590-3595.
    258. J. Schroers, Processing of Bulk Metallic Glass. Advanced Materials,2010. 22(14):p.1566-1597.
    259. J.A. Mu, H.M. Fu, Z.W. Zhu, A.M. Wang, H. Li, Z.Q. Hu, and H.F. Zhang, The Effect of Melt Treatment on Glass Forming Ability and Thermal Stability of Al-Based Amorphous Alloy. Advanced Engineering Materials,2010.12(11): p.1127-1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700