步行能量消耗特征的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景与目的
     步行作为一项深受大众喜爱的运动,关于它的科学研究由来已久,虽然在能量代谢领域国外的研究已经取得一些成果,但仍有很多问题需要进一步探索。并且,随着测量技术的进步和大众科学健身需求的高涨,给步行的科学研究提出了新的命题。目前,我国关于中国人步行能耗的研究开展较少,缺少基础的研究数据指导科学健身。因此,本研究的主要目的在于测量研究中国人的步行能耗特征,建立场地步行的能耗预测公式,构建有科学证据支持的步行指导建议,探讨步行能耗参数在实际健身指导活动中的应用。
     2.研究方法
     研究方法分为两类。
     一是基础性研究。研究对象为20~60岁健康男女共计1283名,在场地上进行从4.8km/h到8.8km/h多级速度的步行和跑步测试,用“气体代谢”测量仪(Cortex MetaMax3B)采集能耗数据。另外,从1283名受试者中选取部分受试者进行从3.8km/h到6.4km/h的步行能耗测试同时采集步频参数。还有部分受试者为进行能源物质利用研究,开展了3项测试——恒定速度持续运动的能耗测试、自选舒适步速与步频测量、恒定速度改变步频的步行能耗测试。
     二是应用性研究。用随机控制实验法(RCT)在社区开展了8周步行干预实验,研究对象为50~60岁社区老年人40名,分成三组:对照组、每日万步组、快步频+3300步组,比较不同步行锻炼指导建议对社区老年人步行行为和健康的影响。
     3.研究结果
     3.1速度与能耗以及能耗预测公式的建立
     本研究分析了身高、体重、性别、年龄因素对能耗的影响,研究结果表明,体重是影响能耗最主要因素,性别间存在一定的能耗差异,在预测能耗值时上述因素应考虑在内。
     4.8km/h~6.4km/h的速度范围内,随着速度增加,步行能耗逐步增加。在建立速度能耗预测公式时,比较了三种模型(线性模型、二次方程模型和指数模型)的拟合效果,结果表明指数模型最佳。[Y1.9e(0.2speed)0.095weight0.0004weight24.52G14.72G0(R2=0.922)]。说明步行速度与能耗之间尽管存在相关关系,但这种相关关系不是线性关系,而是曲线关系(更准确说是指数函数关系)。反映了随着行走速度的加快,人体需要额外的能量带动四肢和躯干,耗能效率降低。此外,本研究发现,国外步行预测公式估测出的步行能耗值与实际测量值之间有显著差异,步速越快差异越大(超过20%的误差),这也从另一个方面证明建立中国人步行能耗预测方法的必要性。
     本研究对所建模型进行了回代检验,相对误差在-5%~5%之内,说明模型能够较好的模拟中国成年人的步行能耗。
     3.2步频与能耗
     步频也是反映步行负荷特征的一个重要变量。相同速度下,个体之间有不同的步频和步幅,步频快、步幅小者能耗水平高,增加8%的能耗。随着速度增加,步频会越来越快,能耗相应增加。本研究也建立了以步频为主要因子的能耗预测方程,同之前建立的速度能耗预测公式比较,步频公式的拟合度不如速度公式,但由大众使用计算步行能耗时更方便。
     本研究测量了人们自选舒适步速和步频以及能耗特征,舒适步速是4.0~5.0km/h,舒适步频是104-120步/分钟,该速度下男、女的能耗水平接近,为13ml·kg~(-1)·min~(-1)。若改变舒适步频,无论是增加还是减少步频,都会增加能耗水平。
     3.3步行中的能源物质利用特征
     本研究探讨了不同步速、步频、步行时间与能源物质利用(糖和脂肪氧化)之间的关系。研究发现,中等速度、长时间的步行有利于动员脂肪,快速步行有利于动员糖。
     固定速度变化步频时,舒适步频脂肪氧化率最低,增加或者减少步频(±15步)不仅增加能耗,还能增加糖和脂肪氧化率。特别对女性而言,相对于大步幅、低步频的步行,采用小步幅、高步频的方式更有利于减脂。
     3.4步行锻炼建议的建立与应用
     在分析场地步行能耗数据基础上,用ROC统计法建立了与中等运动强度和大运动强度相对应的步频临界值,即步频110步/分钟和130步/分钟,男女之间有一定的差异。在此基础上还发展了适合中国人的步行锻炼指导建议——对于一个想通过步行锻炼达到指南要求的成年人,步频保持110步/分钟以上的同时每天至少步行锻炼3300步。如果将每日步行步数转化为里程,大约为2公里。基于科学数据建立的步行建议为指导中国人步行锻炼提供了参考。
     此外,通过8周的社区步行干预实验,就步行锻炼建议进行了应用和验证。干预实验结果表明,“提高步频每日快走3300步”的步行方案可以有效提高社区老年久坐人群的身体活动量(每日步行量从每日4500步~8300步)和改善一些健康状况(体脂率和舒张压下降),但是没能减少久坐时间。同“每日步行1万步”的传统方案相比,该方案更容易被没有锻炼时间或者没有步行锻炼基础的久坐人群接受,服从性较好。
     在社区步行干预实验中,计步器结合定期的咨询活动是增加步行活动量的有效手段,可以在今后干预项目中推广应用。
     4.研究结论
     随着步行速度增加,步行能耗逐步增加。速度与能耗之间呈现指数函数关系。
     步频是反映步行负荷特征的一个重要变量。步频与能耗之间有密切的关系。人们自选的舒适步频能耗最低,改变步频可以增加能耗。
     不同的步速、步频的能源物质利用率有不同。增加步速有助于提高糖的利用率,改变习惯步频有助于增加脂肪利用率。
     本研究建立的步行能耗的预测公式,可以较准确地计算中国人步行活动中的能耗值;建立的步行锻炼建议,经过实际应用证明有效地提高社区久坐老年人群的身体活动量和改善一些健康状况。
Background and Objectives
     Walking, as a favorite sport, has been studied for a long time. Although studieshave yielded some good results but there are still many issues that need furtherexploration. Inspired by the improved measurement technology and the high demandsof scientific exercise, we need to take a new perspective to the study of walking.
     In China, there are few researches about the “Energy expenditure of walking” tillnow so that the evidence for scientific guideline for walking is limited. In that case,the main objectives for this study are as follows: a. measuring the walking features ofChinese population; b. building a prediction equation for walking energy cost; c.evidence-supported walking recommendations; d. discussion about the application ofwalking parameters in the field of exercise intervention.
     Methods
     There are two sets of methods. The first one is a kind of basic research method.The sample number is1200, aged20-60(male and female; healthy). The test is takenon a flat ground with the speed from4.8km/h to8.8km/h, which is equal to walkingand running respectively. The data is collected by the gas metabolism instrument(Cortex Metamax3B). On the other hand, another group of1200subjects are tested tocollect their step rate from3.8km/h to6.4km/h. The research on utilization of energyfuel is done among some of the subjects: the continuous walking test for a givenspeed, self-selected preferred speed and step-rate test, and changing SF test whilefixing speed.
     The other kind of methods is applied research methods. Randomized ControlTrial is used in a community.30People (50-60yrs) are divided into three groups tocompare the changes of walking behaviors and health from different interventionstrategies: a control group, a10,000-steps-per-day group, and a fast-SF+3300stepsgroup.
     Results
     1. Characteristics of walking energy expenditure and the establishment of predictionformula
     Within the scope of4.8-6.4km/h, the EE increases as long as the speed is increased.When the equation is built, we compared the fitting degrees of three models (Linearmodel, quadratic model, exponential model). The exponential model has the highestdegree.Y1.9e(0.2speed)0.095weight0.0004weight24.52G14.72G0(R2=0.922). Itindicates that the relationship between speed and energy is not a linear but rather acurvilinear. The curvilinear reflects the extra energy expenditure when lifting walkingspeed and the lower efficiency of energy consumption. Furthermore, there aresignificant differences between the data measured by our study and the estimationfrom the equations built by foreign researchers. And with the accelerated speed, thedifferences increase. It shows the necessity of building our own prediction method forChinese. In this study, we did the back substitution test (relative deviation:±5%).2. Step frequency and walking advice
     The step frequency (SF) is also an indicator of walking intensity. The SF is moreconvenient for description of the intensity compared with speed. The step ratecut-points corresponding to activity intensity categories (in terms of MET levels) havebeen set up by this study. It could be useful for recommending appropriate amounts ofwalking exercise to meet PA guidelines for Chinese adults. The findings from thisstudy indicate that Chinese adult should walk at least30minutes with a minimal110step·min–1,or3300steps with the same step rate daily to meet PA guidelines. Therewere slight differences on step-rate threshold and minimal steps between women andmen.
     3. Utilization of energy substrate for walking
     This study investigated the relationship between different speeds, SF, walkingduration, and utilization of energy substrate (oxidation of carbohydrate and fat).It isfound that long time walking with moderate speed is favorable for fat mobilization,while fast walking is positive to CHO mobilization.
     The self-selected preferred speed is4.0-5.0km/h, with104-120of preferred SF.When changing SF at a given speed, energy consumption of preferred SF is theminimum. Increasing or decreasing SF (±15) not only increases energy consumptioncan also increase the oxidation rate of CHO and fat.
     4. The results for application research
     This study discussed the use of the walking E.E. parameters in different intervenefields. The parameters can be applied for calculating walking E.E and building theplan for walking exercise though various forms such as the reference, the predictionequation and the table.
     Moreover, though the walking intervention for8weeks in a community, the partialresults of this study is applied and tested. The results of the intervention show: thewalking goal of3300steps per day can effectively increase the level of physicalactivity (from4500to8800steps per day) for the sedentary seniors, and improvesome heath indicators(decreasing of fat%and DBP). However, the sedentary timewas not deceased. Compared with the traditional program of10,000steps every day,the program is easier to accept for the sedentary people who have no exercise time orexercise habits before, along with good adherence.
     In addition, pedometer combination of regular consultation activities are aneffective means to increase walking steps during Community walking intervention,which can be promoted in the future.
     Conclusions
     On the basis of the “Method of Gound Walking Test under Different Speeds” builtin pilot experiments, the E.E parameters are collected from more than1200people ona flat ground. The walking references and equations for estimation are set up on the basis of those parameters, which can help the people make accurate calculation of theenergy cost and develop a walking plan. Besides, the walking advice for Chinese caneffectively increase the level of Physical Activity and improve the health status ofsedentary seniors. In summary, the results of this study provide a valuable referencefor the scientific guidance to the walking for Chinese.
引文
[1]姚泰.生理学[M].北京:人民卫生出版社,2010:50-100.
    [2]Luc Vanheesa. D J L, Renaat Philippaertsc, et al. How to assess physicalactivity? How to assess physical fitness[J]? Eur J Cardiovasc PrevRehabil,2005,12:102-1140.
    [3]Weir JB. New methods for calculating metabolic rate with special reference toprotein metabolism[J]. Nutrition,1949,6(3):213-21
    [4]Douglas C. A method for determing the total respiratory exchange in man [J].Journal of Physiology,1911,42;17-18.
    [5]Crouter S, Foster C, Esten P, et al.Comparison of incremental treadmill exerciseand free range running [J]. Med Sci Sports Exerc,2001,33(4):644-647.
    [6]Kawakami Y, Nozaki D, Matsuo A,et al. Reliability of measurement of oxygenuptake by a portable telemetric system [J]. Eur J Appl Physiol Occup Physiol,1992,65(5):409-414.
    [7]MacRae H-H, Hise K JAllen P J.Effects of front and dual suspension mountainbike systems on uphill cycling performance [J]. Med Sci Sports Exerc,2000,32(7):1276-1280.
    [8]Millet G P, Tronche C, Fuster N,et al.Level ground and uphill cyclingefficiency in seated and standing positions[J].Med Sci SportsExerc,2002,34(10):1645-1652.
    [9]Strath S J, Swartz A M, Bassett D R, Jr.,et al. Evaluation of heart rate asa method for assessing moderate intensity physical activity [J]. Med Sci SportsExerc,2000,32(9Suppl): S465-470.
    [10]Crouter S E,Clowers K GBassett D R,Jr.A novel method for usingaccelerometer data to predict energy expenditure [J].J Appl Physiol,2006,100(4):1324-1331.
    [11]Vogler A J, Rice A JGore C J. Validity and reliability of the Cortex MetaMax3Bportable metabolic system [J]. J Sports Sci,28(7):733-742.
    [12]Schrack J A, Simonsick E MFerrucci L.Comparison of the Cosmed K4b(2)portable metabolic system in measuring steady-state walking energy expenditure[J].PLoS One,5(2):92-96.
    [13]戴剑松,孙飙.体力活动测量方法综述[J].体育科学,2005,9:69-75.
    [14]Schoeller DA R E, Schutz Y, Acheson KJ, Baertschi P, Jequier E. Energyexpenditure by doubly labelled water: validation in humans and proposedcalculation [J]. Am J Physiol,1986,250(5):823-830.
    [15]Livingstone M B. Heart-rate monitoring: the answer for assessing energyexpenditure and physical activity in population studies?[J]. Br J Nutr,1997,78(6):869-871.
    [16]Leonard W R.Measuring human energy expenditure: what have we learnedfrom the flex-heart rate method?[J]. Am J Hum Biol,2003,15(4):479-489.
    [17]Freedson P SMiller K. Objective monitoring of physical activity using motionsensors and heart rate [J]. Res Q Exerc Sport,2000,71(2Suppl): S21-29.
    [18]杨锡让.实用运动生理学[J].北京:北京体育大学出版社,2007,39.
    [19]Rowlands A V, Eston R GIngledew D K. Measurement of physical activityin children with particular reference to the use of heart rate and pedometry [J].Sports Med,1997,24(4):258-272.
    [20]Pereira M A, FitzerGerald S J, Gregg E W, et al. A collection of PhysicalActivity Questionnaires for health-related research [J]. Med Sci Sports Exerc,1997,29(6Suppl): S1-205.
    [21]Valencia ME, McNeill G, Brockway JM, Smith JS. The effect ofenvironmental temperature and humidity on24h energy expenditure in men.Br J Nutr.1992,Sep;68(2):319-27.
    [22]Blaza S, Garrow JS. Thermogenic response to temperature, exercise and foodstimuli in lean and obese women, studied by24h direct calorimetry.Br J Nutr.1983Mar;49(2):171-80.
    [23]CONSOLAZIO CF, KONISHI F, CICCOLINI RV, JAMISON JM,SHEEHAN EJ, STEFFEN WF. Food consumption of military personnelperforming light activities in a hot desert environment. Metabolism.1960,9:435-42.
    [24] Garby L, Lammert O, Nielsen E. Changes in energy expenditure of lightphysical activity during a10day period at34degrees C environmentaltemperature. Eur J Clin Nutr.1990,44(3):241-4.
    [25]DURNIN JV, NAMYSLOWSKI L. Individual variations in the energyexpenditure of standardized activities. J Physiol.1958,31573-8.
    [26]Parvataneni K, Ploeg L, Olney S J, et al. Kinematic, kinetic and metabolicparameters of treadmill versus overground walking in healthy older adults [J].Clin Biomech (Bristol, Avon),2009,24(1):95-100.
    [27]Meyer T, Welter J P, Scharhag J, et al. Maximal oxygen uptake during fieldrunning does not exceed that measured during treadmill exercise [J]. Eur J ApplPhysiol,2003,88(4-5):387-389.
    [28]江崇民,邱淑敏,王欢等.平板运动跑台和场地环境测试走跑运动能量消耗的比较研究.体育科学2010;7:30-37.
    [29] Smolander J, Louhevaara V, Hakola T, Ahonen E, Klen T. Cardiorespiratorystrain during walking in snow with boots of different weights. Ergonomics.1989Jan;32(1):3-13.
    [30]Gottschall JS, Nichols TR. Neuromuscular strategies for the transitions betweenlevel and hill surfaces during walking. Philos Trans R Soc Lond B Biol Sci.201127(5):1565-79.
    [31]Raffin E, Bonnet S, Giraux P.Concurrent validation of a magnetometer-basedstep counter in various walking surfaces. Gait Posture.2012,35(1):18-22.
    [32] Terrier P, Aminian K, Schutz Y. Can accelerometry accurately predict theenergy cost of uphill/downhill walking? Ergonomics.200144(1):48-62.
    [33] Aminian K, Robert P, Jéquier E, Schutz Y. Incline,speed, and distanceassessment during unconstrained walking. Med Sci Sports Exerc.1995,27(2):226-34.
    [34]杨明,贾伟平,包玉倩等.性别、年龄及体脂参数与静息能量消耗的关系[J].中华内分泌代谢杂志,2004,(01):
    [35]Pearce M E, Cunningham D A, Donner A P, et al. Energy cost of treadmilland floor walking at self-selected paces [J]. Eur J Appl Physiol Occup Physiol,1983,52(1):115-119.
    [36]Malatesta D, Simar D, Dauvilliers Y, et al. Energy cost of walking and gaitinstability in healthy65-and80-yr-olds [J]. J Appl Physiol,2003,95(6):2248-2256. P15
    [37] Martin P E, Rothstein D ELarish D. Effects of age and physical activitystatus on the speed-aerobic demand relationship of walking [J]. J Appl Physiol,1992,73(1):200-206.
    [38]McCann D JAdams W C. A dimensional paradigm for identifying thesize-independent cost of walking [J]. Med Sci Sports Exerc,2002,34(6):1009-1017.
    [39]Waters R, Lislop H J, Perry J, et al. Comparative cost of walking in youngand old adults [J]. J Orthop Res,1983,1(1):73-76
    [40] VAN DEK WALT, W. H., C. H. WYNDHAM. An equation for predictionof energy expenditure of walking and running. J. Appl. Physiol.34(5):559-563.1973.
    [41] Mian OS, Thom JM, Ardigò LP, Narici MV, Metabolic cost, mechanicalwork, and efficiency during walking in young and older men. Minetti AEActaPhysiol (Oxf).2006Feb;186(2):127-39.
    [42] Ruby B C, Coggan A RZderic T W. Gender differences in glucose kineticsand substrate oxidation during exercise near the lactate threshold [J]. J ApplPhysiol,2002,92(3):1125-1132.
    [43] Knechtle B, Muller G, Willmann F, et al. Fat oxidation in men and womenendurance athletes in running and cycling [J]. Int J Sports Med,2004,25(1):38-44.
    [44] Horton T J, Grunwald G K, Lavely J, et al. Glucose kinetics differ betweenwomen and men, during and after exercise [J]. J Appl Physiol,2006,100(6):1883-1894.
    [45] Tarnopolsky M A. Sex differences in exercise metabolism and the role of17-beta estradiol [J]. Med Sci Sports Exerc,2008,40(4):648-654.
    [46]王丽.健康人群步行能量消耗特点与模型的初步研究.2011,安徽医科大学硕士论文.
    [47]张勇.普通大学生骑车运动中机体能量消耗和底物代谢的性别差异研究[J].中国运动医学杂志,2009,(05):491-494.
    [48] Hatta H, Atomi Y, Shinohara S, et al. The effects of ovarian hormones onglucose and fatty acid oxidation during exercise in female ovariectomized rats [J].Horm Metab Res,1988,20(10):609-611.
    [49] Kendrick Z VEllis G S. Effect of estradiol on tissue glycogen metabolism andlipid availability in exercised male rats [J]. J Appl Physiol.1991,71(5):1694-1699.
    [50] Tarnopolsky M A. Gender differences in substrate metabolism during enduranceexercise [J]. Can J Appl Physiol,2000,25(4):312-327.
    [47]Lafortuna C L, Proietti M, Agosti F, et al. The energy cost of cycling in youngobese women [J]. Eur J Appl Physiol,2006,97(1):16-25.
    [48]Aull J L, Rowe D A, Hickner R C, et al. Energy expenditure of obese, overweight,and normal weight females during lifestyle physical activities [J]. Int J PediatrObes,2008,3(3):177-185.
    [49] Mayhew JL.Oxygen cost and energy expenditure of running in trained runners.BrJ Sports Med.1977Sep;11(3):116-21.
    [50] DILL DB. Oxygen Used In Horizontal And Grade Walking and Running On TheTreadmill.J Appl Physiol.1965,20:19-22.
    [51]朱海珠.运动过程中机体能量消耗和底物代谢特征研究.2009,浙江师范大学硕士论文
    [52] Victor Katch, EdD; M Daniel Becque, MS; Charles Marks, MS Oxygen uptakeand energy output during walking of obese male and female adolescents. Am JClin Nutr l988;47:26-32.
    [53] Butts NK, Knox KM, Foley TS. Energy costs of walking on a dual-actiontreadmill in men and women. Med Sci Sports Exerc.1995Jan;27(1):121-5.
    [54] Pearce ME, Cunningham DA, Donner AP, Rechnitzer PA, Fullerton GM, HowardJH. Energy Cost of Treadmill and Floor Walking at Self-selected Paces. Eur JAppl Physiol,198352:115-119
    [55]Workman JM, Armstrong BW. Oxygen cost of treadmill walking. J ApplPhysiol.196318:798-803
    [56] McDonald I. Statistical studies of recorded energy expenditure in man. NutrAbstr Rev196131:739-762
    [57] M. Y. Zarrugh I,C. W. Radcliffe.Predicting Metabolic Cost of Level WalkingEurop. J. appl. Physiol.1978,38,215-223.
    [58]TREUTH, MARGARITA S,HUNTER, GARY R, WILLIAMS, MARTHA.Effects of exercise intensity on24h energy expenditure and substrate oxidation.Med Sci Sports Exerc.1996,28(9),1138-1143.
    [59] Julia Kirstey, Zakrzewski Keith Tolfrey. Comparison of fat oxidation over arange of intensities during treadmill and cycling exercise in children. Eur J ApplPhysiol,2012,112(1):163-71
    [60] ükrü Serdar Balc. Comparison of Substrate Oxidation during Walking andRunning in Normal-Weight and Overweight/Obese Men. Obes Facts2012;5:327–338
    [61]Dasilva, SG, Guidetti, L, Buzzachera, CF, Elsangedy, HM, Krinski, K, DeCampos, W, Goss, FL, and Baldari, C. Gender-based differences in substrate useduring exercise at a self-selected pace. J Strength Cond Res25(9):2544–2551.
    [62] Wayne T. Willis,T, Kathleen J. Ganleya,Richard M. Hermana.Fuel oxidationduring human walking. Metabolism Clinical and Experimental.2005,54:793–799
    [63] Manson, J.E., Hu, F.B., Rich-Edwards, J.W., et al. A prospective study of walkingas compared with vigorous exercise in the prevention of coronary heart disease inwomen. N. Engl. J. Med.1999,341:650–658.
    [64] Pauline L. Entin Colleen Gest, Susan Trancik.J. Richard Coas. Fuel oxidation inrelation to walking speed: influence of gradient and external load. Eur J ApplPhysiol.2010,110:515–521.
    [65] MH Murphy, AM Nevill, AE Hardman. Different patterns of brisk walking areequally effective in decreasing postprandial lipaemia. International Journal ofObesity.2000,24:1303-1309.
    [66] Achten J, Venables MC, Jeukendrup AE: Fat oxidation rates are higher duringrunning compared with cycling over a wide range of intensities. Metabolism,2003,52:747–752
    [67] Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation duringexercise in healthy men and women: a cross-sectional study.J Appl Physiol.2005,98(1):160-7.
    [68] Jeukendrup AE, Achten J: Fatmax, a new concept to optimize fat oxidationduring exercise? Eur J Sports Sci,2001;1:1–5.
    [69] Horowitz JF, Klein S: Oxidation of nonplasma fatty acids during exercise isincreased in women with abdominal obesity. J Appl Physiol2000;89:2276–2282.
    [70] Kanaley JA, Weatherup-Dentes MM, Alvarado CR, Whitehead G: Substrateoxidation during acute exercise and with exercise training in lean and obesewomen. Eur J Appl Physiol2001;85:68-73.
    [71] Goodpaster BH, Wolfe RR, Kelley DE: Effects of obesity on substrate utilizationduring exercise. Obes Res2002;10:575–584.
    [72] Sial S, Coggan AR, Carroll R, Goodwin J, Klein S: Fat and carbohydratemetabolism during exercise in elderly and young subjects. Am J Physiol1996;271:E983–989.
    [73] Chenevière X, Borrani F, Sangsue D, Gojanovic B, Malatesta D: Genderdifferences in whole-body fat oxidation kinetics during exercise. Appl PhysiolNutr Metab2011;36:88–95.
    [74] Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J: Substrate turnoverduring prolonged exercise in man. Splanchnic and leg metabolism of glucose, freefatty acids, and amino acids. J Clin Invest.1974;53:1080–1090
    [75] Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D. Comparison of fatoxidation during exercise in lean and obese pubertal boys: clinical implications.Br J Sports Med,2009;43:869–870.
    [76] van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, van Baak MA:Effect of exercise training at different intensities on fat metabolism of obese men.J Appl Physiol.2002;92:1300–1309.
    [77] Nordby P,Saltin B, Helge JW. Whole-body fat oxidation determined by gradedexercise and indirect calorimetry: a role for muscle oxidative capacity? Scand JMed Sci Sports,2006;16:209–214
    [78] Scharhag-Rosenberger F et al. Effects of One Year Aerobic Endurance Trainingon Resting Metabolic Rate and Exercise Fat Oxidation in Previously UntrainedMen and Women. Int J Sports Med2010;31:498–504.
    [79] Achten J, Jeukendrup AE.The effect of pre-exercise carbohydrate feedings onthe intensity that elicits maximal fat oxidation. J Sports Sci2003;21:1017–1024.
    [84]80Amati F, Dube JJ, Shay C, Goodpaster BH.Separate and combined effects ofexercise training and weight loss on exercise efficiency and substrate oxidation. JAppl Physiol.2008,105:825–831.
    [85]Fitzsimons CF, Baker G, Wright A, Nimmo MA, Ward Thompson C, Lowry R,Millington C, Shaw R, Fenwick E, Ogilvie D, Inchley J, Foster CE, Mutrie N. The'Walking for Wellbeing in the West' randomised controlled trial of apedometer-based walking programme in combination with physical activityconsultation with12month follow-up: rationale and study design. BMC PublicHealth.2008,26;8:259.
    [86]Baker G, Gray SR, Wright A, Fitzsimons C, Nimmo M, Lowry R, Mutrie N;Scottish Physical Activity Research Collaboration (SPARColl). The effect of apedometer-based community walking intervention "Walking for Wellbeing in theWest" on physical activity levels and health outcomes: a12-week randomizedcontrolled trial. Int J Behav Nutr Phys Act.2008,6:44.
    [87]Macmillan F, Fitzsimons C, Black K, Granat MH, Grant MP, Grealy M,Macdonald H, McConnachie A, Rowe DA, Shaw R, Skelton DA, Mutrie N.WestEnd Walkers65+: a randomised controlled trial of a primary care-based walkingintervention for older adults: study rationale and design. BMC Public Health.2011,19;11:120.
    [88]Mackey MG, Bohle P, Taylor P, Di Biase T, McLoughlin C, Purnell K. Walking towellness in an ageing sedentary university community: design, method andprotocol. Contemp Clin Trials.2011Mar;32(2):273-9.
    [89]Puig-Ribera A, McKenna J, Gilson N, Brown WJPromot Educ. Change in workday step counts, wellbeing and job performance in Catalan university employees:a randomised controlled trial.2008,15(4):11-6
    [90]Dishman RK, DeJoy DM, Wilson MG, Vandenberg RJ. Move to Improve: arandomized workplace trial to increase physical activity. Am J PrevMed.2009,36(2):133-41.
    [91]Mutrie N, Carney C, Blamey A, Crawford F, Aitchison T, Whitelaw A."Walk into Work Out": a randomised controlled trial of a self help intervention to promoteactive commuting.J Epidemiol Community Health.2002,56(6):407-12.
    [92]Hemmingsson E, Uddén J, Neovius M, Ekelund U, R ssner S. Increased physicalactivity in abdominally obese women through support for changed commutinghabits: a randomized clinical trial.Int J Obes (Lond).2009,33(6):645-52.
    [93]Ogilvie D, Foster CE, Rothnie H, Cavill N, Hamilton V, Fitzsimons CF, Mutrie N.Interventions to promote walking: systematic review. BMJ.2007,9;334:1204.
    [94] Scottish Executive. A walking strategy for Scotland: consultation document.Edinburgh: Scottish Executive Development Department,2003.
    [95] Nutbeam D. How does evidence influence public health policy? Tackling healthinequalities in England. Health Promot J Aust.2003,14:154-8.
    [96] Whitehead M, Petticrew M, Graham H, Macintyre S, Bambra C,Egan M.Evidence for public health policy on inequalities:2:Assembling the evidencejigsaw. J Epidemiol Community Health.2004;58:817-21.
    [97]Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physicalactivity interventions: a meta-analysis.Res Q Exerc Sport.2009,80(3):648-55.
    [98]Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I. Adose-response relation between aerobic exercise and visceral fat reduction:systematic review of clinical trials. Int J Obes (Lond).2007,31(12):1786-97.
    [99]Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physicalactivities: an update of activity codes and MET intensities. Med Sci Sports Exerc2000;32(Suppl.9):S498–51.
    [100] Anjos LA, Wahrlich V, Bossan FM, et al. Energy expenditure of walking atdifferent intensities in Brazilian college women. Clinical Nutrition2008;27:121–125.
    [101]Byrne NM, Hills AP, Hunter GR, et al. Metabolic equivalent: one size does notfit all. J Appl Physiol,2005;99:1112–9.
    [102]Aunn SM, Brooks AG, Withers RT, et al. Determining energy expenditure duringsome household and garden tasks. Med Sci Sports Exerc2002;34:895–902.
    [103]HALL, C, A. FIGUEROA, B. FERNHALL, and J. A. KANALEY. EnergyExpenditure of Walking and Running: Comparison with Prediction Equations.Med. Sci. Sports Exerc.2004,36(12):2128-2134.
    [104]王超,王汝芬,张淑娴.混合效应线性模型与单因素方差分析在重复测量数据中的应用比较.数理医药学杂志.2006,4:23-27.
    [105]COTES,J. E., AND F. MEADE. The energy expenditure and mechanicalenergy demand in walking. Ergonomics.1960,3:97-119.
    [106]S Bereket. Effects of anthropometric parameters and stride frequency onestimation of energy cost of walking. Journal of Sports Medicine and PhysicalFitness. Jun2005;45;152-161.
    [107]向剑锋,李之俊.应用步频建立步行能耗预测公式的研究.中国运动医学.2012,31(3):198-201.
    [108] Ekkekakis, P and Lind, EE. Exercise does not feel the same when you areoverweight: The impact of self-selected and imposed intensity on affect andexertion. Int J Obes,2006.30:652–660.
    [109] Lind, E, Joens-Matre, RR, and Ekkekakis, P. What intensity of physical activitydo previously sedentary middle-aged women select? Evidence of a coherentpattern from physiological, perceptual and affective markers. Prev Med.2005,40:407–419.
    [110] Pintar, J, Robertson, RJ, Kriska, AM, Nagle, E, and Goss, FL. The influence offitness and body weight on preferred exercise intensity. Med Sci SportsExerc.2006,38:981–988.
    [111] Henderson, GC, Fattor, JA,Horning,MA, Faghihnia, N, Johnson,ML, Mau, TL,Luke-Zeitoun, M, and Brooks, GA. Lipolysis and fatty acid metabolism in menand women during the postexercise recovery period. J Physiol.2007,584:963–981.
    [112] Horton, TJ, Pagliassotti,MJ, Hobbs, K, and Hill, JO. Fuel metabolism in menand women during and after long-duration exercise. J Appl Physiol,1998,85:1823–1832,.
    [113]Costill, DL, Fink, WJ, Getchell, LH, Ivy, JL, and Witzmann, FA. Lipidmetabolism in skeletal muscle of endurance-trained males and females. J ApplPhysiol,1979,47:787–791,.
    [114]Steffensen, CH, Roepstorff, C, Madsen, M, and Kiens, B.Myocellulartriacylglycerol breakdown in females but not in males during exercise. Am JPhysiol Endocrinol Metab.2002,282:634–642,.
    [115]Tudor-Locke C, Ainsworth BE, Thompson RW, et al. Comparison of pedometerand accelerometer measures of free-living physical activity. Med Sci SportsExerc2002;34:2045–2051.
    [116]Tudor-Locke C, Bassett DR. How many steps/day are enough? Preliminarypedometer indices for public health Sports Med2004;34:1–8.
    [117]Tudor-Locke C, Hatano Y, Pangrazi RP, et al, Revisiting “how many steps areenough?” Med Sci Sports Exerc2008;40:S537–S543.
    [118]Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined stepsper day in US adults. Med Sci Sports Exerc2009;41:1384–1391.
    [119]Wilde BE, Sidman CL, Corbin CB. A10,000-step count as a physical activitytarget for sedentary women Research Quarterly for Exercise and Sport2001;(72)4:411-414.
    [120]Tudor-Locke C, Rowe DA. Using Cadence to Study Free-Living AmbulatoryBehaviour. Sports Medicine2012;3:1-17.
    [121]Simon J Marshall, Susan SL, Karen MW, et al. Translating Physical ActivityRecommendations into a Pedometer-Based Step Goal. Am J Prev Med2009;36:410–415.
    [122]Tudor-Locke C, Sisson SB, Collova T, et al. Pedometer-determined step countguidelines for classifying walking intensity in a young ostensibly healthypopulation. Can J Appl Physiol2005;30:666-676.
    [123]Morris JN, Hardman AE. Walking to health. Sports Med1997;23:306–32.
    [124]Bertram JE, Ruina A. Multiple Walking Speed-frequency Relations are Predictedby Constrained Optimization. J Theor Biol2001;209:445-453
    [125]Zarrugh MY, Radcliffe CW. Predicting Metabolic Cost of Level Walking. EuropJ Appl Physiol1978;38:215-223.
    [126]国家体育总局.第三次全国群众体育现状调查报告[J].人民体育出版社,第一版,2008.
    [127]Demura S, Sohee S, Yamaji S: Sex and age differences of relationships amongstepping parameters for evaluating dynamic balance in the elderly. J PhysiolAnthropol.2008;27:207-15.
    [128]Sugden JA, Sniehotta FF, Donnan PT, Boyle P, Johnston DW, McMurdoME.The feasibility of using pedometers and brief advice to increase activity insedentary older women--a pilot study. BMC Health Serv Res.2008,8:169.
    [129]Strath SJ, Swartz AM, Parker SJ, Miller NE, Grimm EK, Cashin SE. A pilotrandomized controlled trial evaluating motivationally matched pedometerfeedback to increase physical activity behavior in older adults. J Phys Act Health.2011,8, Suppl2:S267-74.
    [130]C. N. HULTQUIST, C. ALBRIGHT, and D. L. THOMPSON. Comparison ofWalking Recommendations in Previously Inactive Women. Med. Sci, SportsExerc.2005,37(4):676–683.
    [131] Kolt GS, Schofield GM, Kerse N, Garrett N, Ashton T, Patel A. Healthy Stepstrial: pedometer-based advice and physical activity for low-active older adults.Ann Fam Med.2012,10(3):206-12.
    [132] Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK,Solomon TP. The Effects of Free-Living Interval-Walking Training on GlycemicControl, Body Composition, and Physical Fitness in Type2Diabetic Patients: Arandomized, controlled trial. Diabetes Care.2013,36(2):228-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700