ADAMTS-7和ADAMTS-12抑制软骨分化的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属蛋白酶ADAMTS-7和ADAMTS-12同属于ADAMTS家族(含TSP结构的去整合素金属蛋白酶,a disintegrin and metalloprotease with thromospondinmotifs,ADAMTS),其对降解软骨细胞外基质蛋白和关节炎具有非常重要的作用。ADAMTS家族含有分泌性锌指蛋白,并且有较严谨的分子结构,至少包括一个thrombospondin motif重复结构。这个家族具有重要的功能,ADAMTS-1、ADAMTS-4、ADAMTS-5、ADAMTS-8、ADAMTS-9、ADAMTS-16和ADAMTS-18可以降解多聚蛋白糖,ADAMTS-5在小鼠关节炎模型中蛋白多聚糖的丢失上起着重要的作用。ADAMTS-7和ADAMTS-12具有相同的结构域组成,构成ADAMTS家族的亚型。我们最初报道ADAMTS-7和ADAMTS-12直接结合并降解软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP),一种软骨最主要的非胶原组成物。另外,我们研究发现α-2-巨球蛋白可以抑制COMP蛋白的降解。最近还有研究发现ADAMTS-12也能够降解软骨聚集蛋白多糖。
     本文的研究发现,在软骨分化过程中ADAMTS-7和ADAMTS-12的表达量都显著增高,意味着在骨骼发育中ADAMTS-7和ADAMTS-12的表达量在时间、空间上都有变化。我们的研究重点关注ADAMTS-7和ADAMTS-12在软骨分化中的作用,以及涉及到的分子机制。我们研究发现ADAMTS-7和ADAMTS-12蛋白在软骨分化中被诱导表达。实时荧光定量PCR结果揭示在体外软骨分化的第5天,这两种蛋白的表达量还较低,但从第7天开始,他们的量成三倍增长,并在分化后期一直维持此高表达状态。本文中,我们首次发现ADAMTS-7和ADAMTS-12都能够抑制软骨细胞的分化及软骨成骨。
     我们研究发现ADAMTS-7对软骨细胞的分化及软骨成骨的抑制功能是依赖于ADAMTS-7的蛋白酶活性的。ADAMTS-7的cysteine-rich结构域对于ADAMTS-7与细胞外基质相互作用和细胞膜表面定位是必不可少的,C-末端的4个thromospondin motif结构域对于ADAMTS-7的蛋白水解酶活性和抑制软骨细胞分化功能也是必需的。因此,ADAMTS-7对于软骨细胞分化和软骨成骨,是一个潜在的负调控因子,这种抑制功能严格地依赖于ADAMTS-7的酶切活性。而当ADAMTS-7发生点突变后,则完全丧失了酶切活性,同时也丧失了对软骨细胞的抑制作用。ADAMTS-7由多个功能性亚基构成,包括一个锌离子催化结构域和其他几个非催化结构域,包括:1个disintegrin结构域、1个thrombospondin结构域、1个cysteine-rich结构域(CRD)、1个spacer-1结构域、3个thrombospondin motifs、1个spacer-2结构域和C-末端4个thrombospondin motifs。研究发现C-末端的4个thrombospondin motifs具有结合底物的功能,如结合COMP,而ADAMTS-7的其他功能结构域的生物学功能却还都不清楚。为了揭示各个结构域的功能,我们构建了一系列的ADAMTS-7的C-末端缺失突变体,发现ADAMTS-7的cysteine-rich结构域对于ADAMTS-7与软骨细胞外基质相互作用和细胞膜表面定位是必不可少的。然而有趣的是,ADAMTS-7及一系列C-末端缺失突变体蛋白在Cos-7细胞中的检测结果显示,cysteine-rich结构域对ADAMTS-7蛋白定位的影响,是有细胞类型特异性的。另外,ADAMTS-7的酶切活性同样也受到非催化亚基的调控,尤其是C-末端的4个thrombospondinmotifs和抑制性spacer-2结构域。
     ADAMTS-7和ADAMTS-12是PTHrP重要的靶分子,原因如下:(1)PTHrP诱导ADAMTS-7和ADAMTS-12的表达,(2)在PTHrP基因敲除小鼠的软骨生长板上几乎检测不到ADAMTS-7和ADAMTS-12的表达,(3)沉默ADAMTS-7/ADAMTS-12或用特异性抗体封闭ADAMTS-7/ADAMTS-12的活性,则几乎阻断了PTHrP介导的抑制软骨细胞肥大化和软骨成骨的生长。研究发现ADAMTS-7和一个新的软骨生长因子GEP(Granulin-epithelin precursor)相互作用。骨骺生长板内的软骨内骨化过程,涉及多个信号传导途径。我们的研究证明:1)过表达ADAMTS-7和ADAMTS-12诱导PTHrP,抑制IHH;2)在体外软骨分化过程中,PTHrP促进ADAMTS-7和ADAMTS-12的表达:3)在小鼠生长板软骨细胞中,ADAMTS-7和ADAMTS-12的表达依赖于PTHrP信号途径。这些研究结果揭示在软骨分化过程中,ADAMTS-7、ADAMTS-12和PTHrP信号途径之间存在一个正反馈通路。另外,ADAMTS-7、ADAMTS-12是PTHrP的下游靶分子,基于以下原因:1)PTHrP抑制软骨分化过程中Col X的表达,然而当通过特异性干扰RNA抑制ADAMTS-7/ADAMTS-12或用抗ADAMTS-7/ADAMTS-12的抗体封闭后,PTHrP的抑制作用则消失了;再次表达ADAMTS-7/ADAMTS-12,则PTHrP的抑制作用又重新回复:2)ADAMTS-7/ADAMTS-12抗体的封闭,则完全中和了PTHrP所抑制的软骨细胞肥大化、矿化和骨生长。另外,研究发现PTHrP促进软骨细胞的增殖,ADAMTS-7发现也具有促进软骨细胞增殖的功能,而且此促细胞增殖作用主要依赖于C-末端的4个thrombospondin motifs结构域。
     另外ADAMTS-7可以作为GEP-转化酶,抵消GEP刺激诱导的软骨分化及软骨内成骨。总之,我们的试验结果证明,ADAMTS-7是PTHrP信号途径下游的非常重要的靶分子,负调控软骨内成骨过程;直接结合、转化GEP,从而失活软骨分化生长因子GEP的诱导分化作用。GEP是一种生长因子,参与组织重生、肿瘤形成和炎症过程。研究发现GEP与弹性蛋白酶结合,被弹性蛋白酶降解。弹性蛋白酶消化GEP的颗粒内连接子,产生微粒多肽;然而分泌性白细胞蛋白酶抑制因子(secretory leukocyte protease inhibitor,SLPI)直接结合到弹性蛋白酶或抑制颗粒多肽与蛋白酶的结合,继而封闭弹性蛋白酶的活性。最近研究揭示蛋白酶3也结合并降解GEP;蛋白酶3和弹性蛋白酶都通过降解抗炎症作用的GEP,从而达到促进嗜中性粒细胞依赖性的致炎症功能。本文中,我们提供了足够的试验证据表明GEP和金属蛋白酶ADAMTS-7在软骨细胞内相互作用,ADAMTS-7可以将GEP转化为小分子片段;另外,GEP能具有促进软骨细胞分化和软骨成骨,而ADAMTS-7很可能是通过失活GEP的活性而抑制软骨分化及软骨成骨的。我们以往研究发现:1)ADAMTS-7结合并降解COMP,2)COMP和GEP相互作用,促进GEP刺激的软骨分化功能。结合现在我们的结果ADAMTS-7和GEP相互作用,我们发现ADAMTS-7、GEP和COMP形成一个调节软骨细胞功能的蛋白质-蛋白质相互作用网。然而ADAMTS-7、生长因子GEP和细胞外基质COMP之间是如何相互作用,如何调控软骨细胞分化和软骨成骨的。
     本文研究发现ADAMTS-7和ADAMTS-12是PTHrP调控通路中的新调控因子,同时也可调控软骨细胞分化和软骨内成骨。本文对ADAMTS-7、ADAMTS-12负调节软骨分化的机制进行了初步探讨,例如金属蛋白酶ADAMTS-7和促软骨分化作用的生长因子GEP相结合,通过转化GEP成片段从而抑制GEP刺激的软骨分化作用。另外,本文也为软骨关节炎疾病提供了潜在的靶分子。
ADAMTS-7 and ADAMTS-12,metalloproteinases that belongs to ADAMTS family, are important for the degradation of cartilage extracellular matrix proteins and their levels are significantly levated in arthritis.The ADAMTS(a disintegrin and metalloproteinase with thrombospondin type 1 motifs) family consists of secreted zinc metalloproteinases with a precisely ordered modular organization that includes at least one thrombospondin typeⅠrepeat.Important functions have been established for several members of the ADAMTS family.ADAMTS-1,ADAMTS-4,ADAMTS-5, ADAMTS-8,ADAMTS-9,ADAMTS-16 and ADAMTS-18 degrade aggrecan and ADAMTS-5 plays a primary role in aggrecan loss in murine arthritis.ADAMTS-7 and ADAMTS-12 share the same domain organization and form a subgroup with unique properties within ADAMTS family.Our previously reports demonstrate that ADAMTS-7 and ADAMTS-12 directly associate with and degrade cartilage oligomeric matrix protein,COMP),a prominent noncollagenous component of cartilage.In addition,Alpha-2-Macroglobulin inhibits their degradation of COMP. Recent report revealed that ADAMTS-12 also degraded aggrecan.
     In this study we report that ADAMTS-7 and ADAMTS-12 are strongly upregulated during chondrogenesis and demonstrates the temporal and spatial expression pattern during skeletal development.The current study focused on the roles of ADAMTS-7 and ADAMTS-12 in chondrogenesis as well as the molecular mechanism involved. ADAMTS-7 and ADAMTS-12 proteins were highly induced in the course of chondrogenesis.Real-time PCR for measurements of ADAMTS-7 and ADAMTS-12 showed that the level of ADAMTS-7 and ADAMTS-12 mRNAs were relatively low until day 5,and at day 7 it tripled and thereafter remained at high levels during the late differential stage.In this study we found ADAMTS-7 and ADAMTS-12 inhibited chondrocyte differentiation and endochondral bone formation.
     ADAMTS-7 potently inhibits chondrocyte differentiation and endochondral bone formation,and this inhibition depends on the proteolytic activity of ADAMTS-7.The cysteine-rich domain of ADAMTS-7 is required for its interaction with extracellular matrix and cell surface localization,and the C-terminal four thrombospondin motifs is necessary for its full proteolytic activity and inhibition of chondrocyte differentiation. ADAMTS-7 appears to be a potent negative regulator of chondrocyte differentiation and endochondral bone growth,and its inhibitory activities strictly depend on its enzymatic activities,since its point mutant lacking enzymatic activity completely lost these inhibitions.ADAMTS-7 is composed of multiple functional domains,including a prodomain,a catalytic domain,a disintegrin domain,a thrombospondin motif,a cysteine-rich domain,a spacer-1 domain,three thrombospondin motifs,a spacer-2 domain,and a C-terminal four thrombospondin motifs.In addition to its C-terminal four thrombospondin motifs known to bind to substrates,including COMP,the role of individual domain in regulating the biochemical properties of ADAMTS-7 remains unknown.To address this issue,we generated series of domain deletion mutants of ADAMTS-7 and found that The CRD is required for ADAMTS-7 binding to the cell surface and ECM in chondrocytes.Interestingly,this CRD-dependent localization appears to be cell type-specific,since ADAMTS-7 and its deletion mutants are predominately localized in the cytoplasm of Cos-7 cells.In addition,the enzymatic activities of ADAMTS-7 are also precisely regulated by its non-catalytic domains, specially its substrate-capturing C-terminal four thrombospondin motifs and an inhibitory spacer-2 domain.
     ADAMTS-7 and ADAMTS-12 are important targets of PTHrP signaling,since(1) PTHrP induces ADAMTS-7 and ADAMTS-12,(2) ADAMTS-7 and ADAMTS-12 are hardly detectable in PTHrP-/- growth plate chondrocytes,and(3) knocking down ADAMTS-7/ADAMTS-12 expression or blocking ADAMTS-7/ADAMTS-12 activities almost abolishes PTHrP-mediated inhibition of chondrocyte hypertrophy and endochondral bone growth.ADAMTS-7 associates with Granulin-epithelin precursor(GEP),a novel chondrogenic growth factor.Multiple signaling pathways are involved in endochondral ossification in epiphyseal growth plate.Our studies demonstrating that 1) overexpressing ADAMTS-7 and ADAMTS-12 enhanced the expression of PTHrP whereas inhibited IHH,2) PTHrP induced ADAMTS-7 and ADAMTS-12 expression in the course of chondrogenesis in vitro,and 3) ADAMTS-7 and ADAMTS-12 expression strictly depend on PTHrP in the growth plate chondrocytes in mice.These findings suggest that there exists a positive feedback loop between ADAMTS-7,ADAMTS-12 and PTHrP signaling in the course of chondrogenesis.In addition,ADAMTS-7 and ADAMTS-12 appear to be a crucial downstream molecule of PTHrP based on the facts that 1) repression of ADAMTS-7/ADAMTS-12 via siRNA approach or blocking ADAMTS-7/ ADAMTS-12 activities using its blocking antibodies almost abolished PTHrP-mediated inhibition of Col X expression,but reexpression of ADAMTS-7/ ADAMTS-12 restored PTHrP action;and 2) ADAMTS-7/ADAMTS-12 blocking antibody totally neutralized the inhibition of chondrocyte hypertrophy,mineralization, and bone growth by PTHrP.Furthermore,similar to PTHrP that is known to stimulate chondrocyte proliferation,ADAMTS-7 was also found to increase chondrocyte proliferation and its stimulation on cell proliferation largely depends on its substrate-binding C-terminal four thrombospondin motifs.
     In addition,ADAMTS-7 acts as a new GEP-convertase and neutralizes GEP-stimulated endochondral bone formation.Collectively,these findings demonstrate that ADAMTS-7,an important downstream molecule of PTHrP signaling, negatively regulates endochondral bone formation via associating with and inactivating GEP chondrogenic growth factor.GEP is a growth factor implicated in tissue regeneration,tumorigenesis,and inflammation.GEP was previously shown to associate with and be processed by elastase.Elastase digests GEP exclusively in the intergranulin linkers,resulting in the generation of granulin peptides;whereas the secretory leukocyte protease inhibitor(SLPI) blocks this proteolysis either by directly binding to elastase or by sequestering granulin peptides from the enzyme.Recent report reveled that proteinase 3 associated with and processed GEP,and proteinase 3 and elastase enhance neutrophil-dependent inflammation by eliminating the anti-inflammatory activity of GEP.Here we present evidences showing that GEP associates with ADAMTS-7 metalloproteinase in chondrocytes,and ADAMTS-7 is able to convert GEP into its processed fragments;in addition,ADAMTS-7-inhibits chondrocyte differentiation and endochondral bone formation probably via inactivating chondrogenic activity of GEP.Our previous report showing that 1) ADAMTS-7 binds to and degrades COMP,and 2) COMP interacts with GEP and potentiates GEP-stimulated chondrocyte functions,together with present study revealing the interaction between ADAMTS-7 and GEP,indicate that ADAMTS-7, GEP and COMP form a protein-protein interaction network in regulating chondrocyte functions.It remains to determine how the interaction network among ADAMTS-7 metallproteinase,GEP growth factor and COMP extracellular matrix molecule acts in concert in regulating chondrocyte differentiation and endochondral ossification.
     The study in this paper provides novel insights into the role of ADAMTS-7 and ADAMTS-12,novel mediators in PTHrP pathway,in regulating chondrocyte differentiation and endochondral bone formation,and sheds light on the molecular mechanism by which ADAMTS-7 adversely regulates chondrogenesis,i.e. ADAMTS-7 metalloproteinase associates with GEP chondrogenic grow factor,and eliminates GEP-stimulated chondrogenesis via conversion of GEP into its processed fragments.In addition,this study also provides us with potential molecule targets for treatment of cartilage disorders and arthritic conditions.
引文
1. Hurskainen, T.L., et al., ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM- TS family. J Biol Chem, 1999. 274(36): p. 25555-63.
    2. Jones, G.C. and G.P. Riley, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther, 2005. 7(4): p. 160-9.
    3. Abbaszade, I., et al., Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem, 1999. 274(33): p. 23443-50.
    4. Collins-Racie, L.A., et al., ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol, 2004. 23(4): p. 219-30.
    5. Glasson, S.S., et al., Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005. 434(7033): p. 644-8.
    6. Kuno, K., et al., ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett, 2000. 478(3): p. 241-5.
    7. Stanton, H., et al., ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005. 434(7033): p. 648-52.
    8. Tortorella, M.D., et al., Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science, 1999. 284(5420): p. 1664-6.
    9. Colige, A., et al., Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem, 2002. 277(8): p. 5756-66.
    10. Fernandes, R.J., et al., Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem, 2001. 276(34): p. 31502-9.
    11. Colige, A., et al., Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet, 1999. 65(2): p. 308-17.
    12. Levy, G.G., et al., Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature, 2001. 413(6855): p. 488-94.
    13. Billington, C.J., Cartilage proteoglycan release assay. Methods Mol Biol, 2001. 151: p. 451-6.
    
    14. Somerville, R.P., et al., ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem, 2004. 279(34): p. 35159-75.
    15. Cal, S., et al., Identification, characterization, and intracellular processing of ADAM-TS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats. J Biol Chem, 2001. 276(21): p. 17932-40.
    16. Luan, Y., et al., Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage, 2008.
    17. Llamazares, M., et al., The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci, 2007.120(Pt 20): p. 3544-52.
    18. Jin, E.J., et al., Akt signaling regulates actin organization via modulation of MMP-2 activity during chondrogenesis of chick wing limb bud mesenchymal cells. J Cell Biochem, 2007. 102(1): p. 252-61.
    19. Melton, J.T., N.M. Clarke, and H.I. Roach, Matrix metalloproteinase-9 induces the formation of cartilage canals in the chondroepiphysis of the neonatal rabbit. J Bone Joint Surg Am, 2006. 88 Suppl 3: p. 155-61.
    20. Huang, W., et al., Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol, 2000. 20(11): p. 4149-58.
    21. Liu, C.J., et al., ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J, 2006. 20(7): p. 988-90.
    22. Atkinson, B.L., et al., Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem, 1997. 65(3): p. 325-39.
    23. Hedbom, E., et al., Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem, 1992. 267(9): p. 6132-6.
    24. Morgelin, M., et al., Proteoglycans from the swarm rat chondrosarcoma. Structure of the aggregates extracted with associative and dissociative solvents as revealed by electron microscopy. J Biol Chem, 1992. 267(20): p. 14275-84.
    25. Chen, F.H., et al., Cartilage Oligomeric Matrix Protein/Thrombospondin 5 Supports Chondrocyte Attachment through Interaction with Integrins. J Biol Chem, 2005. 280(38): p. 32655-61.
    26. DiCesare, P., et al., Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett, 1994. 354(2): p. 237-40.
    27. Briggs, M.D., et al., Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet, 1995. 10(3): p. 330-6.
    28. Briggs, M.D., et al., Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet, 1998. 62(2): p. 311-9.
    29. Briggs, M.D., et al., Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19. Genomics, 1993. 18(3): p. 656-60.
    30. Cohn, D.H., et al., Mutations in the cartilage oligomeric matrix protein (COMP) gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N YAcad Sci, 1996. 785: p. 188-94.
    31. Hecht, J.T., et al., Linkage of typical pseudoachondroplasia to chromosome 19. Genomics, 1993.18(3): p. 661-6.
    32. Hecht, J.T., et al., Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet, 1995. 10(3): p. 325-9.
    33. Susic, S., et al., Multiple epiphyseal dysplasia and pseudoachondroplasia due to novel mutations in the calmodulin-like repeats of cartilage oligomeric matrix protein. Clin Genet, 1997. 51(4): p. 219-24.
    34. Francomano, C.A., I. McIntosh, and D.J. Wilkin, Bone dysplasias in man: molecular insights. Curr Opin Genet Dev, 1996. 6(3): p. 301-8.
    35. Mundlos, S. and B.R. Olsen, Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J, 1997. 11(4): p. 227-33.
    36. Ganu, V., et al., Inhibition of interleukin-1-induced cartilage oligomeric matrix protein degradation in bovine articular cartilage by matrix metalloproteinase inhibitors. Arthritis Rheum, 1998. 41: p. 2143-2151.
    37. Kashiwagi, M., et al., Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem, 2004. 279(11): p. 10109-19.
    38. Gendron, C., et al., Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem, 2007. 282(25): p. 18294-306.
    39. Adams, S.L., A.J. Cohen, and L. Lassova, Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J Cell Physiol, 2007. 213(3): p. 635-41.
    40. Kronenberg, H.M., PTHrP and skeletal development. Ann N Y Acad Sci, 2006. 1068: p. 1-13.
    
    41. Wright, W.E., D.A. Sassoon, and V.K. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989. 56(4): p. 607-17.
    42. Zhou, J., et al., Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem, 1993. 268(15): p. 10863-9.
    43. Anakwe, O.O. and G.L. Gerton, Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod, 1990. 42(2): p. 317-28.
    44. Ong, C.H. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol, 2003. 18(4): p. 1275-88.
    45. Davidson, B., et al., Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer, 2004. 100(10): p. 2139-47.
    46. Zanocco-Marani, T., et al., Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res, 1999. 59(20): p. 5331-40.
    47. Lu, R. and G. Serrero, Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci U S A, 2000. 97(8): p. 3993-8.
    48. Baba, T., et al., Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev, 1993. 34(3): p. 233-43.
    49. Daniel, R., et al., Cellular localization of gene expression for progranulin. J Histochem Cytochem, 2000.48(7): p. 999-1009.
    50. He, Z. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med, 2003. 81(10): p. 600-12.
    51. Bateman, A., et al., Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun, 1990.173(3): p. 1161-8.
    52. Gonzalez, E.M., et al., A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem, 2003. 278(40): p. 38113-6.
    53. Jones, M.B., M. Spooner, and E.C. Kohn, The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol Oncol, 2003. 88(1 Pt 2): p. S136-9.
    54. Wang, W., et al., PC cell-derived growth factor (granulin precursor) expression and action in human multiple myeloma. Clin Cancer Res, 2003. 9(6): p. 2221-8.
    55. Zhang, H. and G Serrero, Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci U S A, 1998. 95(24): p. 14202-7.
    56. Sun, X., M. Gulyas, and A. Hjerpe, Mesothelial differentiation as reflected by differential gene expression. Am J Respir Cell Mol Biol, 2004. 30(4): p. 510-8.
    57. Suzuki, M. and M. Nishiahara, Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab, 2002. 75(1): p. 31-7.
    58. Barreda, D.R., et al., Differentially expressed genes that encode potential markers of goldfish macrophage development in vitro. Dev Comp Immunol, 2004. 28(7-8): p. 727-46.
    59. Justen, H.P., et al., Differential gene expression in synovium of rheumatoid arthritis and osteoarthritis. Mol Cell Biol Res Commun, 2000. 3(3): p. 165-72.
    60. Zhu, J., et al., Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell, 2002.111(6): p. 867-78.
    61. Kessenbrock, K., et al., Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest, 2008.118(7): p. 2438-47.
    62. Baker, M., et al., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006. 442(7105): p. 916-9.
    63. Cruts, M., et al., Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 2006. 442(7105): p. 920-4.
    64. Gass, J., et al., Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet, 2006. 15(20): p. 2988-3001.
    65. Rowland, L.P., Frontotemporal dementia, chromosome 17, and progranulin. Ann Neurol, 2006. 60(3): p. 275-7.
    66. Colnot, C., Cellular and molecular interactions regulating skeletogenesis. J Cell Biochem, 2005. 95(4): p. 688-97.
    67. Franz-Odendaal, T.A. and M.K. Vickaryous, Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Dev Dyn, 2006. 235(5): p. 1244-55.
    68. Goldring, M.B., K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis. J Cell Biochem, 2006. 97(1): p. 33-44.
    69. CA, R., Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res, 1973. 33: p. 3239-3249.
    70. Rapp, U.R., et al., Endogenous oncornaviruses in chemically induced transformation. I. Transformation independent of virus production. Virology, 1975. 65(2): p. 392-409.
    71. Reznikoff, C.A., D.W. Brankow, and C. Heidelberger, Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res, 1973. 33(12): p. 3231-8.
    72. Zhang, Y., et al., Cbfa1 -dependent expression of an interferon-inducible p204 protein is required for chondrocyte differentiation. Cell Death Differ, 2008. 15(11): p. 1760-71.
    73. Huang, W., et al., The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A, 2001. 98(1): p. 160-5.
    74. Di Cesare, P.E., et al., Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res, 1996.14(6): p. 946-55.
    75. Di Cesare, P.E., et al., Localization and expression of cartilage oligomeric matrix protein by human rheumatoid and osteoarthritic synovium and cartilage. J Orthop Res, 1999. 17(3): p. 437-45.
    76. Fischer, L., G. Boland, and R.S. Tuan, Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem, 2002. 277(34): p. 30870-8.
    77. Inouye, M., Differential staining of cartilage and bone in fetal mouse skeleton by Alcian blue and alizarin red S. Congenital Anomalies, 1976. 16: p. 171-173.
    78. van der Kraan, P.M., et al., Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J Exp Pathol (Oxford), 1990. 71(1): p. 19-31.
    79. Mau, E., et al., PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol, 2007. 305(1): p. 28-39.
    80. Brummelkamp, T.R., R. Bernards, and R. Agami, A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002. 296(5567): p. 550-3.
    81. Karaplis, A.C., et al., Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev, 1994. 8(3): p. 277-89.
    82. Vojtek, A.B., S.M. Hollenberg, and J.A. Cooper, Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell, 1993. 74(1): p. 205-14.
    83. Hollenberg, S.M., et al., Identification of a new family of tissue-specific basic helix-loop- helix proteins with a two-hybrid system. Mol Cell Biol, 1995. 15(7): p. 3813-22.
    84. Deckers, M.M., et al., Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone, 2001.28(1): p. 14-20.
    85. Xu, K., et al., Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem, 2007.282(15): p. 11347-55.
    86. Olsen, B.R., A.M. Reginato, and W. Wang, Bone development. Annu Rev Cell Dev Biol, 2000.16: p. 191-220.
    87. Hu, Z., M. Yu, and G. Hu, NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model. Bone, 2007. 40(6): p. 1462-74.
    88. Karp, S.J., et al., Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development, 2000. 127(3): p. 543-8.
    89. Vortkamp, A., et al., Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 1996. 273(5275): p. 613-22.
    90. MacLean, H.E., et al., The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest, 2004. 113(9): p. 1334-43.
    91. Lee, K., et al., Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology, 1996. 137(11): p. 5109-18.
    92. Lanske, B., et al., PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science, 1996. 273(5275): p. 663-6.
    93. Amizuka, N., et al., Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol, 1994. 126(6): p. 1611-23.
    94. Weir, E.C., et al., Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A, 1996. 93(19): p. 10240-5.
    95. Schipani, E., et al., Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13689-94.
    96. He, Z., et al., Progranulin is a mediator of the wound response. Nat Med, 2003. 9(2): p. 225-9.
    97. Liu, C.J., et al., ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem, 2006. 281(23): p. 15800-8.
    98. Kim, I.S., et al., Regulation of chondrocyte differentiation by Cbfal. Mech Dev, 1999. 80(2): p. 159-70.
    1. Hurskainen, T.L., et al., ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM- TS family. J Biol Chem, 1999. 274(36): p. 25555-63.
    2. Jones, G.C. and G.P. Riley, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther, 2005. 7(4): p. 160-9.
    3. Abbaszade, I., et al., Cloning and characterization of ADAMTS 11, an aggrecanase from the ADAMTS family. J Biol Chem, 1999. 274(33): p. 23443-50.
    4. Collins-Racie, L.A., et al., ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol, 2004.23(4): p. 219-30.
    5. Glasson, S.S., et al., Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005. 434(7033): p. 644-8.
    6. Kuno, K., et al., ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett, 2000. 478(3): p. 241-5.
    7. Stanton, H., et al., ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005. 434(7033): p. 648-52.
    8. Tortorella, M.D., et al., Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science, 1999. 284(5420): p. 1664-6.
    9. Colige, A., et al., Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem, 2002. 277(8): p. 5756-66.
    10. Fernandes, R.J., et al., Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem, 2001. 276(34): p. 31502-9.
    11. Colige, A., et al., Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet, 1999. 65(2): p. 308-17.
    12. Levy, G.G., et al., Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature, 2001.413(6855): p. 488-94.
    13. Billington, C.J., Cartilage proteoglycan release assay. Methods Mol Biol, 2001. 151: p. 451-6.
    
    14. Somerville, R.P., et al., ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem, 2004.279(34): p. 35159-75.
    15. Cal, S., et al., Identification, characterization, and intracellular processing of ADAM-TS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats. J Biol Chem, 2001. 276(21): p. 17932-40.
    16. Luan, Y., et al., Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage, 2008.
    17. Llamazares, M., et al., The ADAMTS 12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci, 2007.120(Pt 20): p. 3544-52.
    18. Jin, E.J., et al., Akt signaling regulates actin organization via modulation of MMP-2 activity during chondrogenesis of chick wing limb bud mesenchymal cells. J Cell Biochem, 2007.102(1): p. 252-61.
    19. Melton, J.T., N.M. Clarke, and H.I. Roach, Matrix metalloproteinase-9 induces the formation of cartilage canals in the chondroepiphysis of the neonatal rabbit. J Bone Joint Surg Am, 2006. 88 Suppl 3: p. 155-61.
    20. Huang, W., et al., Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol, 2000.20(11): p. 4149-58.
    21. Liu, C.J., et al., ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J, 2006. 20(7): p. 988-90.
    22. Atkinson, B.L., et al., Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem, 1997. 65(3): p. 325-39.
    23. Hedbom, E., et al., Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem, 1992. 267(9): p. 6132-6.
    24. Morgelin, M., et al., Proteoglycans from the swarm rat chondrosarcoma. Structure of the aggregates extracted with associative and dissociative solvents as revealed by electron microscopy. J Biol Chem, 1992.267(20): p. 14275-84.
    25. Chen, F.H., et al., Cartilage Oligomeric Matrix Protein/Thrombospondin 5 Supports Chondrocyte Attachment through Interaction with Integrins. J Biol Chem, 2005. 280(38): p. 32655-61.
    26. DiCesare, P., et al., Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett, 1994. 354(2): p. 237-40.
    27. Briggs, M.D., et al., Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet, 1995.10(3): p. 330-6.
    28. Briggs, M.D., et al., Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet, 1998. 62(2): p. 311-9.
    29. Briggs, M.D., et al., Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19. Genomics, 1993. 18(3): p. 656-60.
    30. Cohn, D.H., et al., Mutations in the cartilage oligomeric matrix protein (COMP) gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N Y Acad Sci, 1996. 785: p. 188-94.
    31. Hecht, J.T., et al., Linkage of typical pseudoachondroplasia to chromosome 19. Genomics, 1993.18(3): p. 661-6.
    32. Hecht, J.T., et al., Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet, 1995. 10(3): p. 325-9.
    33. Susic, S., et al., Multiple epiphyseal dysplasia and pseudoachondroplasia due to novel mutations in the calmodulin-like repeats of cartilage oligomeric matrix protein. Clin Genet, 1997. 51(4): p. 219-24.
    34. Francomano, C.A., I. McIntosh, and D.J. Wilkin, Bone dysplasias in man: molecular insights. Curr Opin Genet Dev, 1996.6(3): p. 301-8.
    35. Mundlos, S. and B.R. Olsen, Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J, 1997.11(4): p. 227-33.
    36. Ganu, V., et al., Inhibition of interleukin-1-induced cartilage oligomeric matrix protein degradation in bovine articular cartilage by matrix metalloproteinase inhibitors. Arthritis Rheum, 1998. 41: p. 2143-2151.
    37. Kashiwagi, M., et al., Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem, 2004. 279(11): p. 10109-19.
    38. Gendron, C., et al., Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem, 2007. 282(25): p. 18294-306.
    39. Adams, S.L., A.J. Cohen, and L. Lassova, Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J Cell Physiol, 2007. 213(3): p. 635-41.
    40. Kronenberg, H.M., PTHrP and skeletal development. Ann N Y Acad Sci, 2006. 1068: p. 1-13.
    41. Wright, W.E., D.A. Sassoon, and V.K. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989. 56(4): p. 607-17.
    42. Zhou, J., et al., Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem, 1993. 268(15): p. 10863-9.
    43. Anakwe, O.O. and G.L. Gerton, Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod, 1990. 42(2): p. 317-28.
    44. Ong, C.H. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol, 2003.18(4): p. 1275-88.
    45. Davidson, B., et al., Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer, 2004.100(10): p. 2139-47.
    46. Zanocco-Marani, T., et al., Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res, 1999.59(20): p. 5331-40.
    47. Lu, R. and G. Serrero, Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci U S A, 2000. 97(8): p. 3993-8.
    48. Baba, T., et al., Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev, 1993. 34(3): p. 233-43.
    49. Daniel, R., et al., Cellular localization of gene expression for progranulin. J Histochem Cytochem, 2000. 48(7): p. 999-1009.
    50. He, Z. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med, 2003. 81(10): p. 600-12.
    51. Bateman, A., et al., Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun, 1990.173(3): p. 1161-8.
    52. Gonzalez, E.M., et al., A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem, 2003. 278(40): p. 38113-6.
    53. Jones, M.B., M. Spooner, and E.C. Kohn, The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol Oncol, 2003. 88(1 Pt 2): p. S136-9.
    54. Wang, W., et al., PC cell-derived growth factor (granulin precursor) expression and action in human multiple myeloma. Clin Cancer Res, 2003. 9(6): p. 2221-8.
    55. Zhang, H. and G. Serrero, Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci U S A, 1998. 95(24): p. 14202-7.
    56. Sun, X., M. Gulyas, and A. Hjerpe, Mesothelial differentiation as reflected by differential gene expression. Am J Respir Cell Mol Biol, 2004. 30(4): p. 510-8.
    57. Suzuki, M. and M. Nishiahara, Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab, 2002. 75(1): p. 31-7.
    58. Barreda, D.R., et al., Differentially expressed genes that encode potential markers of goldfish macrophage development in vitro. Dev Comp Immunol, 2004. 28(7-8): p. 727-46.
    59. Justen, H.P., et al., Differential gene expression in synovium of rheumatoid arthritis and osteoarthritis. Mol Cell Biol Res Commun, 2000.3(3): p. 165-72.
    60. Zhu, J., et al., Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell, 2002.111(6): p. 867-78.
    61. Kessenbrock, K., et al., Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest, 2008.118(7): p. 2438-47.
    62. Baker, M., et al., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006. 442(7105): p. 916-9.
    63. Cruts, M., et al., Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 2006. 442(7105): p. 920-4.
    64. Gass, J., et al., Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet, 2006. 15(20): p. 2988-3001.
    65. Rowland, L.P., Frontotemporal dementia, chromosome 17, and progranulin. Ann Neurol, 2006. 60(3): p. 275-7.
    66. Colnot, C., Cellular and molecular interactions regulating skeletogenesis. J Cell Biochem, 2005. 95(4): p. 688-97.
    67. Franz-Odendaal, T.A. and M.K. Vickaryous, Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Dev Dyn, 2006.235(5): p. 1244-55.
    68. Goldring, M.B., K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis. J Cell Biochem, 2006. 97(1): p. 33-44.
    69. CA, R., Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res, 1973. 33: p. 3239-3249.
    70. Rapp, U.R., et al., Endogenous oncornaviruses in chemically induced transformation. I. Transformation independent of virus production. Virology, 1975. 65(2): p. 392-409.
    71. Reznikoff, C.A., D.W. Brankow, and C. Heidelberger, Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res, 1973.33(12): p. 3231-8.
    72. Zhang, Y., et al., Cbfa1-dependent expression of an interferon-inducible p204 protein is required for chondrocyte differentiation. Cell Death Differ, 2008. 15(11): p. 1760-71.
    73. Huang, W., et al., The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A, 2001.98(1): p. 160-5.
    74. Di Cesare, P.E., et al., Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res, 1996.14(6): p. 946-55.
    75. Di Cesare, P.E., et al., Localization and expression of cartilage oligomeric matrix protein by human rheumatoid and osteoarthritic synovium and cartilage. J Orthop Res, 1999.17(3): p. 437-45.
    76. Fischer, L., G. Boland, and R.S. Tuan, Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem, 2002. 277(34): p. 30870-8.
    77. Inouye, M., Differential staining of cartilage and bone in fetal mouse skeleton by Alcian blue and alizarin red S. Congenital Anomalies, 1976. 16: p. 171-173.
    78. van der Kraan, P.M., et al., Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J Exp Pathol (Oxford), 1990. 71(1): p. 19-31.
    79. Mau, E., et al., PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol, 2007.305(1): p. 28-39.
    80. Brummelkamp, T.R., R. Bernards, and R. Agami, A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002. 296(5567): p. 550-3.
    81. Karaplis, A.C., et al., Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev, 1994. 8(3): p. 277-89.
    82. Vojtek, A.B., S.M. Hollenberg, and J.A. Cooper, Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell, 1993. 74(1): p. 205-14.
    83. Hollenberg, S.M., et al., Identification of a new family of tissue-specific basic helix-loop- helix proteins with a two-hybrid system. Mol Cell Biol, 1995. 15(7): p. 3813-22.
    84. Deckers, M.M., et al., Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone, 2001. 28(1): p. 14-20.
    85. Xu, K., et al., Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem, 2007. 282(15): p. 11347-55.
    86. Olsen, B.R., A.M. Reginato, and W. Wang, Bone development. Annu Rev Cell Dev Biol, 2000.16: p. 191-220.
    87. Hu, Z., M. Yu, and G. Hu, NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model. Bone, 2007. 40(6): p. 1462-74.
    88. Karp, S.J., et al., Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development, 2000.127(3): p. 543-8.
    89. Vortkamp, A., et al., Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 1996.273(5275): p. 613-22.
    90. MacLean, H.E., et al., The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest, 2004. 113(9): p. 1334-43.
    91. Lee, K.., et al., Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology, 1996.137(11): p. 5109-18.
    92. Lanske, B., et al., PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science, 1996.273(5275): p. 663-6.
    93. Amizuka, N., et al., Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol, 1994.126(6): p. 1611-23.
    94. Weir, E.C., et al., Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A, 1996. 93(19): p. 10240-5.
    95. Schipani, E., et al., Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13689-94.
    96. He, Z., et al., Progranulin is a mediator of the wound response. Nat Med, 2003. 9(2): p. 225-9.
    97. Liu, C.J., et al., ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem, 2006. 281(23): p. 15800-8.
    98. Kim, I.S., et al., Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 1999. 80(2): p. 159-70.
    99. Liu, C.J., ADAMTS-7 and ADAMTS-12 in arthritis. Nature Clinical Practice Rheumatology, 2008.
    100. DiCesare, P.E., et al., Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem, 1994. 223(3): p. 927-37.
    101. Di Cesare, P.E., et al., Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin. Matrix Biol, 2002. 21(5): p. 461-70.
    102. Mansson, B., et al., Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest, 1995.95: p. 1071-7.
    103. Rosenberg, K., et al., Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem, 1998. 273: p. 20397-403.
    104. Chen, F.H., et al., Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan. J Biol Chem, 2007. 282(34): p. 24591-8.
    105. Di Cesare, P.E., et al., Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res, 1996.14: p. 946-55.
    106. Neidhart, M., et al., Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol, 1997.36(11): p. 1151-60.
    107. Saxne, T. and D. Heinegard, Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol, 1992.31(9): p. 583-91.
    108. Kraus, V.B., et al., Urea as a passive transport marker for arthritis biomarker studies. Arthritis Rheum, 2002. 46(2): p. 420-7.
    109. Misumi, K., et al., Serum level of cartilage oligomeric matrix protein (COMP) in equine osteoarthritis. Equine Vet J, 2002.34(6): p. 602-8.
    110. Neidhart, M., Elevated serum prolactin or elevated prolactin/cortisol ratio are associated with autoimmune processes in systemic lupus erythematosus and other connective tissue diseases. J Rheumatol, 1996. 23(3): p. 476-81.
    111. Lohmander, L.S., et al., Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum, 1999. 42(3): p. 534-44.
    112. Petersson, I.F., et al., Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol, 1998. 37(1): p. 46-50.
    1. Abbaszade, I., R. Q. Liu, F. Yang, S. A. Rosenfeld, O. H. Ross, J. R. Link, D. M. Ellis, M. D. Tortorella, M. A. Pratta, J. M. Hollis, R. Wynn, J. L. Duke, H. J. George, M. C. Hillman, Jr., K. Murphy, B. H. Wiswall, R. A. Copeland, C. P. Decicco, R. Bruckner, H. Nagase, Y. Itoh, R. C. Newton, R. L. Magolda, J. M. Trzaskos, T. C. Burn, and et al. 1999. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274:23443-50.
    2. Amizuka, N., H. Warshawsky, J. E. Henderson, D. Goltzman, and A. C. Karaplis. 1994. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611-23.
    3. Anakwe, O. O., and G. L. Gerton. 1990. Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod 42:317-28.
    4. Arikawa-Hirasawa, E., H. Watanabe, H. Takami, J. R. Hassell, and Y. Yamada. 1999. Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354-8.
    5. Atkinson, B. L., K. S. Fantle, J. J. Benedict, W. E. Huffer, and A. Gutierrez-Hartmann. 1997. Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem 65:325-39.
    6. Baba, T., H. B. Hoff, 3rd, H. Nemoto, H. Lee, J. Orth, Y. Arai, and G. L. Gerton. 1993. Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev 34:233-43.
    7. Baker, M., I. R. Mackenzie, S. M. Pickering-Brown, J. Gass, R. Rademakers, C. Lindholm, J. Snowden, J. Adamson, A. D. Sadovnick, S. Rollinson, A. Cannon, E. Dwosh, D. Neary, S. Melquist, A. Richardson, D. Dickson, Z. Berger, J. Eriksen, T. Robinson, C. Zehr, C. A. Dickey, R. Crook, E. McGowan, D. Mann, B. Boeve, H. Feldman, and M. Hutton. 2006. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916-9.
    8. Barreda, D. R., P. C. Hanington, C. K. Walsh, P. Wong, and M. Belosevic. 2004. Differentially expressed genes that encode potential markers of goldfish macrophage development in vitro. Dev Comp Immunol 28:727-46.
    9. Bateman, A., D. Belcourt, H. Bennett, C. Lazure, and S. Solomon. 1990. Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun 173:1161-8.
    10. Briggs, M. D., S. M. Hoffman, L. M. King, A. S. Olsen, H. Mohrenweiser, J. G. Leroy, G. R. Mortier, D. L. Rimoin, R. S. Lachman, and E. S. Gaines. 1995. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nature 10:330-6.
    
    11. Briggs, M. D., G. R. Mortier, W. G. Cole, L. M. King, S. S. Golik, J. Bonaventure, L. Nuytinck, A. De Paepe, J. G. Leroy, L. Biesecker, M. Lipson, W. R. Wilcox, R. S. Lachman, D. L. Rimoin, K. RG, and D. H. Cohn. 1998. Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet 62:311-9.
    12. Briggs, M. D., I. M. Rasmussen, J. L. Weber, J. Yuen, K. Reinker, A. P. Garber, D. L. Rimoin, and D. H. Cohn. 1993. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19. Genomics 18:656- 60.
    13. Cal, S., J. M. Arguelles, P. L. Fernandez, and C. Lopez-Otin. 2001. Identification, characterization, and intracellular processing of ADAM-TS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats. J Biol Chem 276:17932-40.
    14. Chen, F. H., M. E. Herndon, N. Patel, J. T. Hecht, R. S. Tuan, and J. Lawler. 2007. Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan. J Biol Chem 282:24591-8.
    15. Chen, F. H., A. O. Thomas, J. T. Hecht, M. B. Goldring, and J. Lawler. 2005. Cartilage Oligomeric Matrix Protein/Thrombospondin 5 Supports Chondrocyte Attachment through Interaction with Integrins. J Biol Chem 280:32655-61.
    16. Cohn, D. H., M. D. Briggs, L. M. King, D. L. Rimoin, W. R. Wilcox, R. S. Lachman, and R. G. Knowlton. 1996. Mutations in the cartilage oligomeric matrix protein (COMP)gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N Y Acad Sci 785:188-94.
    17. Colige, A., A. L. Sieron, S. W. Li, U. Schwarze, E. Petty, W. Wertelecki, W. Wilcox, D. Krakow, D. H. Cohn, W. Reardon, P. H. Byers, C. M. Lapiere, D. J. Prockop, and B. V. Nusgens. 1999. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 65:308-17.
    18. Colige, A., I. Vandenberghe, M. Thiry, C. A. Lambert, J. Van Beeumen, S. W. Li, D. J. Prockop, C. M. Lapiere, and B. V. Nusgens. 2002. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 277:5756-66.
    19. Collins-Racie, L. A., C. R. Flannery, W. Zeng, C. Corcoran, B. Annis-Freeman, M. J. Agostino, M. Arai, E. DiBlasio-Smith, A. J. Dorner, K. E. Georgiadis, M. Jin, X. Y.Tan, E. A. Morris, and E. R. LaVallie. 2004. ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23:219-30.
    20. Colnot, C. 2005. Cellular and molecular interactions regulating skeletogenesis. J Cell Biochem 95:688-97.
    21. Cruts, M., I. Gijselinck, J. van der Zee, S. Engelborghs, H. Wils, D. Pirici, R. Rademakers, R. Vandenberghe, B. Dermaut, J. J. Martin, C. van Duijn, K. Peeters, R. Sciot, P. Santens, T. De Pooter, M. Mattheijssens, M. Van den Broeck, I. Cuijt, K. Vennekens, P. P. De Deyn, S. Kumar-Singh, and C. Van Broeckhoven. 2006. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920-4.
    22. Daniel, R., Z. He, K. P. Carmichael, J. Halper, and A. Bateman. 2000. Cellular localization of gene expression for progranulin. J Histochem Cytochem 48:999-1009.
    23. Davidson, B., E. Alejandro, V. A. Florenes, J. M. Goderstad, B. Risberg, G. B. Kristensen, C. G. Trope, and E. C. Kohn. 2004. Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer 100:2139-47.
    24. Deckers, M. M., P. Smits, M. Karperien, J. Ni, P. Tylzanowski, P. Feng, D. Parmelee, J. Zhang, E. Bouffard, R. Gentz, C. W. Lowik, and J. Merregaert. 2001. Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone 28:14-20.
    25. Di Cesare, P. E., C. S. Carlson, E. S. Stolerman, N. Hauser, H. Tulli, A.-T. H, and M. Paulsson. 1996. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res 14:946-55.
    26. Di Cesare, P. E., F. S. Chen, M. Moergelin, C. S. Carlson, M. P. Leslie, R. Perris, and C. Fang. 2002. Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin. Matrix Biol 21:461-70.
    27. Di Cesare, P. E., C. Fang, M. P. Leslie, C. J. Delia Valle, J. M. Gold, H. Tulli, R. Perris, and C. S. Carlson. 1999. Localization and expression of cartilage oligomeric matrix protein by human rheumatoid and osteoarthritic synovium and cartilage. J Orthop Res 17:437-45.
    28. Di Cesare, P. E., C. Fang, M. P. Leslie, H. Tulli, R. Perris, and C. S. Carlson. 2000. Expression of cartilage oligomeric matrix protein (COMP) by embryonic and adult osteoblasts. J Orthop Res 18:713-20.
    29. DiCesare, P. E., M. Morgelin, K. Mann, and M. Paulsson. 1994. Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem 223:927-37.
    30. Fernandes, R. J., S. Hirohata, J. M. Engle, A. Colige, D. H. Cohn, D. R. Eyre, and S. S. Apte. 2001. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 276:31502-9.
    31. Fischer, L., G. Boland, and R. S. Tuan. 2002. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 277:30870-8.
    32. Francomano, C. A., I. McIntosh, and D. J. Wilkin. 1996. Bone dysplasias in man: molecular insights. Curr Opin Genet Dev 6:301-8.
    33. Franz-Odendaal, T. A., and M. K. Vickaryous. 2006. Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Dev Dyn 235:1244-55.
    34. Gass, J., A. Cannon, I. R. Mackenzie, B. Boeve, M. Baker, J. Adamson, R. Crook, S. Melquist, K. Kuntz, R. Petersen, K. Josephs, S. M. Pickering-Brown, N. Graff- Radford, R. Uitti, D. Dickson, Z. Wszolek, J. Gonzalez, T. G. Beach, E. Bigio, N. Johnson, S. Weintraub, M. Mesulam, C. L. White, 3rd, B. Woodruff, R. Caselli, G. Y. Hsiung, H. Feldman, D. Knopman, M. Hutton, and R. Rademakers. 2006. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15:2988-3001.
    35. Gendron, C., M. Kashiwagi, N. H. Lim, J. J. Enghild, I. B. Thogersen, C. Hughes, B. Caterson, and H. Nagase. 2007. Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294-306.
    36. Glasson, S. S., R. Askew, B. Sheppard, B. Carito, T. Blanchet, H. L. Ma, C. R. Flannery, D. Peluso, K. Kanki, Z. Yang, M. K. Majumdar, and E. A. Morris. 2005. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644-8.
    37. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. 2006. The control of chondrogenesis. J Cell Biochem 97:33-44.
    38. Gonzalez, E. M., M. Mongiat, S. J. Slater, R. Baffa, and R. V. Iozzo. 2003. A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem 278:38113-6.
    39. He, Z., and A. Bateman. 2003. Progranulin (granulin-epithelin precursor, PC-cellderived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600-12.
    40. He, Z., C. H. Ong, J. Halper, and A. Bateman. 2003. Progranulin is a mediator of the wound response. Nat Med 9:225-9.
    41. Hecht, J. T., C. A. Francomano, M. D. Briggs, M. Deere, B. Conner, W. A. Horton, M. Warman, D. H. Cohn, and S. H. Blanton. 1993. Linkage of typical pseudoachondroplasia to chromosome 19. Genomics 18:661-6.
    42. Hecht, J. T., L. D. Nelson, E. Crowder, Y. Wang, F. F. Elder, W. R. Harrison, C. A. Francomano, C. K. Prange, G. G. Lennon, and M. Deere. 1995. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10:325-9.
    43. Hedbom, E., P. Antonsson, A. Hjerpe, D. Aeschlimann, M. Paulsson, E. Rosa- Pimentel, Y. Sommarin, M. Wendel, A. Oldberg, and D. Heinegard. 1992. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132-6.
    44. Hollenberg, S. M., R. Sternglanz, P. F. Cheng, and H. Weintraub. 1995. Identification of a new family of tissue-specific basic helix-loop- helix proteins with a two-hybrid system. Mol Cell Biol 15:3813-22.
    45. Hoogendam, J., H. Farih-Sips, E. van Beek, C. W. Lowik, J. M. Wit, and M. Karperien. 2007. Novel late response genes of PTHrP in chondrocytes. Horm Res 67:159-70.
    46. Hoque, M., B. Tian, M. B. Mathews, and T. Pe'ery. 2005. Granulin and granulin repeats interact with the Tat.P-TEFb complex and inhibit Tat transactivation. J Biol Chem 280:13648-57.
    47. Hoque, M., T. M. Young, C. G. Lee, G. Serrero, M. B. Mathews, and T. Pe'ery. 2003. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Mol Cell Biol 23:1688-702.
    48. Hu, Z., M. Yu, and G. Hu. 2007. NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model. Bone 40:1462-74.
    49. Huang, W., U. I. Chung, H. M. Kronenberg, and B. de Crombrugghe. 2001. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A 98:160-5.
    50. Huang, W., X. Zhou, V. Lefebvre, and B. de Crombrugghe. 2000. Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol 20:4149-58.
    51. Hurskainen, T. L., S. Hirohata, M. F. Seldin, and S. S. Apte. 1999. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM- TS family. J Biol Chem 274:25555-63.
    52. Jin, E. J., K. S. Park, O. S. Bang, and S. S. Kang. 2007. Akt signaling regulates actin organization via modulation of MMP-2 activity during chondrogenesis of chick wing limb bud mesenchymal cells. J Cell Biochem 102:252-61.
    53. Jones, G. C., and G. P. Riley. 2005. ADAMTS proteinases: a multi-domain, multifunctional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160-9.
    54. Jones, M. B., M. Spooner, and E. C. Kohn. 2003. The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol Oncol 88:S136-9.
    55. Justen, H. P., E. Grunewald, G. Totzke, I. Gouni-Berthold, A. Sachinidis, D. Wessinghage, H. Vetter, K. Schulze-Osthoff, and Y. Ko. 2000. Differential gene expression in synovium of rheumatoid arthritis and osteoarthritis. Mol Cell Biol Res Commun 3:165-72.
    56. Karaplis, A. C., A. Luz, J. Glowacki, R. T. Bronson, V. L. Tybulewicz, H. M. Kronenberg, and R. C. Mulligan. 1994. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277-89.
    57. Karp, S. J., E. Schipani, B. St-Jacques, J. Hunzelman, H. Kronenberg, and A. P. McMahon. 2000. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127:543-8.
    58. Kashiwagi, M., J. J. Enghild, C. Gendron, C. Hughes, B. Caterson, Y. Itoh, and H. Nagase. 2004. Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem 279:10109-19.
    59. Kessenbrock, K., L. Frohlich, M. Sixt, T. Lammermann, H. Pfister, A. Bateman, A. Belaaouaj, J. Ring, M. Ollert, R. Fassler, and D. E. Jenne. 2008. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118:2438-47.
    60. Kronenberg, H. M. 2006. PTHrP and skeletal development. Ann N Y Acad Sci 1068:1-13.
    61. Kuno, K., Y. Okada, H. Kawashima, H. Nakamura, M. Miyasaka, H. Ohno, and K. Matsushima. 2000. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 478:241-5.
    62. Kvist, A. J., A. E. Johnson, M. Morgelin, E. Gustafsson, E. Bengtsson, K. Lindblom, A. Aszodi, R. Fassler, T. Sasaki, R. Timpl, and A. Aspberg. 2006. Chondroitin sulfate perlecan enhances collagen fibril formation. Implications for perlecan chondrodysplasias. J Biol Chem 281:33127-39.
    63. Lanske, B., A. C. Karaplis, K. Lee, A. Luz, A. Vortkamp, A. Pirro, M. Karperien, L. H. Defize, C. Ho, R. C. Mulligan, A. B. Abou-Samra, H. Juppner, G. V. Segre, and H. M. Kronenberg. 1996. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663-6.
    64. Lee, K., B. Lanske, A. C. Karaplis, J. D. Deeds, H. Kohno, R. A. Nissenson, H. M. Kronenberg, and G. V. Segre. 1996. Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137:5109-18.
    65. Levy, G. G., W. C. Nichols, E. C. Lian, T. Foroud, J. N. McClintick, B. M. McGee, A. Y. Yang, D. R. Siemieniak, K. R. Stark, R. Gruppo, R. Sarode, S. B. Shurin, V. Chandrasekaran, S. P. Stabler, H. Sabio, E. E. Bouhassira, J. D. Upshaw, Jr., D. Ginsburg, and H. M. Tsai. 2001. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488-94.
    66. Liu, C. J., W. Kong, K. Ilalov, S. Yu, K. Xu, L. Prazak, M. Fajardo, B. Sehgal, and P. E. Di Cesare. 2006. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J 20:988-90.
    67. Liu, C. J., W. Kong, K. Xu, Y. Luan, K. Ilalov, B. Sehgal, S. Yu, R. D. Howell, and P. E. Di Cesare. 2006. ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 281:15800-8.
    68. Llamazares, M., A. J. Obaya, A. Moncada-Pazos, R. Heljasvaara, J. Espada, C. Lopez-Otin, and S. Cal. 2007. The ADAMTS 12 metalloproteinase exhibits antitumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci 120:3544-52.
    69. Lu, R., and G. Serrero. 2000. Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci U S A 97:3993-8.
    70. Luan, Y., L. Kong, D. R. Howell, K. Ilalov, M. Fajardo, X. H. Bai, P. E. Di Cesare, M. B. Goldring, S. B. Abramson, and C. J. Liu. 2008. Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2- macroglobulin. Osteoarthritis Cartilage 16:1413-20.
    71. MacLean, H. E., J. Guo, M. C. Knight, P. Zhang, D. Cobrinik, and H. M. Kronenberg. 2004. The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest 113:1334-43.
    72. Mansson, B., D. Carey, M. Alini, M. Ionescu, L. C. Rosenberg, A. R. Poole, D. Heinegard, and T. Saxne. 1995. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 95:1071-7.
    73. Mau, E., H. Whetstone, C. Yu, S. Hopyan, J. S. Wunder, and B. A. Alman. 2007. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol 305:28-39.
    74. Melton, J. T., N. M. Clarke, and H. I. Roach. 2006. Matrix metalloproteinase-9 induces the formation of cartilage canals in the chondroepiphysis of the neonatal rabbit. J Bone Joint Surg Am 88 Suppl 3:155-61.
    75. Morgelin, ML, J. Engel, D. Heinegard, and M. Paulsson. 1992. Proteoglycans from the swarm rat chondrosarcoma. Structure of the aggregates extracted with associative and dissociative solvents as revealed by electron microscopy. J Biol Chem 267:14275-84.
    76. Mundlos, S., and B. R. Olsen. 1997. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J 11:227-33.
    77. Nicole, S., C. S. Davoine, H. Topaloglu, L. Cattolico, D. Barral, P. Beighton, C. B. Hamida, H. Hammouda, C. Cruaud, P. S. White, D. Samson, J. A. Urtizberea, F. Lehmann-Horn, J. Weissenbach, F. Hentati, and B. Fontaine. 2000. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 26:480-3.
    78. Olsen, B. R., A. M. Reginato, and W. Wang. 2000. Bone development. Annu Rev Cell Dev Biol 16:191-220.
    79. Ong, C. H., and A. Bateman. 2003. Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18:1275-88.
    80. Rosenberg, K., H. Olsson, M. Morgelin, and D. Heinegard. 1998. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397-403.
    81. Rowland, L. P. 2006. Frontotemporal dementia, chromosome 17, and progranulin. Ann Neurol 60:275-7.
    82. Schipani, E., B. Lanske, J. Hunzelman, A. Luz, C. S. Kovacs, K. Lee, A. Pirro, H. M. Kronenberg, and H. Juppner. 1997. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci U S A 94:13689-94.
    83. Somerville, R. P., J. M. Longpre, E. D. Apel, R. M. Lewis, L. W. Wang, J. R. Sanes, R. Leduc, and S. S. Apte. 2004. ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem 279:35159-75.
    84. Stanton, H., F. M. Rogerson, C. J. East, S. B. Golub, K. E. Lawlor, C. T. Meeker, C. B. Little, K. Last, P. J. Farmer, I. K. Campbell, A. M. Fourie, and A. J. Fosang. 2005. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648-52.
    85. Sun, X., M. Gulyas, and A. Hjerpe. 2004. Mesothelial differentiation as reflected by differential gene expression. Am J Respir Cell Mol Biol 30:510-8.
    86. Susic, S., J. McGrory, J. Ahier, and W. G. Cole. 1997. Multiple epiphyseal dysplasia and pseudoachondroplasia due to novel mutations in the calmodulin-like repeats of cartilage oligomeric matrix protein. Clin Genet 51:219-24.
    87. Suzuki, M., and M. Nishiahara. 2002. Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab 75:31-7.
    88. Tortorella, M. D., T. C. Burn, M. A. Pratta, I. Abbaszade, J. M. Hollis, R. Liu, S. A. Rosenfeld, R. A. Copeland, C. P. Decicco, R. Wynn, A. Rockwell, F. Yang, J. L. Duke, K. Solomon, H. George, R. Bruckner, H. Nagase, Y. Itoh, D. M. Ellis, H. Ross, B. H. Wiswall, K. Murphy, M. C. Hillman, Jr., G. F. Hollis, E. C. Arner, and et al. 1999. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664-6.
    89. van der Kraan, P. M., E. L. Vitters, H. M. van Beuningen, L. B. van de Putte, and W. B. van den Berg. 1990. Degenerative knee joint lesions in mice after a single intraarticular collagenase injection. A new model of osteoarthritis. J Exp Pathol (Oxford) 71:19-31.
    90. Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205-14.
    91. Vortkamp, A., K. Lee, B. Lanske, G. V. Segre, H. M. Kronenberg, and C. J. Tabin. 1996. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613-22.
    92. Wang, W., J. Hayashi, W. E. Kim, and G. Serrero. 2003. PC cell-derived growth factor (granulin precursor) expression and action in human multiple myeloma. Clin Cancer Res 9:2221-8.
    93. Weir, E. C., W. M. Philbrick, M. Amling, L. A. Neff, R. Baron, and A. E. Broadus. 1996. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A 93:10240-5.
    94. Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607-17.
    95. Xu, K., Y. Zhang, K. Ilalov, C. S. Carlson, J. Q. Feng, P. E. Di Cesare, and C. J. Liu. 2007. Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem 282:11347-55.
    96. Zanocco-Marani, T., A. Bateman, G. Romano, B. Valentinis, Z. H. He, and R. Baserga. 1999. Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res 59:5331-40.
    97. Zhang, H., and G. Serrero. 1998. Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci U S A 95:14202-7.
    98. Zhou, J., G. Gao, J. W. Crabb, and G. Serrero. 1993. Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem 268:10863-9.
    99. Zhu, J., C. Nathan, W. Jin, D. Sim, G. S. Ashcroft, S. M. Wahl, L. Lacomis, H. Erdjument-Bromage, P. Tempst, C. D. Wright, and A. Ding. 2002. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700