骨重塑在造血干细胞动员中的机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的骨髓中大多数造血干细胞位于骨组织构成的骨龛中。成骨细胞是骨内膜表面的内衬细胞,生理条件下HSC及移植后归巢至骨髓的HSC与之密切接触,这种解剖定位提示成骨细胞可能调节HSC的功能。这一观点首先在成骨细胞和HSC的体外共培养中得到证实,随即一系列的研究几乎同时确定:成骨细胞是HSC龛中一关键组成成分,目前人们将之命名为‘成骨细胞龛’或‘骨内膜龛’。通过调节‘骨内膜龛’的大小,可以控制HSC的数量,维持HSC的稳定状态。本研究以干细胞动员中的成骨细胞及破骨细胞为研究对象,观察干细胞动员过程中成破骨细胞数量和功能的变化及其与动员的关系,进一步研究造血干细胞动员的机制。
     方法利用流式细胞术检测动员0、3、5天小鼠外周血干细胞数量,评价动员效果;通过实时定量PCR的方法比较动员0、3、5天小鼠成骨细胞特异性基因OCN.OPN.SDF-1.SCF的水平;并通过免疫组化及流式细胞术比较动员0、3、5天人类及小鼠成骨细胞数量功能的差异;利用细胞化学TRACP染色的方法比较动员0、3、5天小鼠破骨细胞数量和功能的差异;利用连续切片标记Caspase3的方法检测人类及小鼠成骨细胞的凋亡情况;利用ELISA的方法检测人类及小鼠循环中OCN. TRAP-5b蛋白水平反应成破骨细胞活性;共培养小鼠成骨细胞和小鼠骨髓有核细胞,检测成骨细胞活性。
     结果
     1.短期应用G-CSF可导致人类和小鼠动员模型中干骺端成骨细胞数量减少活性下降:动员前小鼠成骨细胞OCNmRNA水平为动员第三天的27±6倍(P<0.01);且动员后第3天骨内膜成骨细胞数量明显减少,形态由立方形变为梭形;CD45-Ter119-OPN成骨细胞数量在动员后3天及5天明显减少(动员前,4085±135cells/femur;动员后3天,1118±80 cells/femur:动员后5天,1032±55cell s/femur;P=0.02);动员3天和5天成骨细胞活性明显下降,OCN水平分别为59.44±3.16 ng/ml(动员前),39.21±4.49 ng/ml(动员后第3天)42.36±2.23 ng/ml(动员后第5天),P<0.01。进一步检测正常供者和自体移植患者标本同样显示动员后成骨细胞数量减少并伴有活性下降。然而在小鼠G-CSF动员第3天外周血LSK细胞比例并未明显增加,动员前、动员3天及动员5天分别为0.40±0.07%、0.55±0.05%和2.9±0.32%,因此成骨细胞的变化发生于动员之前。
     2.成骨细胞数量减少导致SDF-1、SCF、OPN等蛋白表达的减少,动员前小鼠成骨细胞SDF-1 mRNA的表达水平为动员后3天的3.44±0.3倍,进而引起动员的发生。
     3.G-CSF诱导的成骨细胞数量减少功能下降部分是由于动员过程中成骨细胞发生了凋亡,但成骨细胞的分化并未受到抑制,供者血清DKK1水平在动员前和动员后5天并无明显差异,13621.13±1081.99 pg/ml和10079.83±2055.82pg/ml,P=0.22。
     4.共培养成骨细胞和骨髓有核细胞发现,加或不加G-CSF两组成骨细胞OCNmRNA表达情况无明显差别,P=0.69。G-CSF通过间接途径抑制成骨细胞。
     5.动员后3天供者(动员前5.04±0.43 U/L,动员后3天3.45±0.37 U/L,P=0.03)及小鼠(动员前5.43±1.2 U/L,动员后3天4.04±0.86 U/L,P=0.47)血清TRAP-5b水平稍有下降,随后血清TRAP-5b水平明显上升(供者动员前为5.04±0.43 U/L,动员后5天为6.87±0.57U/L,P=0.04;小鼠动员前5.43±1.2U/L,小鼠动员后5天13.06±1.65,P=0.02)。动员过程中破骨细胞的活性逐渐增强。
     结论动员过程中成骨细胞数量活性的下降导致了动员的发生,并伴随有破骨细胞的活化。
     目的造血干细胞移植不仅是恶性血液病、严重免疫系统疾病及部分实体肿瘤主要甚至唯一的治愈手段,而且随着对干细胞及其细胞和组织工程研究的深入,正逐渐应用到心脑血管疾病、神经系统疾病等领域。
     我们在第一部分的研究中证明了骨重塑在造血干细胞动员过程中发挥了重要的作用,在第二部分的研究中我们用6种小鼠模型模拟临床上的自体干细胞移植过程,研究应用甲状旁腺激素(PTH)或NF-KB配体的受体(RANKL)靶向于成骨细胞或破骨细胞是否能够增加干细胞数量,保护干细胞造血重建的功能。
     方法利用细胞毒药物CTX处理小鼠,建立贫动员模型,进行造血干祖细胞培养,比较正常动员和贫动员小鼠模型中干细胞功能,并利用流式计数、RQ-PCR、ELISA的方法检测贫动员小鼠成骨细胞数量和功能。模拟临床自体移植过程,用PTH、RANKL干预贫动员小鼠(具体分组见材料与方法图1),利用竞争性移植模型(CRA)检测不同用药组小鼠干细胞移植16周后外周血中CD45.2阳性细胞比例。
     结果
     1.多次细胞毒药物化疗严重影响了成骨细胞和造血干细胞功能:自体干细胞移植患者化疗后血清OCN水平明显下降(化疗前:22.19±1.08 ng/mL和化疗后:16.08±2.12 ng/mL,P=0.01),小鼠模型中同样证明了上述观点,成骨细胞数量在多次应用细胞毒药物小鼠中明显减少,功能下降。且多次应用细胞毒严重影响了造血干祖细胞功能。CTLs/Gs组小鼠集落形成实验结果分别为21.16±1.35U,和13.00±1.71U,正常未用药小鼠为29.17±1.22U,三者相比P=0.01。
     2.骨髓CRA结果显示给予G-CSF支持的小鼠干细胞功能明显下降(G组比CTL组,P=0.01)。然而,应用PTH后可显著改善该组小鼠干细胞造血重建的功能(PTH组比G组,P<0.01;PTH组比CTL组,P<0.05)。外周血CRA结果同样证明应用G-CSF支持治疗的G组小鼠仅有极少数周血干细胞能进行造血重建(G组比CTL组,P<0.05)。而应用PTH的P+G组小鼠外周血干细胞造血重建的能力明显增加(P+G组比G组,P<0.01;P+G组比CTL组,P<0.05)。与CTL组或G组相比,P+R及P+R+G组周血干细胞同样显示出了更强的林髓系造血重建能力。RANKL同G-CSF一样可有效地动员骨髓中的造血干细胞(P+G组比P+R组,P>0.05)因此,应用PTH和RANKL可增加小鼠模型中动员至外周血中的造血干细胞数量并且保护多次应用细胞毒药物后造血干细胞功能。
     结论靶向于骨龛的药物可有效地改善多次应用细胞毒药物,尤其是联用G-CSF日寸干细胞治疗的效果。
The majority of HSPC reside in the bone marrow surrounded by specialized bone-shielded environment. The specialized microenvironment or niche not only provides a favorable habitat for HSPC maintenance and development but also governs stem cell function. Here we investigated the potential role of bone remodeling osteoblasts and osteoclasts in homeostasis and stress-induced mobilization of hematopoietic progenitors. Herein, our results shown that
     1. Short term G-CSF treatment leads to decreased number and activity of endosteal and trabecular osteoblasts in mice as well as in humam beings. Mouse osteocalcin mRNA expression was sharply reduced 27±6 fold (P<0.01) after 3 days treatment of G-CSF, and returned to normal levels on the fifth day of G-CSF cessation. The number of CD45-Ter119-OPN+osteoblast was significantly reduced (control nonmobilized,4085±135 cells/femur mobilized, d3,1118±80 cells/femur; mobilized, d5,1032±55 cells/femur;P=0.02). A significant decrease in serum osteocalcin protein was detected in G-CSF-treated mice (control nonmobilized,59.44±3.16 ng/ml; mobilized, d3,39.21±4.49 ng/ml; mobilized, d5,42.36±2.23 ng/ml;P<0.01)
     2. Diminished osteoblast leads to SDF-1, SCF, and OPN falling, mouse osteoblast SDF-1 mRNA expression decline 3.44±0.3 fold (P<0.05) on the third day of G-CSF mobilization.
     3. G-CSF treatment induced osteoblasts retraction is partly due to osteoblast apoptosis but not inhibits osteoblast differentiation inhibition through Wnt pathway.
     4. G-CSF acts through an indirect pathway to suppress osteoblasts, osteocalcin levels were 1.53±0.02 ng/mL (with G-CSF) vs 1.47±0.08 ng/mL (without G-CSF), P=0.89.
     5. G-CSF administration stimulates osteoclast activity, serum TRAP-5b levels showed lightly drop down on day 3 both in human (5.04±0.43 U/L on day 0 vs 3.45±0.37 U/Lon day 3, P=0.03) and mouse (5.43±1.2 U/L on day 0 vs 4.04±0.86 U/L on day 3, P=0.47) while increased gradually after that day (5.04±0.43 U/L on day 0 vs 6.87±0.57 on day 5,P=0.04) in human and (5.43±1.2 U/L on day 0 vs 13.06±1.65 on day 5, P=0.02) in mouse.
     In conclusion:Mobilization-induced changes in the osteoblast compartment were apparent before changes in HSCs. The loss of mature osteoblast may be the underlying reason of stem cell mobilization.
     Above findings indicated that bone remodeling plays an important role during HS cell mobilization. We further tested the hypothesis that targeting the niche might improve stem cell-based therapies using six mouse models to mimic the multiple rounds of chemotherapy followed by autologous HSC transplantation in a clinical setting. Herein, we show that
     1. Multiple rounds treatment of cytotoxic drugs influence osteoblasts and HSPCs, osteocalcin mRNA expression was reduced 9.32±0.3 fold (P<0.01) in CTLs group and 16.82±0.8 fold (P<0.01) in Gs group compared with untreated mouse, circulation osteocalcin decreased in CTLs group (33.81±1.99 ng/ml) and Gs group (27.18±1.09 ng/ml) compared with untreated mice (59.44±3.16 ng/ml) P<0.01. The number of bone marrow HSPCs reduced significantly in comparison to untreated mice (29.17±1.22U, untreated vs 21.16±1.35U, CTLs vs 13.00±1.71U, Gs, P=0.01)
     2. Pharmacologic use of PTH or RANKL increases the number of HS cells mobilized into the peripheral blood for stem cell harvests and protects stem cells from repeated exposure to cytotoxic chemotherapy.These data provide evidence that targeting the HSC niche may enhance stem cell-based therapies.
     In conclusion:Cytotoxic chemotherapy markedly depletes HS cells in bone marrow. Targeting the niche can protect and expand the resident HS cell pool in the bone marrow during chemotherapy rounds, especially if co-administered with G-CSF.
引文
1. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature.2003;425:836-841.
    2. Jin F, Zhai Q, Qiu L, et al. Degradation of BM SDF-1 by MMP-9:the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant.2008;42:581-588.
    3. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001:98:1289-1297.
    4. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002;109:625-637.
    5. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol.2002;3:687-694.
    6. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187-196.
    7. Christopherson KW,2nd, Cooper S, Broxmeyer HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood.2003;101:4680-4686.
    8. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol.2002:30:440-449.
    9. Levesque JP, Liu F, Simmons PJ, et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood.2004:104:65-72.
    10. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol.2003:72:82-93.
    11. Lee MY, Fukunaga R, Lee TJ, Lottsfeldt JL, Nagata S. Bone modulation in sustained hematopoietic stimulation in mice. Blood. 1991:77:2135-2141.
    12. Takahashi T, Wada T, Mori M, Kokai Y, Ishii S. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest.1996:74:827-834.
    13. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood.2005:106:3020-3027.
    14. Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res.2008:23:1765-1774.
    15. Kollet 0, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med.2006:12:657-664.
    16. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood.2008:111:1173-1181.
    17. Mayack SR, Wagers AJ. Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood.2008;112:519-531.
    18. Pituch-Noworolska A, Majka M, Janowska-Wieczorek A, et al. Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues:an alternative hypothesis to stem cell plasticity. Folia Histochem Cytobiol.2003:41:13-21.
    19. Shen H, Cheng T, Olszak I, et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol. 2001:166:5027-5033.
    20. Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell.2006:124:407-421.
    21. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol.2006;7:333-337.
    22. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque JP. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998:92:3465-3473.
    23. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell.2001:104:719-730.
    24. McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem.2001:276:43503-43508.
    25. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest.2000:106:1331-1339.
    26. Hornung RL, Longo DL. Hematopoietic stem cell depletion by restorative growth factor regimens during repeated high-dose cyclophosphamide therapy. Blood.1992;80:77-83.
    27. Freedman A, Neuberg D, Mauch P, et al. Cyclophosphamide, doxorubicin, vincristine, prednisone dose intensification with granulocyte colony-stimulating factor markedly depletes stem cell reserve for autologous bone marrow transplantation. Blood.1997;90:4996-5001.
    28. van Os R, Robinson S, Sheridan T, Mislow JM, Dawes D, Mauch PM. Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents. Blood. 1998:92:1950-1956.
    29. van Os R, Robinson S, Sheridan T, Mauch PM. Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal. Stem Cells.2000;18:120-127.
    30. Adams GB, Martin RP, Alley IR, et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol.2007;25:238-243.
    31. Ballen KK, Shpall EJ, Avigan D, et al. Phase Ⅰ trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant.2007;13:838-843.
    32. Carlo-Stella C, Di Nicola M, Milani R, et al. Use of recombinant human growth hormone (rhGH) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+cells in poor mobilizers. Blood. 2004:103:3287-3295.
    33. Morris CL, Siegel E, Barlogie B, et al. Mobilization of CD34+cells in elderly patients (>/= 70 years) with multiple myeloma:influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol.2003;120:413-423.
    1. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature.2003;425:836-841.
    2. Jin F, Zhai Q, Qiu L, et al. Degradation of BM SDF-1 by MMP-9:the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant.2008;42:581-588.
    3. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98:1289-1297.
    4. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002;109:625-637.
    5. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol.2002;3:687-694.
    6. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187-196.
    7. Christopherson KW,2nd, Cooper S, Broxmeyer HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood.2003:101:4680-4686.
    8. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol.2002;30:440-449.
    9. Levesque JP, Liu F, Simmons PJ, et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood.2004:104:65-72.
    10. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol.2003:72:82-93.
    11. Lee MY, Fukunaga R, Lee TJ, Lottsfeldt JL, Nagata S. Bone modulation in sustained hematopoietic stimulation in mice. Blood. 1991:77:2135-2141.
    12. Takahashi T, Wada T, Mori M, Kokai Y, Ishii S. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest.1996:74:827-834.
    13. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood.2005:106:3020-3027.
    14. Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res.2008:23:1765-1774.
    15. Kollet 0, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med.2006:12:657-664.
    16. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood.2008:111:1173-1181.
    17. Mayack SR, Wagers AJ. Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood.2008:112:519-531.
    18. Pituch-Noworolska A, Majka M, Janowska-Wieczorek A, et al. Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues:an alternative hypothesis to stem cell plasticity. Folia Histochem Cytobiol.2003:41:13-21.
    19. Shen H, Cheng T, Olszak I, et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol. 2001:166:5027-5033.
    20. Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell.2006:124:407-421.
    21. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol.2006:7:333-337.
    22. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque JP. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998:92:3465-3473.
    23. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell.2001:104:719-730.
    24. McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem.2001:276:43503-43508.
    25. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem
    cell function. J Clin Invest.2000;106:1331-1339.
    26. Hornung RL, Longo DL. Hematopoietic stem cell depletion by restorative growth factor regimens during repeated high-dose cyclophosphamide therapy. Blood.1992;80:77-83.
    27. Freedman A, Neuberg D, Mauch P, et al. Cyclophosphamide, doxorubicin, vincristine, prednisone dose intensification with granulocyte colony-stimulating factor markedly depletes stem cell reserve for autologous bone marrow transplantation. Blood.1997;90:4996-5001.
    28. van Os R, Robinson S, Sheridan T, Mislow JM, Dawes D, Mauch PM. Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents. Blood. 1998;92:1950-1956.
    29. van Os R, Robinson S, Sheridan T, Mauch PM. Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal. Stem Cells.2000;18:120-127.
    30. Adams GB, Martin RP, Alley IR, et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol.2007;25:238-243.
    31. Ballen KK, Shpall EJ, Avigan D, et al. Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant.2007;13:838-843.
    32. Carlo-Stella C, Di Nicola M, Milani R, et al. Use of recombinant human growth hormone (rhGH) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+cells in poor mobilizers. Blood. 2004:103:3287-3295.
    33. Morris CL, Siegel E, Barlogie B, et al. Mobilization of CD34+cells in elderly patients (>/= 70 years) with multiple myeloma:influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol.2003;120:413-423.
    1. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood.2001:98:1289-1297.
    2. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002:109:625-637.
    3. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol.2002:3:687-694.
    4. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003:111:187-196.
    5. Christopherson KW,2nd, Cooper S, Broxmeyer HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood. 2003:101:4680-4686.
    6. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol.2002:30:440-449.
    7. Jin F, Zhai Q, Qiu L, et al. Degradation of BM SDF-1 by MMP-9:the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant.2008;42:581-588.
    8. Levesque JP, Liu F, Simmons PJ, et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood.2004:104:65-72.
    9. Vial T, Descotes J. Clinical toxicity of cytokines used as haemopoietic growth factors. Drug Saf.1995:13:371-406.
    10. Bishop NJ, Williams DM, Compston JC, Stirling DM, Prentice A. Osteoporosis in severe congenital neutropenia treated with granulocyte colony-stimulating factor. Br J Haematol. 1995:89:927-928.
    11. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol.2003:72:82-93.
    12. Lee MY, Fukunaga R, Lee TJ, Lottsfeldt JL, Nagata S. Bone modulation in sustained hematopoietic stimulation in mice. Blood. 1991:77:2135-2141.
    13. Takahashi T, Wada T, Mori M, Kokai Y, Ishii S. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest.1996:74:827-834.
    14. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol.2006;7:333-337.
    15. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature.2003;425:836-841.
    16. Visnjic D, Kalajzic I, Gronowicz G, et al. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res.2001:16:2222-2231.
    17. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature.2003;425:841-846.
    18. Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell.2007:1:204-217.
    19. Ma YD, Park C, Zhao H, et al. Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood. 2009:114:4402-4410.
    20. Askmyr M, Sims NA, Martin TJ, Purton LE. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab.2009:20:303-309.
    21. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med.1994:179:1677-1682.
    22. Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol. 2001:112:438-448.
    23. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque JP. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998:92:3465-3473.
    24. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood.2005:106:3020-3027.
    25. Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res.2008:23:1765-1774.
    26. Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell.2006;124:407-421.
    27. Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol.2008;217:296-300.
    28. Porter L, Calvi LM. Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys.2008;473:193-200.
    29. Huang GP, Pan ZJ, Jia BB, et al. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant. 2007;16:579-585.
    30. McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem.2001;276:43503-43508.
    31. Delgado MB, Clark-Lewis I, Loetscher P, et al. Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol.2001; 31:699-707.
    32. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest.2000;106:1331-1339.
    33. Levesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ. Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol.2003;31:109-117.
    34. Nakamura Y, Tajima F, Ishiga K, et al. Soluble c-kit receptor mobilizes hematopoietic stem cells to peripheral blood in mice. Exp Hematol. 2004;32:390-396.
    35. Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood.2005;106:1232-1239.
    36. Mayack SR, Wagers AJ. Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood.2008;112:519-531.
    37. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell.2005:122:803-815.
    38. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008:452:442-447.
    39. Frisch BJ, Porter RL, Calvi LM. Hematopoietic niche and bone meet. Curr Opin Support Palliat Care.2008:2:211-217.
    40. Kollet 0, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med.2006:12:657-664.
    41. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood.2008:111:1173-1181.
    42. Perez-Amodio S, Beertsen W, Everts V. (Pre-)osteoclasts induce retraction of osteoblasts before their fusion to osteoclasts. J Bone Miner Res.2004:19:1722-1731.
    43. Everts V, Korper W, Jansen DC, et al. Functional heterogeneity of osteoclasts:matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. Faseb J.1999:13:1219-1230.
    44. Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. J Electron Microsc (Tokyo).2003:52:551-558.
    45. Roodman GD. Advances in bone biology:the osteoclast. Endocr Rev. 1996:17:308-332.
    46. Teitelbaum SL, Tondravi MM, Ross FP. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption. J Leukoc Biol. 1997:61:381-388.
    47. Purton LE, Lee MY, Torok-Storb B. Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood.1996;87:1802-1808.
    48. Yu X, Huang Y, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res.2003;18:1404-1418.
    49. Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone.2005;36:840-853.
    50. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood.2004;103:3258-3264.
    51. Adams GB, Martin RP, Alley IR, et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol.2007;25:238-243.
    52. Ballen K. Targeting the stem cell niche:squeezing blood from bones. Bone Marrow Transplant.2007;39:655-660.
    53. Ballen KK, Shpall EJ, Avigan D, et al. Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant.2007;13:838-843.
    54. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell.2005;121:1109-1121.
    55. Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood.2008;111:3923-3930.
    56. Kiel MJ, Acar M, Radice GL, Morrison SJ. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell. 2009:4:170-179.
    57. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood.1995;85:2269-2275.
    58. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol.2008:8:290-301.
    59. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity.2006;25:977-988.
    60. Zhang J, Li L. Stem cell niche:microenvironment and beyond. J Biol Chem.2008:283:9499-9503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700