胰岛素对糖尿病大鼠下颌骨成骨细胞体外生物学活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病患者骨整合的形成率低,羟基磷灰石涂层是常用的提高骨整合形成率的方法,但它易于感染、溶解、并从种植体表面崩解,长期效果欠佳。1型糖尿病和2型糖尿病晚期均需接受胰岛素治疗,人工种植牙给药系统的提出为胰岛素经颌骨局部植入式给药开拓了新的思路,一经实现可使患者在接受口腔治疗的同时接受系统治疗,并取代涂层发挥促进种植体骨整合的功效。颌骨成骨细胞在骨整合形成中发挥着关键的作用。随着成骨细胞体外培养技术的发展和应用,人们发现成骨细胞是一种对供体来源有较强记忆功能的细胞,但目前尚未见糖尿病供体来源颌骨成骨细胞的研究报导。本文将研究胰岛素对体外培养的糖尿病大鼠下颌骨成骨细胞生物学活性的影响,为胰岛素的局部植入式给药提供理论依据。
     第一部分糖尿病大鼠下颌骨成骨细胞的原代培养与鉴定
     目的:探讨四氧嘧啶糖尿病大鼠下颌骨成骨细胞培养的可行性,为进一步研究提供细胞来源。
     方法:16只6-8周龄SD大鼠,随机分为糖尿病组10只和对照组6只,糖尿病组腹腔注射四氧嘧啶(200mg/kg体重),对照组注射生理盐水。建模成功10d后,取大鼠两侧下颌骨,用酶消一组织块联合法进行成骨细胞培养。根据建模前后的随意血糖,对照组成骨细胞在含糖量5.5mM、糖尿病组成骨细胞分别在含糖量5.5及25mM的培养基中培养。倒置相差显微镜观察细胞生长情况。取各组第2代细胞用碱性磷酸酶钙-钴染色、Ⅰ型胶原特染、钙结节茜素红染色进行成骨细胞鉴定。透射电镜观察细胞的超微结构。
     结果:糖尿病组成骨细胞在5.5mM糖浓度培养下,可阳性表达碱性磷酸酶、Ⅰ型胶原,矿化液诱导可形成钙结节,光镜下与对照组的外部形态无明显差别,电镜下具有高尔基体少而溶酶体多的特点。糖尿病组成骨细胞在25mM糖浓度培养下,弱阳性表达碱性磷酸酶、Ⅰ型胶原,传代后形态发生改变、生长缓慢、不能形成钙结节。
     结论:糖尿病大鼠下颌骨在5.5mM糖浓度下进行成骨细胞培养具有可行性,可为进一步研究提供细胞来源。
     第二部分糖尿病大鼠下颌骨成骨细胞的生物学活性
     目的:研究糖尿病大鼠下颌骨成骨细胞的生物学活性。
     方法:MTT法、PNPP法、考马斯亮蓝法、放射免疫法及钙结节茜素红染色检测对照组及糖尿病组成骨细胞的增殖能力(1-12d)、蛋白校正ALP含量(3、7、14、21d)、骨钙素水平(28d)。RT~PcR检测5d时ALP、ColⅠ、Runx2的mRNA表达。采用RT-PCR、Westernblot、免疫组化染色检测IRα1、GLUT-1的表达。
     结果:
     1.糖尿病组2-12d与1d的MTT相对比值高于对照组(P<0.05),3d、7d、14d、21d ALP含量低于对照组(P<0.01),28d总骨钙素水平低于对照组(P<0.01),5d时ALP、ColⅠ的mRNA表达低于对照组(P<0.05),Runx2的mRNA表达高于对照组(P<0.01)。
     2.糖尿病组IRα1、GLUT-1基因蛋白水平的表达均显著高于对照组。
     结论:糖尿病大鼠下颌骨成骨细胞分化功能出现了障碍,表现为增殖加快、增殖期延长而基质形成、成熟、矿化能力下降。该细胞保留了对供体来源的高糖、低胰岛素环境做出的适应性变化,这可能是造成其分化功能障碍的原因之一。
     第三部分胰岛素对糖尿病大鼠下颌骨成骨细胞生物学活性的影响
     目的:研究胰岛素对糖尿病大鼠下颌骨成骨细胞分化和糖摄取的影响。
     方法:
     1.按培养基中胰岛素的浓度(0,10~(-5),10~(-6),10~(-7)M)将糖尿病组成骨细胞分为DM组、DM+Inse-5组、DM+Inse-6组及DM+Inse-7四组,设立对照组N。用MTT法、PNPP法、考马斯亮蓝法、放射免疫法、钙结节茜素红染色及RT-PCR检测各组的增殖能力(加药后24-72h)、蛋白校正ALP含量(3、7、14、21d)、骨钙素水平(0-28d)及矿化能力以及2d时Runx2、ColⅠAl的mRNA表达。
     2.按照培养基中胰岛素的浓度(0,10~(-6)M),将对照组和糖尿病组分为N、N+Ins、DM、DM+Ins四组,荧光显微镜观察它们对2-NBDG的摄取能力。
     结果:
     1.加药后24h,N组的MTT光密度值最高,DM组最低,与其余各组相比均有统计学意义(P<0.01);加药后48h及72h,MTT OD值由高到低依次为DM+Inse-6>DM+Inse-5、DM+Inse-7>N>DM,组间差异两两比较均具有统计学意义。
     2.N组在四个时间点的ALP含量均为最高,DM各组中ALP含量最高者依次分别为3d:DM+Inse-7组、7d及14d:DM+Inse-6组、21d:DM+Inse-5组。
     3.N组28d骨钙素分泌量高于DM各组,差异具有统计学意义(P<0.05)。N组0-7d BGP分泌量达峰值,之后逐渐降低,而DM各组的变化趋势与之相反。
     4.N组可见大面积红染的钙沉积;DM组可见零星钙结节着色点,DM加胰岛素各组钙结节着色点增多、面积加大。
     5.DM加胰岛素各组的ColⅠA1的mRNA表达较DM组明显增强,而Runx2表达明显减弱。
     6.2-NBDG的摄取量,20min时由大到小依次为N+Ins>DM+Ins>DM>N;40min时依次为DM>N+Ins>N及DM+Ins。
     结论:胰岛素可以纠正糖尿病大鼠成骨细胞的分化功能障碍,并抑制其过高的糖摄取。
Diabetic patients have a low rate of osseointegration,and hydroxyapatite coating is usually used to improve the osseointegration,however,hydroxyapatite coatings are not stable,they are inclined to cause infection and tend to delaminate from the implant surface.Both patients with type 1 and advanced stage of type 2 diabetes mellitus need insulin treatment,and a new design proposed for medicine administration via dental implant may be a possible resolvement for the above problems.If the design be realized,it may take place of coating for osseointegration and patients could get dental therapy as well as system treatment at the same time.Osteoblasts of jaw bone play a key role in the formation of osseointegration.With the development and application of bone cell culture technique,osteoblasts have been found to be able to remember the character of their donor resource.But now there is few report about the osteoblasts obtained from diabetic donor.The present paper is to study the effect of insulin on the biological activity of osteoblasts obtained from diabetic rats' mandibles,and to provide feasibility evidence for the local application of insulin via jaw bone.
     Part 1 Primary culture and identification of osteoblasts obtained from diabetic rats'mandibles
     Objective:To explore the feasibility of the culture of osteoblasts got from alloxan-induced diabetic rats,and to supply cells for further experiments.
     Methods:16 SD rats were assigned to two groups:diabetic group(10)induced by alloxan(200mg/kg)peritoneal injection and control group(6)injected physiologic saline.Rats were killed and their mandibles were harvested 10 days after the establishment.And primary bone cells were obtained from association of enzyme digestion and tissue explants in culture media containing 5.5 or 25mM glucose according to postprandial blood sugar examined before and after diabetic model establishment.The cells' growth situation was observed under inverted phase contrast microscope.The second passage cells were identified by alkaline phosphatase Ca-Co stain,typeⅠcollagen special stain and calcium nodules alizarin bordeaux stain.Cells' ultrastructure was observed by transmission electron microscope(TEM).
     Results:Cells of diabetic group cultured in 5.5mM glucose concentration media had typical osteoblasts' appearance under light microscope and positive identification stain.TEM results showed that there were few golgiosome but more lysosomes in diabetic osteoblasts' endochylema,which is different from the control group.Cells in 25mM glucose concentration media,with no obvious osteoblasts' morphology,had weakly positive identification and could not grow in multilayer to form calcium nodule.
     Conclusions:A large amount of osteoblasts can be obtained from alloxan-induced diabetic rats' mandibles when cultured in 5.5mM glucose media,which supply cells for further experiments.
     Part 2 Biological activity of osteoblasts obtained from diabetic rats' mandibles
     Objective:To study the biological activity of osteoblasts obtained from diabetic rats' mandibles.
     Methods:Comparison of cell biological activity was made between the diabetic and control group using MTT,PNPP,BGP content radioimmunoassay and alizarin bordeaux stain of calcified nodules.The expression of ALP,ColⅠ,Runx2 was measured by RT-PCR.The expressions of insulin receptorα(IRα)and glucose transporter-1(GLUT-1)were measured by RT-PCR,Westemblot and immunohistochemistry stain.
     Results:
     1.MTT value of diabetic group was significantly higher than the control group (P<0.05),yet ALP(3d、7d、14d、21d)and BGP(28d)value were on the contrary (P<0.01).The ALP、ColⅠmRNA expression of diabetic group were lower than control group(P<0.05),yet Runx2 were on the contrary(P<0.01).
     2.The expressions of IR a and GLUT-1 of diabetic group were higher than control group(P<0.05).
     Conclusion:Osteoblasts obtained from diabetic rats' mandibles have defects in their differentiation ability,leading to deregulated proliferation and a minimal capacity of these cells to develop into fully differentiated mineralizing osteoblasts. Meanwhile,these cells keep the adaptation changes to hyperglycemia and hypoinsulinemia,which may contribute to their dysfuntion.
     Part 3 Effect of insulin on the biological activity of osteoblasts obtained from diabetic rats' mandibles
     Objective:To study the effect of insulin on the differentiation and glucose uptake of osteoblasts obtained from diabetic rats' mandibles.
     Methods:
     1.Osteoblasts were divided into 5 groups(N、DM、DM+Inse-5、DM+Inse-6、DM+Inse-7)according to their origin(control group or diabetic group)and insulin concentration(0,10~(-5),10~(-6),10~(-7)M insulin)in culture media.Comparison of cell differentiation ability was made among the five groups using MTT,PNPP, BGP content radioimmunoassay and alizarin bordeaux stain of calcified nodules. RT-PCR was used for the measure of ColⅠA1 and Runx2 mRNA expression.
     2.Osteoblasts were divided into 4 groups(N、N+Ins、DM、DM+Ins)according to their origin(control group or diabetic group)and insulin concentration(0,10~(-6)M insulin)in culture media.Comparison of glucose uptake was made among the four groups by measuring fluorescence of intracellular 2-NBDG
     Results:
     1.N group had the highest MTT OD value after the first 24h(P<0.01),DM group the lowest.In the following 48 hours their proliferation rate from the high to low was DM+Inse-6>DM+Inse-5、DM+Inse-7>N>DM in order.
     2.From 3 to 21 days,the highest ALP value among diabetic groups turned to be DM+Inse-7、DM+Inse-6、DM+Inse-5 by turns.
     3.N group had the highest general BGP value among the five groups(P<0.05). The BGP secretion peak of N group appeared in the first week,the lowest in the fourth week.Diabetic group had the opposite tendency.
     4.There was large area red stain of calcium deposition in N group.In DM group there was only red stain of calcium nodules odds and ends,and DM plus insulin groups had enlarged red stain area.
     5.DM plus insulin groups expressed significantly more ColⅠA1 and less Runx2 mRNA than DM group.
     6.The uptake of 2-NBDG was N+Ins>DM+Ins>DM>N by turn at 20minutes, and DM>N+Ins>N and DM+Ins at 40 minutes.
     Conclusion:Insulin may correct the differentiation defects of osteoblasts obtained from diabetic rats,and inhibit their too high glucose uptake.
引文
1.Fiorellini JP,Chen PK,Nevins M,and et al.A retrospectiVe study of dental implants in diabetic patients[J].Int J Periodont Rest Dent,2000,20(4):366-373
    2.Mellado-Valero A,Ferret Garcia JC,Herrera Ballester A,and et al.Effects of diabetes on the osseointegration of dental implants[J].Med Oral Patol Oral Cir Bucal,2007,12(1):E38-43
    3.Fathi MH,Salehi M,Saatchi A,and et al.In vitro corrosion behavior of bioceramic,metallic,and bioceramic-metallic coated stainless steel dental implants[J].Dent Mater,2003,19(3):188-198
    4.Kotsovilis S,Karoussis IK,FourmousisⅠ.A comprehensive and critical review of dental implant placement in diabetic animals and patients[J].Clin Oral Implants Res,2006,17(5):587-599
    5.Cofino B,Fogarassy P,Millet P,and et al.Thermal residual stresses near the interface between plasma-sprayed hydroxyapatite coating and titanium substrate:finite element analysis and synchrotron radiation measurements[J].J Biomed Mater Res A,2004,70(1):20-27
    6.国家”九五”攻关计划糖尿病研究协作组。中国12个地区中老年人糖尿病患病率调查[J]。中华内分泌代谢杂志,2002,18(4):280-284
    7.Jiang G,Qiu W,DeLuca PP.Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres[J].Pharm Res,2003,20(3):452-459
    8.刘洪臣.人工种植牙全身给药系统的设计[J].口腔颌面修复学杂志,2006,7(4):291-292
    9.刘洪臣,鄂玲玲,高杰,等。~3H-去甲肾上腺素、~(125)Ⅰ-胰岛素经牙根管给药全身吸收的初步探索[J].中华老年口腔医学杂志,2007,5(2):93-95
    10.Llu R,Bal H s,Desta T,and et al.Diabetes Enhances penodontal bone loss through enhanced resorption and diminished bone formation[J].J Dent Res,2006,85(6):510-514
    11.Beikler T,Flemmig TF.Implants in the medically compromised patient[J].Crit Rev Oral Biol Med,2003;14(4):305-316
    12.Fang Y,Wang ZY,Mao Y,and et al.Effects of insulin-like growth factor Ⅰon the development of osteoblasts in hyperglycemia[J].Diabetes Res Clin Pract, 2006, 73 (1) :95-97
    
    13. Gopalakrishnan V, Vignesh RC, Arunakaran J, and et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages [J]. Biochem Cell Biol, 2006, 84(1):93-101
    
    14. Balint E, Szabo P, Marshall CF, and et al. Glucose-induced inhibition of in vitro bone mineralization [J]. Bone, 2001, 28(1):21-28
    
    15. Yeh JK, Evans IF, Chen MM, and et al. Effect of hypophysectomy on the proliferation and differentiation of rat bone marrow stromal cells[J]. Am J Physiol, 1999, 276(1 Pt l):E34-42
    
    16. Gevorgyan A, La Scala GC, Sukhu B, and et al. An in vitro model of radiation-induced craniofacial bone growth inhibition [J]. J Craniofac Surg, 2007,18(5): 1044-1050
    
    17. Mori G, Brunetti G, Colucci S, and et al. Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: role of TRAIL [J]. J Biol Regul Homeost Agents, 2007, 21(3-4):105-114
    
    18. Katzburg S, Lieberherr M, Ornoy A, and et al.Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age difference [J]. Bone 1999;25:667-673
    
    19. Katzburg S, Ornoy A, Hendel D, and et al. Age and gender specific stimulation of creatine kinase specific activity by gonadal steroids in human bone derived cells in culture [J]. J Endocrinol Invest 2000; 24:166-172
    
    20. Wang X, Schwartz Z, Yaffe P, and et al.The expression of TGB-β and IL-1β mRNA and response to 1,25(OH)2D3, 17β-estradiol and testosterone is age dependent in primary cultures of mousederived osteoblasts in vitro[J]. Endocrine 1999; 11:13-22
    
    21. Ornoy A, Giron S, Goldstein M, and et al. Gender dependent effects of testosterone and 17p-estradiol on bone growth and modeling in young mice [J].Bone Miner 1994; 24:43-58
    
    22. Yoshioka K, Takahashi H, Homma T, and et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia Coli [J]. Biochim Biophys Acta, 1996, 1289(1):5-9
    
    23. Oh KB, Matsuoka H. Rapid viability assessment of yeast cells using vital staining with 2-NBDG, a fluorescent derivative of glucose [J]. Int J Food Microbiol, 2002, 76(1-2):47-53
    
    24. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement [J]. J Biochem Biophys Methods, 2005, 64(3):207-215
    1. Kakuta S, Miyaoka K, Fujimori S, and et al. Proliferation and differentiation of bone marrow cells on titanium plates treated with a wire-type electrical discharge machine [J]. J Oral Implantol, 2000, 26(3): 156-162
    
    2. Fathi MH, Salehi M, Saatchi A, and et al. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants [J]. Dent Mater, 2003, 19(3): 188-198
    
    3. Mellado-Valero A, Ferrer Garcia JC, Herrera Ballester A, and et al. Effects of diabetes on the osseointegration of dental implants [J]. Med Oral Patol Oral Cir Bucal, 2007, 12(1):E38-43
    
    4. Kotsovilis S, Karoussis IK, Fourmousis I. A comprehensive and critical review of dental implant placement in diabetic animals and patients [J]. Clin Oral Implants Res, 2006, 17(5):587-599
    
    5. Beikler T, Flemmig TF. Implants in the medically compromised patient [J]. Crit Rev Oral Biol Med, 2003; 14(4):305-316
    
    6. van Steenberghe D, Jacobs R, Desnyder M, and et al. The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage [J]. Clin Oral Implants Res, 2002, 13(6):617-622
    
    7. Farzad P, Andersson L, Nyberg J. Dental implant treatment in diabetic patients [J]. Implant Dent, 2002, 11(3):262-267
    
    8. Gopalakrishnan V, Vignesh RC, Arunakaran J, and et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages [J]. Biochem Cell Biol, 2006, 84(1):93-101
    
    9. Balint E, Szabo P, Marshall CF, and et al. Glucose-induced inhibition of in vitro bone mineralization[J]. Bone, 2001, 28(1):21-28
    
    10. Yeh JK, Evans JF, Chen MM, and et al. Effect of hypophysectomy on the proliferation and differentiation of rat bone marrow stromal cells [J]. Am J Physiol, 1999, 276(1Pt1):E34-42
    11.Gevorgyan A,La Scala GC,Sukhu B,and et al.An in vitro model of radiation-induced craniofacial bone growth inhibition[J].J Craniofac Surg,2007,18(5):1044-1050
    12.Chen TL.Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment[J].Bone,2004,35(1):83-95
    13.Mori G,Brunetti G,Colucci S,and et al.Alteration of activity and survival of osteoblasts obtained from human periodontitis patients:role of TRAIL[J].J Biol Regul Homeost Agents,2007,21(3-4):105-114
    14.Locatto ME,Di Loreto V,Fernandez MC,and et al.Relative weight of glucose,insulin and parathyroid hormone in the urinary loss of phosphate by chronically diabetic rats[J].Acta Diabetol,1997,34(3):211-216
    15.鄂玲玲,刘洪臣,吴霞,等.改良大鼠下颌骨成骨细胞原代培养与鉴定[J].中华老年口腔医学杂志,2007,5(4):226-229
    16.司徒镇强,吴军正.细胞培养[M].修订版,西安:世界图书出版公司,2004:83-84
    17.梁敏,廖二元.成人成骨细胞和MG-63细胞株孕激素受体的表达[J].中国骨质疏松杂志,2004,10(4):412-414
    18.刘素荣,张娟,崔德芝.糖尿病骨质疏松症相关问题探讨[J].中国骨质疏松杂志,2004,10(3):388-389
    19.李聪然,游雪甫,蒋建东.糖尿病动物模型及研究进展[J].中国比较医学杂志,2005,15(1):59-62
    20.Siqueira JT,Cavalher-Machado SC,Arana-Chavez VE,and et al.Bone formation around titanium implants in the rat tibia:role of insulin[J].Implant Dent,2003,12(3):242-251
    21.McCracken MS,Aponte-Wesson R,Chavali R,and et al.Bone associated with implants in diabetic and insulin-treated rats[J].Clin Oral Implants Res,2006,17(5):495-500
    22.Mishima N,Sahara N,Shirakawa M,and et al.Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat[J].Archives of Oral Biology,2002,47(6):843-849
    23.Lu H,Kraut D,Gerstenfeld LC,and et al.Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation[J].Endocrinology,2003,144(1):346-352
    24.Fang Y,Wang ZY,Mao Y,and et al.Effects of insulin-like growth factor Ⅰon the development of osteoblasts in hyperglycemia[J].Diabetes Res Clin Pract,2006,73(1):95-97
    25.张文怡,刘洪臣,吴霞,等。米诺环素对体外培养的成年大鼠牙槽骨成骨细胞生物活性的影响[J].中华老年口腔医学杂志,2008,5(3):173-176
    26.He HB,Liu RK,Desta T,and et al.Diabetes causes decreased osteoclastogenesis,reduced bone formation,and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss[J].Endocrinology,2004,145(1):447-452
    1.Kakuta S,Miyaoka K,Fujimori S,and et al.Proliferation and differentiation of bone marrow cells on titanium plates treated with a wire-type electrical discharge machine[J].J Oral Implantol,2000,26(3):156-162
    2.Fathi MH,Salehi M,Saatchi A,and et al.In vitro corrosion behavior of bioceramic,metallic,and bioceramic-metallic coated stainless steel dental implants[J].Dent Mater,2003,19(3):188-198
    3.Bouillon R,Bex M,Van Herck E,and et al.Influence of age,sex,and insulin on osteoblast function:osteoblast dysfunction in diabetes mellitus[J].J Clin Endocrinol Metab, 1995, 80(4): 1194-1202
    
    4. Verhaeghe J, Van Herck E, Van Bree R, and et al. Decreased osteoblast activity in spontaneously diabetic rats. In vivo studies on the pathogenesis [J]. Endocrine,1997, 7(2): 165-175
    
    5. Inzerillo AM, Epstein S. Osteoporosis and diabetes mellitus [J]. Rev Endocr Metab Disord, 2004, 5(3): 261-268
    
    6. Al Shammari KF, Al Ansari JM, Moussa NM, and et al. Association of periodontal disease severity with diabetes duration and diabetic complications in patients with type 1 diabetes mellitus [J]. J Int Acad Periodontol, 2006,8(4):109-114
    
    7. Fouad AF. Diabetes mellitus as a modulating factor of endodontic infections [J].J Dent Educ, 2003, 67(4): 459-467
    
    8. Iwama A, Nishigaki N, Nakamura K, and et al. The effect of high sugar intake on the development of periadicular lesions in rats with type 2 diabetes [J]. J Dent Res, 2003, 82(4):322-325
    
    9. Liu R, Bal H S, Desta T, and et al. Diabetes Enhances periodontal bone loss through enhanced resorption and diminished bone formation [J]. J Dent Res, 2006,85(6):510-514
    
    10. Gopalakrishnan V, Vignesh RC, Arunakaran J, and et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages[J]. Biochem Cell Biol, 2006, 84(1):93-101
    
    11. Balint E, Szabo P, Marshall CF, and et al. Glucose-induced inhibition of in vitro bone mineralization [J]. Bone, 2001, 28(1):21-28
    
    12. Fang Y, Wang ZY, Mao Y, and et al. Effects of insulin-like growth factor I on the development of osteoblasts in hyperglycemia [J]. Diabetes Res Clin Pract,2006, 73 (1) :95-97
    
    13. Sayinalp S, Gedik O, Koray Z. Increasing serum osteocalcin after glycemic control in diabetic men [J]. Calcif Tissue Int, 1995, 57(6):422-425
    
    14. Ornoy A, Yaffe P, Zangen SW, and et al. Decreased response of osteoblasts obtained from aged Cohen diabetic sensitive rats to sex steroid hormones and 1,25OH2D3 in culture [J]. Odontology, 2006, 94(1): 38-43
    
    15. Yeh JK, Evans JF, Chen MM, and et al. Effect of hypophysectomy on the proliferation and differentiation of rat bone marrow stromal cells [J]. Am J Physiol, 1999, 276(1 Pt 1):E34-42
    
    16. Gevorgyan A, La Scala GC, Sukhu B, and et al. An in vitro model of radiation-induced craniofacial bone growth inhibition [J]. J Craniofac Surg, 2007,18(5):1044-1050
    
    17. Chen TL. Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment[J]. Bone, 2004, 35(1):83-95
    
    18. Mori G, Brunetti G, Colucci S, and et al. Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: role of TRAIL [J]. J Biol Regul Homeost Agents, 2007, 21(3-4):105-114
    
    1. Locatto ME, Di Loreto V, Fernandez MC, and et al. Relative weight of glucose, insulin and parathyroid hormone in the urinary loss of phosphate by chronically diabetic rats [J]. Acta Diabetol, 1997, 34(3):211-216
    2. LuH, Kraut D, Gerstenfeld LC, and et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation [J]. Endocrinology, 2003,144(1): 346-352
    3. Fulzele K, DiGirolamo DJ, Liu Z, and et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action [J]. J Biol Chem, 2007, 282(35): 25649-25658
    4. Irwin R, Lin HV, Motyl KJ, and et al. Normal bone density obtained in the absence of insulin receptor expression in bone [J]. Endocrinology, 2006, 147(12): 5760-5767
    5. Fang Y, Wang ZY, Mao Y, and et al. Effects of insulin-like growth factor I on the development of osteoblasts in hyperglycemia [J]. Diabetes Res Clin Pract, 2006, 73 (1) :95-97
    6. Vander Heiden MG, Plas DR, Rathmell JC and et al. Growth factors can influence cell growth and survival through effects on glucose metabolism [J]. Mol Cell Biol, 2001, 21(17): 5899-5912
    1.McCracken MS,Aponte-Wesson R,Chavali R,and et al.Bone associated with implants in diabetic and insulin-treated rats[J].Clin Oral Implants Res,2006,17(5):495-500
    2.Siqueira JT,Cavalher-Machado SC,Arana-Chavez VE,and et al.Bone formation around titanium implants in the rat tibia:role of insulin[J].Implant Dent,2003,12(3):242-251
    3.Kim SK,Kwon JY,Nam TJ.Involvement of ligand occupancy in insulin-like growth factor-Ⅰinduced cell growth in osteoblast like MC3T3-E1 cells[J].Biofactors,2007,29(4):187-202
    4. DiGirolamo DJ, Mukherjee A, Fulzele K, and et al. Mode of growth hormone action in osteoblasts [J]J Biol Chem, 2007,282(43):31666-31674
    
    5. Fujii H, Hamada Y, Fukagawa M. Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats [J].Bone, 2008,42(2):372-379
    
    6. Schleicher I, Parker A, Leavesley D, and et al. Surface modification by complexes of vitronectin and growth factors for serum-free culture of human osteoblasts [J]. Tissue Eng, 2005, 11(11-12): 1688-1698
    
    7. Lu H, Kraut D, Gerstenfeld LC, and et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation [J]. Endocrinology, 2003, 144(1): 346-352
    1.Zou C,Wang Y,Shen Z.2-NBDG as a fluorescent indicator for direct glucose uptake measurement[J].J Biochem Biophys Methods,2005,64(3):207-215
    2.Levi J,Cheng Z,Gheysens O,and et al.Fluorescent fructose derivatives for imaging breast cancer cells[J]-Bioconjug Chem,2007,18(3):628-634
    3.Yamada K,Saito M,Matsuoka H,and et al.A real-time method of imaging glucose uptake in single,living mammalian cells[J].Nat Protoc,2007,2(3):753-762
    4.Achilles J,Harms H,Muller S.Analysis of living S.cerevisiae cell states--a three Color approach[J].Cytometry A,2006,69(3):173-177
    5.Gopalakrishnan V,Vignesh RC,Arunakaran J,and et al.Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages [J]. Biochem Cell Biol, 2006, 84(1):93-101
    
    6. Fang Y, Wang ZY, Mao Y, and et al. Effects of insulin-like growth factor I on the development of osteoblasts in hyperglycemia [J]. Diabetes Res Clin Pract,2006, 73 (1) :95-97
    
    7. Yoshioka K, Takahashi H, Homma T, and et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia Coli [J].Biochim BiophysActa, 1996, 1289(1):5-9
    
    8. Lloyd PG, Hardin CD, Sturek M. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog [J]. Physiol Res,1999,48(6)401-410
    
    9. Ball SW, Bailey JR, Stewart JM, and et al. A fluorescent compound for glucose uptake measurements in isolated rat cardiomyocytes [J]. Can J Physiol PharmaCol,2002, 80(3):205-209
    
    10. Itoh Y, Abe T, Takaoka R, and et al. Fluorometric determination of glucose utilization in neurons in vitro and in vivo [J]. J Cereb Blood Flow Metab, 2004,24(9):993-1003
    1.Cernea S,RazⅠ.Noninjectable methods of insulin administration[J].Drugs Today(Barc),2006,42(6):405-424
    2.贾伟,高文远.药物控释新剂型.北京:化学工业出版社,2005.284.286.
    3.Renard E,Costalat G,Chevassus H and et al.Closed loop insulin delivery using implanted insulin pumps and sensors in type 1 diabetic patients[J].Diabetes Res and Clin Pract,2006,74s:173-177
    4.YamakawaⅠ,Kawahara M,Watanabe S,and et al.Sustained release of insulin by double-layered implant using poly(D,L-lactic acid)[J].J Pharm Sci,1990,79(6):505-509
    5.Takenaga M,Yamaguchi Y,Ogawa Y,and et al.Administration of optimum sustained-insulin release PLGA microcapsules to spontaneous diabetes-prone BB/Wor//Tky rats[J].Drug Deliv,2006,13(2):149-157
    6.Kofuji K,Murata Y,Kawashima S.Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions[J].Int J Pharm.,2005,13;303(1-2):95-103
    7.Paul W,Nesamony J,Sharma CP,and et al.Delivery of insulin from hydroxyapatite ceramic microspheres:preliminary in vivo studies[J].J Biomed Mater Res,2002,61(4):660-662
    8.Brown L,Munoz C,Siemer L,and et al.Controlled release of insulin from polymer matrices.Control of diabetes in rats[J].Diabetes,1986,35(6):692-697
    9.Kost J,Wolfrum J,Langer R.Magnetically enhanced insulin release in diabetic rats[J].J Biomed Mater Res,1987,21(12):1367-1373
    10.Kwon YM,Kim SW.Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition[J].Pharm Res,2004,21(2):339-343
    11.刘洪臣.人工种植才全身给药系统的设计[J].口腔颌面修复学杂志,2006,7(4):291-292
    12.刘洪臣.牙根管全身给药假说[J].中华老年口腔医学杂志,2007,5(1):2-3
    13.刘洪臣,鄂玲玲,高杰,等。~3H-去甲肾上腺素、~(125)Ⅰ-胰岛素经牙根管给药全身吸收的初步探索[J]。中华老年口腔医学杂志,2007,5(2):93-95
    14.Lan J,Wang Z,Wang Y,and et al.The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-Ⅰon dental implant osseointegration by confocal laser scanning microscopy[J].J Periodontol,2006,77(3):357-363
    15.Palioto DB,Coletta RD,Graner E,and et al.The influence of enamel matrix derivative associated with insulin-like growth factor-Ⅰon periodontal ligament fibroblasts[J].J Periodontol,2004,75(4):498-504
    16.Fang Y,Wang ZY,Mao Y,and et al.Effects of insulin-like growth factor Ⅰon the development of osteoblasts in hyperglycemia.Diabetes Res Clin Pract,2006,73(1):95-97
    17.Mott DA,Mailhot J,Cuenin MF,and et al.Enhancement of osteoblast proliferation in vitro by selective enrichment of demineralized freeze-dried bone allograft with specific growth factors[J].J Oral Implantol,2002,28(2):57-66
    18.Siqueira JT,Cavalher-Machado SC,Arana-Chavez VE,and et al.Bone formation around titanium implants in the rat tibia:role of insulin[J].Implant Dent,2003,12(3):242-251
    19.McCracken MS,Aponte-Wesson R,Chavali R,and et al.Bone associated with implants in diabetic and insulin-treated rats[J].Clin Oral Implants Res,2006,17(5):495-500
    20.Margonar R,Sakakura CE,Holzhausen M,and et al.The influence of diabetes mellitus and insulin therapy on biomechanical retention around dental implants:a study in rabbits[J].Implant Dent,2003,12(4):333-339
    21.Fiorellini JP,Chen PK,Nevins M,and et al.A retrospective study of dental implants in diabetic patients[J].Int J Periodont Rest Dent,2000,20(4):366-373
    22.Otsuka M,Matsuda Y,Suwa Y,and et al.A novd skeletal drug-delivery system using self-setting calcium phosphate cement.3.Physicochemical properties and drug-release rate of bovine insulin and bovine albumin[J].J Pharm Sci,1994,83(2):255-258
    23.国家”九五”攻关计划糖尿病研究协作组。中国12个地区中老年人糖尿病患病率调查[J]。中华内分泌代谢杂志,2002,18(4):280-284
    1.Liu R,Bal H S,Desta T,and et al.Diabetes Enhances periodontal bone loss through enhanced resorption and diminished bone formation[J].J Dent Res,2006,85(6):510-514
    2.He HB,Liu RK,Desta T,and et al.Diabetes causes decreased osteoclastogenesis,reduced bone formation,and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss[J].Endocrinology,2004,145(1):447-452
    3.AI-Rabeah E,Perinpanayagam H,MacFarland D.Human alveolar bone cells interact with ProRoot and tooth-Colored MTA[J].J Endod,2006,32(9):872-875
    4.Zhou Y,Hutmacher DW,Sac-Lim V,and et al.Osteogenic and Adipogenic Induction Potential of Human Periodontal Cells[J].J Periodontol,2008,79(3):525-534
    5.Piche JE,Carnes DL Jr,Graves DT.Initial characterization of cells derived from human periodontia[J].J Dent Res,1989,68(5):761-767
    6.Yefang Z,Hutmacher DW,Varawan SL,and et al.Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates[J].Int J Oral Maxillofac Surg,2007,36(2):137-145
    7.Simao AM,Beloti MM,Rosa AL,and et al.Culture of osteogenic cells from human alveolar bone:a useful source of alkaline phosphatase[J].Cell Biol Int,2007,31(11):1405-1413
    8.Rausch-Fan X,Qu z,Wieland M,and et al.Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells(MG63)in response to titanium surfaces[J].Dent Mater,2008,24(1):102-110
    9.Yeh JK,Evans JF,Chen MM,and et al.Effect of hypophyseetomy on the proliferation and differentiation of rat bone marrow stromal cells[J].Am J Physiol,1999,276(1 Pt 1):E34-42
    10.Gevorgyan A,La Scala GC,Sukhu B,and et al.An in vitro model of radiation-induced craniofacial bone growth inhibition[J].J Craniofac Surg,2007,18(5):1044-1050
    11.Chen TL.Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment[J].Bone,2004,35(1):83-95
    12.Moil G,Brunetti G;Colucci S,and et al.Alteration of activity and survival of osteoblasts obtained from human periodontitis patients:role of TRAIL[J].J Biol Regul Homeost Agents,2007,21(3-4):105-114
    13.Evans JF,Yeh JK,Aloia JF.Osteoblast-like cells of the hypophysectomized rat:a model of aberrant osteoblast development[J].Am J Physiol Endocrinol Metab,2000,278(5):E832-838
    14.吴璇,刘洪臣,鄂玲玲,等。建模时间及糖浓度对糖尿病大鼠下颌骨成骨细胞培养的影响[J].中华老年口腔医学杂志2008,6(1):43-46
    15.鄂玲玲,刘洪臣,吴霞,等.改良大鼠下颌骨成骨细胞原代培养与鉴定[J].中华老年口腔医学杂志,2007,5(4):226-229
    16.刘洪臣.人工种植牙全身给药系统的设计[J].口腔颌面修复学杂志,2006,7(4).291-292
    17.Fiorellini JP,Chen PK,Nevins M,and et al.A retrospective study of dental implants in diabetic patients[J].Int J Periodont Rest Dent,2000,20(4):366-373
    18.Mellado-Valero A,Ferrer Garcia JC,Herrera Ballester A,and et al.Effects of diabetes on the osseointegration of dental implants[J].Med Oral Patol Oral Cir Bucal,2007,12(1):E38-43
    19.Kotsovilis S,Karoussis IK,FourmousisⅠ.A comprehensive and critical review of dental implant placement in diabetic animals and patients[J].Clin Oral Implants Res,2006,17(5):587-599
    20.国家”九五”攻关计划糖尿病研究协作组。中国12个地区中老年人糖尿病患病率调查[J]。中华内分泌代谢杂志,2002,18(4):280-284
    21.Ornoy A,Yaffe P,Zangen SW,and et al.Decreased response of osteoblasts obtained from aged Cohen diabetic sensitive rats to sex steroid hormones and 1,25OH2D3 in culture[J].Odontology,2006,94(1):38-43
    22.Ornoy A,Giron S,Goldstein M,and et al.Gender dependent effects of testosterone and 17β-estradiol on bone growth and modeling in young mice[J].Bone Miner 1994;24:43-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700