胚泡与子宫内膜着床相关基因的筛选及其功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎着床(又称胚胎植入)是哺乳动物和人类生殖生理特有的一个环节,也是关系到妊娠成功与否的关键步骤。着床的顺利进行有赖于胚胎和子宫内膜的同步发育,即胚胎发育至胚泡阶段并完成孵化过程,同时子宫也处于接受状态,从而使得活化状态的胚泡能在“着床窗口”极其有限的开放时间内,及时与处于接受状态的子宫内膜建立紧密联系。这一显得非常精致的协同发育过程受到来源于胚胎和母体子宫内膜双方的各种激素、生长因子、细胞因子、蛋白酶等激素类分子和非激素类分子的调控,但其确切的分子机制仍不是十分清楚。
     为了寻找新的与胚胎着床相关的非激素类分子,以更深入地了解胚胎着床的分子机制,并探寻进行生殖调控的新环节,本实验室以小鼠为动物模型,分别收集了着床当日(孕D5天)小鼠着床部位和非着床部位子宫组织,以及着床前(孕D4天)和着床当日(孕D5天)小鼠胚泡,然后分别应用cDNA差减杂交和DD-RT-PCR技术,筛选得到许多在小鼠胚泡着床当日(孕D5天)的着床部位和非着床部位之间,或着床前后的胚泡之间存在特异性表达差异的基因的EST片段。但因人力、物力的限制,我们仅对其中很小一部分EST进行了测序分析,鉴别到5个新的着床相关基因,并在克隆获得这些基因的全长cDNA后在GenBank进行了登录,它们分别是:E4BP4(AY061760)、RGS2(AF432916)、ISP2(AF442819)、EMO-1(AY238936)和EMO-2(AY372183)。
     经GenBank Blast分析和相关文献查询发现,E4BP4是一种受IL-3调节的细胞核转录因子,但未发现该基因与胚胎着床相关的研究报道;RGS2参与G蛋白信号转导途径的调节,与细胞内钙离子浓度的调节以及T细胞增殖有关,其在着床中的作用未见有报道;ISP2是最近新发现的一种子宫组织特异基因,其表达受孕激素调节,并在胚胎着床期间呈特异性高表达,但其在胚胎着床中的作用尚有待于阐明;EMO-1与哺乳动物Sec63基因有高度同源性,而Sec63参与多种蛋白前体分子的翻译后加工;EMO-2是新基因,与人假定蛋白MGC50372有一定同源性,因此没有该基因的研究报道。MNSFD是本实验室正在研究的另一个新发现的着床相关因子,它是一种由抑制性T细胞合成的具有非特异性免疫抑制作用的淋巴因子,因其能抑制IL-4的分泌和Th2细胞的产生,所以推测其可能与母胎间免疫耐受的形成有关,但有待于研究证实。
     因抗ISP2抗体和抗MNSFβ抗体尚未市场化,为了获得这些蛋白分子的特异性抗体,用于其功能的研究,分别表达和纯化了ISP2重组蛋白,以及MNSFβ-hCGβ和GST-MNSFβ融合蛋白,并进而以这些重组蛋白作为抗原,分别制备了抗ISP2抗体和抗MNSFβ抗体。与此同时,本实验室的其他研究人员也分别制备了抗EMO-1氨基末端肽段抗体(抗EMO-1NTP抗体)、抗EMO-1羧基末端肽段抗体(抗EMO-1CTP抗体)、抗EMO-2氨基末端肽段抗体(抗EMO-2NTP抗体)和抗EMO-1羧基末端肽段抗体(抗EMO-2CTP抗体)。这些抗体其后被用于免疫组化研究和体内抗体封闭实验。
     应用原位杂交或/和免疫组化技术,对E4BP4、RGS2、ISP2、EMO-1、EMO-2在胚胎着床期间小鼠子宫内膜中的表达模式进行了分析,发现这些基因在胚胎着床前、后的表达均存在特异性差异,但表达部位各有不同,而且EMO-2的高表达不依赖于胚胎的存在,用我们自己制备的抗ISP2抗体进行的免疫组化结果与文献报道的原位杂交结果也相一致。
     为了进一步了解ISP2、MNSFβ、EMO-1和EMO-2在胚胎着床中的作用,以及探讨这些着床相关因子是否能成为发展新型抗生育技术的潜在靶分子,我们在小鼠体内进行了抗体封闭实验,结果表明,抗ISP2抗体、抗MNSFp抗体、抗EMO-1抗体和抗EMO-2抗体都具有抑制小鼠胚胎着床的作用,并呈剂量反应关系。而本实验室此前应用反义核酸技术进行的体内、外实验结果表明,EMO-1和EMO-2的反义核酸对胚胎的着床也有明显的抑制作用。我们分别收集了经抗ISP2抗体和抗MNSFβ抗体处理过和未经抗体处理过的孕D5天小鼠子宫组织,然后通过免疫组化研究,观察抗ISP2抗体对小鼠子宫中uPA和MMP-9表达水平的影响,分析其抑制胚胎着床的可能机制;并应用基因芯片技术,初步筛选出一些抗MNSFβ抗体处理后在小鼠子宫组织表达上调和下调的基因。
     为了建立基因剔除小鼠模型的建模技术,为以后深入研究这些基因功能缺陷对胚胎着床的影响极其作用机制提供动物模型,我们建立了具生殖系嵌合能力的C57BL/6J小鼠胚胎干细胞系,可用于今后制备转基因动物和基因剔除动物模型。
     综合以上研究结果,提示ISP2、MNSFβ、EMO-1和EMO-2在小鼠胚胎着床过程中起着重要作用,并且是发展新型抗生育技术的潜在靶分子,应进一步深入探讨这些基因在着床中的作用机制。
Embryo implantation is a critical step in reproductive process specifically owned by mammalian and human being, and is the most relevant limiting factor for successful pregnancy. In order to establish an active interaction between the implanting embryo and the maternal endometrium during a very limited timespan defined as the "implantation window", the embryo should synchronously develop to the blastocyst stage and escapte from the zona pellucida, when the endometrium becomes receptive. Such an exquisite coordination involves the regulation of hormones and various non-hormonal molecules produced by embryonic and maternal tissues, including growth factors, cytokines, proteinases.
    With a view to further understand the precise molecular mechanism underlying embryo implantation and to find out new targets for the development of novel fertility regulation techniques, our lab used the mouse as a model to identify the novel implantation-related genes and explored the roles these genes played in embryo implantation. The mouse uterine tissues of implantation sites and inter-implantation sites were respectively collected at the time of implantation (Day 5 of pregnancy), and the pre- and post-implantation embryos were also collected on Day 4 and Day 5 of pregnancy. Subsequently, the techniques of cDNA subtracted hybridization and DD-RT-PCR were respectively applied to screen the novel factors involved in mouse embryo implantation process. A large number of EST fragments of genes differentially expressed between the implantation and inter-implantation sites, or between the pre- and post-implantation implantation embryos, were screened out. However, having been short in labor power and research funds, just a small part of the EST fragment pools were sequenced for the further analysis, and finally 5 novel implantation-related genes were identified. The full-length cDNA of these genes were successively cloned and registered in the GenBank. They are E4BP4(AY061760), RGS2(AF432916), ISP2(AF442819), EMO-1 (AY238936) and EMO-2(AY372183).
    The results of GenBank Blast searches and references review showed that, E4BP4 is an IL3-regulated nuclear transcript factor, and no report on E4BP4 related to implantation was found; RGS2 participates in the regulation of G-protein signaling pathway and is involved in the regulation of intercellular Ca~(2+) mobilization and T cell proliferation, but there was also no report on RGS2 related to implantation; ISP2 was a newly-identified mouse uterine specific gene, and its expression was regulated by progesterone and sharply up-regulated during the period of implantation, but the roles of ISP2 played in implantation was still unclear; EMO-1 was highly homologous to mammalian Sec63 gene which was reported to be involved in the post-translation modification of various proteins; EMO-2 was a new gene and partly homologous to the human hypothetical protein MGC50372, and no report on EMO-2 and its homologous gene was found. MNSFP was a previously identified novel implantation-related factor that needed to be further investigated in our lab, and is a lymphokine produced by suppressor T cell. As it was reported that MNSFβ could inhibit the immune response in an antigen-nonspecific suppressive manner by inhibiting the secretion of IL-4 and production of Th2 cells, MNSFβ was presumed to participate in the formation of immune tolerance between embryo and maternal endometrial tissues.
    As the anti-ISP2 antibody and anti-MNSFβ antibody were not commercial available, we therefore prepared the recombinant ISP2 protein, as well as fusion proteins MNSFβ-hCGβ and GST-MNSFβ, respectively, and immunized animals by using these expressed products as the antigen to respectively prepare the anti-ISP2 and anti-MNSFβ antibodies. Meanwhile, the antibodies respectively against the EM0-1NTP, EMO-1CTP, EMO-2NTP and EMO-2CTP were also prepared in our lab. All of these antibodies were used in the subsequent IHC study and in vivo loss of function experiments.
    The uterine expression patterns of E4BP4, RGS2, ISP2, EMO-1 and EMO-2 during the period of embryo implantation were respectively investigated by in-situ hybridization and/or IHC. The results showed that, the uterine expression of these 5 genes were up-regulated during the implantation process, but the expression localization of these gene were not the same. Particularly, the high expression level of EMO-2 was embryo-independent. Furthermore, the expression pattern of ISP2 protein was well consistent with the ISP2 mRNA as previously reported.
    In order to further investigate the roles of ISP2, MNSFβ, EMO-1 and EMO-2 played in embryo implantation process, and to explore whether or not the potential target(s) for the development of novel contraceptive could be found among these genes, the antibody-blocking experiments were performed in mice. The results showed that, the antibodies against ISP2, MNSFβ, EMO-1 and EMO-2 caused a dose-dependent inhibitory effects on mouse embryo implantation in vivo. Consistently, the previous antisense RNA-blocking experiments of EMO-1 and EMO-2 also showed the inhibitory effects on embryo implantation. D5 pregnant mouse uterine tissues treated and non-treated by ISP2-antibody or MNSFβ were respectively collected. IHC analysis was carried out to observe whether or not the expression of uPA and MMP-9 proteins would be effected by the treatment of anti-ISP2 antibody. cDNA array technique was used to identify the up- and down-regulated genes in MNSFβ-antibody treated uterine tissues.
    In order to develop the techniques related to the development of knockout mouse model, which could be used to deeply investigate the inhibitory effects and the underlying mechanism caused by the function-deficiency of these implantation-related genes, we established a germ-line transmission using C57BL/6J embryonic stem cell lines that can be applied to generate transgenic or gene knock-out mice.
    To sum up, it could be concluded that, ISP2, MNSFβ, EMO-1 and EMO-2 play the critical roles in mouse embryo implantation, and consequently are potential targets for the development of novel contraceptive product. However, the mechanisms and the potential interaction among these implantation-related factors are still needed to be further explored.
引文
1.杨增明、孙青原、夏国良,(2005),《生殖生物学》,213~251,科学出版社。
    2.王一飞,(1991),《生殖医学》,118~125,323~324,人民卫生出版社。
    3. Lawson RA, Parr RA, Cahill LP, (1983), Evidence for maternal control of blastocyst growth after asynchronous transfer of embryos to the uterus of the ewe, J Reprod Fertil, 67: 477-483.
    4.王一飞、朱云凤,(1999),着床与抗着床-研究进展与展望。《生殖与避孕》,19:259-263。
    5. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H, (2004), Molecular cues to implantation, Endocr Rev, 25: 341-373.
    6. Kodaman PH, Taylor HS, (2004), Hormonal regulation of implantation, Obstet Gynecol Clin North Am, 31: 745-766.
    7. Nie GY, Butt AR, Salamonsen LA, Findlay JK. (1997), Hormonal and non-hormonal agents at implantation as targets for contraception, Reprod Fertil Dev, 9: 65-76.
    8. Stouffer RL, Heam JP, (1998), Endocrinology of the transition from menstrual cycles to establishment of pregnancy in primate, In: Bazer FW (ed), Endocrinology of Pregnancy, Contemporary Endocrinology Series, Human Press: New Jersey.
    9. Delves PJ, (2004) How far from a hormone-based contraceptive vaccine? J Reprod Immunol; 62: 69-78.
    10. Jones WR, (1996), Contraceptive vaccines, Baillieres Clin Obstet Gynaecol, 10: 69-86.
    11. Hoozemans DA, Schats R, Lambalk CB, Homburg R, Hompes PG, (2004), Human embryo implantation: current knowledge and clinical implications in assisted reproductive technology, Reprod Bioraed Online, 9: 692-715.
    12. Joung SY, Kim HJ, Choi WS, Im KS, Lee SH, Park CS, Jin DI, (2004), Effects of transferring in vitro-cultured rabbit embryos to recipient oviducts on mucin coat deposition, implantation and development, Zygote; 12: 215-219.
    13. Carson DD, Tang JP, Julian J, (1993), Heparan sulfate proteoglycan (perlecan) expression by mouse embryo during acquisition of attachment competence, Dev Biol, 155: 97-106.
    14. Carson DD, DeSouza MM, Regisford EG, (1998), Mucin and proteoglycan functions in embryo implantation, Bioessays; 20: 577-583.
    15. Revel A, Helman A, Koler M, Shushan A, Goldshmidt O, Zcharia E, Aingom H, Vlodavsky I, (2005), Heparanase improves mouse embryo implantation, Fertil Steril; 83: 580-586.
    16. Sueoka K, Shiokawa S, Miyazaki T, Kuji N, Tanaka M, (1997), Integrins and reproductive physiology: expression and modulation in fertilization, embryogenesis, and implantation, Fertil Steril, 67: 799-811.
    17. Garcia P, Nieto A, Sanchez MA, Flores JM, (2004), Expression of alpha V, alpha4, alpha5 and beta3 integrin subunits, fibronectin and vitronectin in goat peri-implantation, Anim Reprod Sci, 80: 91-100.
    18. Huang JC, Coldsby JS, Wun WS, (2004), Prostacyclin enhances the implantation and live birth potentials of mouse embryos, Hum Reprod, 19: 1856-1860.
    19. Scherle PA, Ma W, Lim H, Dey SK, Trzaskos JM, (2000), Regulation of cyclooxygenase-2 induction in the mouse uterus during decidualization. An event of early pregnancy, JBiol Chem, 275: 37086-37092.
    20. Lim H, Gupta RA, Ma WG, Paria BC, Moiler DE, Morrow JD, DuBois RN, Trzaskos JM, Dey SK, (1999), Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta, Genes Dev, 13: 1561-1574.
    21. Roudebush WE, Massey JB, Kort HI, Eisner CW, Shapiro DB, (2004), Exposure of preimplantation embryos to platelet-activating factor increases birth rate, J Assist Reprod Genet, 21: 297-300.
    22. Wollenhaupt K, Welter H, Einspanier R, Manabe N, Brussow KP, (2004), Expression of epidermal growth factor receptor (EGF-R), vascular endothelial growth factor receptor (VEGF-R) and fibroblast growth factor receptor (FGF-R) systems in porcine oviduct and endometrium during the time of implantation, J Reprod Dev, 50: 269-278.
    
    23. Nardo LG, Nikas G, Makrigiannakis A, (2003), Molecules in blastocyst implantation: Role of matrix metalloproteinases, cytokines and growth factors, J Reprod Med, 48: 137-147.
    
    24. Curry TE Jr, Osteen KG, (2003), The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle, Endocr Rev, 24:428-465.
    
    25. Anteby EY, Greenfield C, Natanson YS, Goldman WD, Khudyak V, Ariel I, Yagel S, (2004), Vascular endothelial growth factor, epidermal growth factor and fibroblast growth factor-4 and -10 stimulate trophoblast plasminogen activator system and metalloproteinase-9, Mol Hum Reprod, 10: 229-235.
    
    26. Aflalo ED, Sod-Moriah UA, Potashnik G, Har-Vardi I, (2005), Expression of plasminogen activators in preimplantation rat embryos developed in vivo and in vitro, Reprod Biol Endocrinol, 3 :7.
    
    27. Yang JZ, Ajonuma LC, Tsang LL, Lam SY, Rowlands DK, Ho LS, Zhou CX, Chung YW, Chan HC, (2004), Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation, Cell Biol Int, 28:433439.
    
    28. Luu KC, Nie GY, Salamonsen LA, (2004), Endometrial calbindins are critical for embryo implantation: evidence from in vivo use of morpholino antisense oligonucleotides, Proc Natl Acad Sci U S A., 101: 8028-8033.
    
    29. Paulesu L, Romagnoli R, Bigliardi E, (2005), Matemo-fetal immunotolerance: is Interleukin-1 a fundamental mediator in placental viviparity? Dev Comp Immunol, 29: 409-415.
    
    30. Lobo SC, Huang ST, Germeyer A, Dosiou C, Vo KC, Giudice LC, (2004), The immune environment in human endometrium during the window of implantation, Am J Reprod Immunol, 52: 244-251.
    
    31. Makrigiannakis A, Zoumakis E, Kalantaridou S, Chrousos G, (2004), Endometrial and placental CRH as regulators of human embryo implantation, J Reprod Immunol, 62: 53-59.
    
    32. San Martin S, Soto-Suazo M, Zom TM, (2004), Perlecan and syndecan-4 in uterine tissues during the early pregnancy in mice, Am J Reprod Immunol, 52: 53-59.
    
    33. Zhang H, Lai Q, (2004), Transcription and translation of Dickkopf-1 in endometrium of pregnant mice during the peri-implantation period, J Huazhong Univ Sci Technolog Med Sci, 24: 625-7, 638.
    
    34. Xie Q, Xin Z, Cao L, Li W, (2004), Expression of nuclear factor-kappaB in mouse uterus during peri-implantation, J Huazhong Univ Sci Technolog Med Sci; 24: 361-364.
    
    35. Brown N, Deb K, Paria BC, Das SK, Reese J, (2004), Embryo-uterine interactions via the neuregulin family of growth factors during implantation in the mouse, Biol Reprod, 71: 2003-2011.
    
    36. Teng CB, Diao HL, Ma H, Xu LB, Yang ZM, (2004), Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy, Reproduction, 128: 197-205..
    
    37. Metcalf D, (2003), The unsolved enigmas of leukemia inhibitory factor, Stem Cells, 21: 5-14.
    
    38. Kondera-Anasz Z, Sikora J, Mielczarek-Palacz A, (2004), Leukemia inhibitory factor: an important regulator of endometrial function, Am J Reprod Immunol, 52:97-105.
    
    39. Senturk LM, Nrici A, (1998), Leukemia inhibitory factor in human reproduction, Am J Reprod Immunol, 39: 144-151.
    
    40. Liang P, Pardee AB, (1995), Recent advances in differential display. Curr Opin Immunol, 7: 274-280.
    
    41. Schafer-Somi S, (2003), Cytokines during early pregnancy of mammals: a review, Anim Reprod Sci, 75: 73-94.
    
    42. Psychoyos A, (1973), Endocrine control of egg implantation, Washington DC: American Physiological Society, 187-215.
    43. O'Sullivan CM, Liu SY, Rancourt SL, Rancourt DE, (2001), Regulation of the strypsin-related proteinase ISP2 by progesterone in endometrial gland epithelium during implantation in mice, Reproduction, 122: 235-244.
    44. Sambrook J, et al., (1989), Molecular Cloning: A Laboratory Manual, 2nd ed, New York: Cold Spring Harbor Laboratory Press.
    45. Nishimura Y, Tanaka T, (2001), Calcium-dependent activation of nuclear factor regulated by interleukin3/adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated T cells and calcium/calmodulin-dependent protein kinase signaling, J Biol Chem, 276: 19921-19928.
    46. Lai CK, Ting LP, (1999), Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4, J Virol, 73: 3197-3209.
    47. Chen C, Zheng B, Han J, Lin SC, (1997), Characterization of a novel mammalian RGS protein that binds to Ga Protein and inhibits pheromone signaling in yeast, J Biol Chem, 272: 8679-8685.
    48. Reif K, Cyster JG., (2000), RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid, J Immunol, 164: 4720-4728.
    49. Cowell IG, (1992), Transcriptional repression by a novel member of the bZIP family of transcription factors, Mol Cell Biol, 12: 3070-3077.
    50. Junghans D, Chauvet S, Buhler E, Henderson CE, (2004), The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival, Development, 131: 4425-4434.
    51. Heximer SP, Watson N, Linder ME, Blumer KJ, Hepler JR., (1997), RGS2/GOS8 is a selective inhibitor of Gqα function, Proc Natl Acad Sci USA, 94: 14389-14393.
    52. Hepler JR, (1999), Emerging roles for RGS proteins in cell signaling, Trends Pharmacol Sci, 20: 376-382.
    53. Grafastein-Dunn E, Young KH, Cockett MI, Khawaja XZ, (2001), Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16 and GAIP messenger ribonucleic acids by in situ hybridization in rat brain, Brain Res Mol Brain Res, 88: 113-123.
    54. DeVries L and Farquahar MG, (1999), RGS proteins: more than just GAPs for heterotrimeric G proteins, Trends Cell Biol, 9: 138-144.
    55. Kehrl JH and Sinnarajah S, (2002), RGS2: a multifunctional regulator of G-protein signaling, Int J Biochem Cell Biol, 34: 432-438.
    56. Nakamura M, Ogawa H, Tsunematsu T, (1986), Isolation and characterization of a monoclonal nonspecific suppressor factor (MNSF) produced by a T cell hybridoma, J Immunol, 136: 2904-2909.
    57. Nakamura M, Xavier RM, Tanigawa Y, (1995), Monoclonal nonspecific suppressor factor beta inhibits the IL-4 secretion by a type-2 helper T cell clone, Eur J Immunol, 25: 2417-2419.
    58. Nie GY, Li Y, Hampton AL, Salamonsen LA, Clements JA, Findlay JK, (2000), Identification of monoclonal nonspecific suppressor factor beta (MNSFβ) as one of the genes differentially expressed at implantation sites compared to interimplantation sits in the mouse uterus, Mol Reprod Dev, 55: 351~363.
    59.黄哲平、柯碧霞、王健、申庆祥,(2002),单克隆非特异性抑制因子-β在大肠杆菌中的表达、抗体的制备及在小鼠子宫内膜上的组织定位。《实验生物学报》,35:89-97。
    60. Bruck C, Portetelle D, Glineur C, Bollen A, (1982), One-step purification of mouse monoclonal antibodies from ascitic fluid by DEAE Affi-Gel blue chromatography, J Immunol Methods, 53: 313-319.
    61. Nakamura M, et al., (1996), Ubiquitin-like moiety of the monoclonal nonspecific suppressor factor beta is responsible for its activity, J Immunol, 156: 532-538.
    62.汪家政、范明,(2001),蛋白质技术手册,科学出版社。
    63. Smith GE, Summers MD, Fraser MJ, (1983), Production of human beta-interferon in insect cells infected with a baculovirus expression vector, Mol Cell Biol, 3: 2156-2165.
    64. Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD, (1994), The complete DNA sequence of Autographa califomica nuclear polyhedrosis virus, Virology, 202: 586-605.
    65. O'Sullivan CM, Rancourt SL, Liu SY, Rancourt DE, (2001), A novel murine tryptase involved in blastocyst hatching and outgrowth, Reproduction, 122: 61-71.
    66. O'Sullivan CM, Liu SY, Karpinka JB, Rancourt DE, (2002), Embryonic hatching enzyme strypsin/ISP1 is expressed with ISP2 in endometrial glands during implantation, Mol Reprod Dev, 62: 328-334.
    67. Nakamura M, Xavier RM, Tsunematsu T, Tanigawa Y, (1995), Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor, Proc Natl Acad Sci USA, 92: 3463-3467.
    68. Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA & Yoshinaga K, (2000), Embryo implantation, Dev. Biol., 223: 217-237.
    69. Klentzeris LD, (1997), The role of endometrium in implantation, Hum. Reprod., 12: 170-175.
    70. Imaik, K, Maeda M, Fujiwara H, Okamoto N, Kariya M, Emi N, Takakura K, Kanzaki H & Mori T, (1992), Human endometrial stromal cells and decidual cells express cluster of differentiation (CD) 13 antigen/aminopeptidase N and CD10 antigen/neutral endopeptidase, Biol. Reprod., 46: 328-334.
    71. Sinnarajah S, Dessauer CW, Strikumar D, Chen J, Yuen J, Yilma S, Dennis JC, Morrison EE, Vodyanoy V, Kehrl JH, (2001), RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase Ⅲ, Nature, 409: 1051-1055.
    72. Sakiff JA, Murdoch RN, (1996), The role of calcium in the artificially induced decidual cell reaction in pseudopregnant mice, Biochem. Mol. Med.., 57: 81-90.
    73. Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, Mariathasan S, Sasaki T, Wakeham A, Ohashi PS, Roder JC, Barnes CA, Siderovski DP, & Penninger JM, (2000), Regulation of T-cell activation, anxiety and make aggression by RGS2, Proc. Natl. Acad. Sci. USA, 97: 12272-12277.
    74. Junghans D, Chauvet S, Bulaler E, Dudley K, Sykes T, Henderson CE, (2004), The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival, Development, 131: 4425-4434.
    75. Schlafke S, Enders AC, (1975), Cellular basis of interaction between trophoblast and uterus at implantation, Biol. Reprod., 12: 41-65.
    76. Akcali KC, Khan SA, Moulton BC, (1996), Effect of decidualization on the expression of bax and bcl-2 in the rat uterine endometrium, Endocrinology, 137: 3123-3131
    77. Kuribara R, Kinoshita T, Miyajima A, Shinjyo T, Yoshihara T, Inukai T, Ozawa K, Look AT, Inaba T, (1999), Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes, Mol. Cell Biol., 19: 2754-2762.
    78. Yu YL, Chiang Y J, Chen YC, Papetti M, Juo CG, Skoultchi AI, Yen JJ, (2005), MAPK-mediated Phosphorylation of GATA-1 Promotes Bcl-XL Expression and Cell Survival, J. Biol. Chem., 280: 29533-29542.
    79. Nishimura Y, Tanaka T, (2001), Calcium-dependent activation of nuclear factor regulated by interleukin 3/adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated T cells and calcium/calmodulin-dependent protein kinase signaling, J. Biol. Chem., 276: 19921-19928.
    80. Cowell IG, (2002), E4BP4/NFIL3, a PAR-related bZIP factor with many roles, Bioessays, 24: 1023-1029.
    81. Yeung J, O'Sullivan E, Hubank M, Brady HJ, (2004), E4BP4 expression is regulated by the t(17; 19)-associated oncoprotein E2A-HLF in pro-B cells, Br. J. Haematol., 125: 560-567.
    82. Wallace AD, Wheeler TT, Young DD, (1997), Inducibility of E4BP4 suggests a novel mechanism of negative gene regulation by glucocorticoids, Biochem. Biophys. Res. Commun., 232: 403-406.
    83. Guller S, Wozniak R, Krikun G, Burnham JM, Kaplan P, Lockwood CJ, (1993), Glucocorticoid suppression of human placental fibronectin expression: implications in uterine-placental adherence, Endocrinology, 133: 1139-1146.
    84. Marinoni E, Di Iorio R, Lucchini C, Di Netta T, Letizia C, Cosmi EV, (2004), Adrenomedullin and nitric oxide synthase at the maternal-decidual interface in early spontaneous abortion, J. Reprod. Med., 49: 153-161.
    85. Chu CC, Paul WE, (1998), Expressed genes in interleukin-4 treated B cells identified by cDNA representational difference analysis, Mol. Immunol., 35: 487-502.
    86. Scidmore MA, Okamura HH, Rose MD, (1993), Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum, Mol Biol Cell., 4: 1145-1159.
    87. Young BP, Craven RA, Reid PJ, Wilier M, Stirling CJ, (2001), Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo, EMBO J., 20: 262-271.
    88. Wilier M, Jermy AJ, Young BP, Stirling CJ, (2003), Identification of novel protein-protein interactions at the cytosolic surface of the Sec63 complex in the yeast ER membrane, Yeast, 20: 133-148.
    89. Gillece P, Pilon M and Romisch K, (2000), The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane, Proc. Natl. Acad. Sci. USA, 97: 4609-4614.
    90. Sharma RK, (1998), Mouse trophoblastic cell lines: Ⅱ. Relationship between invasive potential and proteases, In Vivo, 12: 209-217.
    91. Bischof P, Meisser A, Campana A, (2000), Mechanisms of endometrial control of trophoblast invasion, J. Reprod. Fertil., 55 (Suppl.): 65-71.
    92. Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, Van den Oord JJ, Collen D, Mulligan RC, (1994), Physiological consequences of loss of plasminogen activator gene function in mice, Nature, 368: 419-424.
    93. Teesalu T, Blasi F, Talarico D, (1996), Embryo implantation in mouse: fetomatmal coordination in the pattem of expression of uPA, uPAP, PAI-Ⅰ and α2MR/LRP genes, Mech. Dev., 56: 103-116.
    94. Kobayashi H, (2000), Invasive capacity of heterotopic endometrium, Gynecol. Obstet. Invest., 50 (Suppl. 1): 26-32.
    95. Matsumoto-Miyai K, Kitagawa R, Ninomiya A, Momota Y, Yoshida S, Shiosaka S, (2002), Decidualization induces the expression and activation of an extracellular protease neuropsin in mouse uterus, Biol. Reprod., 67: 1414-1418.
    96. Rout UK, Diamond MP, (2003), Role of plasminogen activatiors during healing after uterine serosal lesioning in the rat, Fertil. Steril., 79: 138-145.
    97. Barrett AJ, Rawlings ND, (1995), Families and clans of serine peptidases, Arch. Biochem. Biophys., 318: 247-250.
    98. Rawlings ND, Barrett AJ. (1993), Evolutionary families of peptidases, Biochem. J., 290: 205-218.
    99. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, (1998), MMP-9/ gelatinase B is a key regulator of growth plate, angiogenesis and apotosis of hypertrophic chondrocytes, Cell, 93: 411-422.
    100. Bulla R, Fischetti F, Bossi F, Tedesco F, (2004), Feto-matemal immune interaction at the placental level, Lupus, 13: 625-629.
    101.Gaunt G, Ramin K, (2001), Immunological tolerance of the human fetus, Am. J. Perinatol, 18: 299- 312.
    102.Sayegh RA, Tao XJ, Leykin, Isaacson KB, (1997), Endometrial alpha-2 macroglobulin; localization by in situ hybridization and effect on mouse embryo development in vitro, J. Clin. Endocrinol. Metab., 82: 4189-4195.
    103.Flentke GR, Baker MW, Docterman KE, Power S, Lough J, Smith SM, (2004), Microarray analysis of retinoid-dependent gene activity during rat embryogenesis: increased collagen fibril production in a model of retinoid insufficiency, Dev Dyn. ,229: 886-898.
    104.Grummer R, Chwalisz K, Mulholland J, Traub O, Winterhager E, (1994), Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones, Biol. Reprod., 51: 1109-1116.
    105.Witkin SS, (2002), Immunological aspects of genital chlamydia infections, Best Pract. Res. Clin. Obstet. Gynaecol, 16: 865-874.
    106.Lee E, Lein ES, Firestone GL, (2001), Tissue-specific expression of the transcriptionally regulated serum and glucocorticoid-inducible protein kinase (Sgk) during mouse embryogenesis, Mech. Dev., 103: 177-181.
    
    107.Hong SH, Nah HY, Lee JY, Lee YJ, Lee JW, Gye MC, Kim CH, Kang BM and Kim MK, (2004), Estrogen regulates the expression of the small proline-rich 2 gene family in the mouse uterus, Molecules and Cells, 17: 477-484.
    
    108.Yahata T, Takedatsu H, Dunwoodie SL, Braganca J, Swingler T, Withington SL, Hur J, Coser KR, Isselbacher KJ, Bhattacharya S, Shioda T, (2002), Cloning of mouse Cited4, a member of the CITED family p300/CBP-binding transcriptional coactivators: induced expression in mammary epithelial cells, Genomics, 80: 601-613.
    109.Domowicz M, Mangoura D, Schwartz NB, (2000), Cell specific-chondroitin sulfate proteoglycan expression during CNS morphogenesis in the chick embryo, Int. J. Dev. Neurosci., 18: 629-641.
    110.Xu P, Yoshioka K, Yoshimura D, Tominaga Y, Nishioka T, Ito M, Nakabeppu Y, (2003), In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis, J. Biol. Chem., 278: 48422-48433.
    111.Yan C, Pendola FL, Jacob R, Lau AL, Eppig JJ, Matzuk MM, (2001), Oospl encodes a novel mouse oocyte-secreted protein, Genesis, 31: 105-110.
    112.Matt N, Ghyselinck NB, Wendling O, Chambon P, Mark M, (2003), Retinoic acid-induced developmental defects are mediated by RARbeta/RXR heterodimers in the pharyngeal endoderm, Development, 130:2083-2093.
    113.Schiffer M, Mundel P, Shaw AS, Bottinger EP, (2004), A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis, J. Biol. Chem., 279: 37004-37012.
    114.Smal C, Cardoen S, Bertrand L, Delacauw A, Ferrant A, Van Den Berghe G, Van Den Neste E, Bontemps F, (2004), Activation of deoxycytidine kinase by protein kinase inhibitors and okadaic acid in leukemic cells, Biochem. Pharmacol, 68: 95-103.
    115.Ahn JH, Lee Y, Jeon C, Lee SJ, Lee BH, Choi KD, Bae YS, (2002), Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis, Blood, 100: 1742-1754.
    116.Jiang X, Toyota H, Takada E, Yoshimoto T, Kitamura T, Yamada J, Mizuguchi J, (2003), Modulation of mThy28 nuclear protein expression during thymocyte development, Tissue Cell, 35: 471-478.
    117.Jiang XZ, Toyota H, Yoshimoto T, Takada E, Asakura H, Mizuguchi J, (2003), Anti-IgM-induced down-regulation of nuclear Thy28 protein expression in Ramos B lymphoma cells, Apoptosis, 8: 509-519.
    118.Lyman SD, Escobar S, Rousseau AM, Armstrong A, Fanslow WC, (2000), Identification of CD7 as a cognate of the human K12 (SECTM1) protein, J. Biol. Chem., 275: 3431-3437.
    119 Bachmann MF, Nitschke L, Krawczyk C, Tedford K, Ohashi PS, Fischer KD, Penninger JM, (1999), The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to nonrepetitive antigens, J Immunol, 163: 137-142.
    120.Hanai J, Mammoto T, Seth P, Mori K, Karumanchi SA, Barasch J, Sukhatme VP, (2005), Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells,J Biol. Chem., 280: 13641-13647.
    
    121.Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, Cress WD, Kim YC, Rosell R, McBride C, Robinson L, Sommers E, Haura E, (2005), Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance, Lung Cancer, 47: 183-192.
    122.Rollin J, Iochmann S, Blechet C, Hube F, Regina S, Guyetant S, Lemarie E, Reverdiau P, Cruel Y, (2005), Expression and methylation status of tissue factor pathway inhibitor-2 gene in non-small-cell lung cancer, Br. J. Cancer, 92: 775-783.
    123.Balliet AG, Hollander MC, Fornace AJ Jr, Hoffman B, Liebermann DA, (2003), Comparative analysis of the genetic structure and chromosomal mapping of the murine Gadd45g/CR6 gene, DNA & Cell Biol., 22: 457-468.
    
    124.Xue Y, Chu MX, Zhou ZX, (2004), Advances on inhibin genes, Yi Chuan, 26: 749-755.
    125.Kanadia RN, Urbinati CR, Crusselle VJ, Luo D, Lee YJ, Harrison JK, Oh SP, Swanson MS, (2003), Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3, Gene Expr. Patterns 3: 459-462.
    126.Rockett JC, Patrizio P, Schmid JE, Hecht NB, Dix DJ, (2004), Gene expression patterns associated with infertility in humans and rodent models, Mutat. Res., 549: 225-240.
    127.Xin H, Kikuchi T, Andarini S, Ohkouchi S, Suzuki T, Nukiwa T, Hagiwara K, Honjo T, Saijo Y, (2005), Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells, Eur. J. Immunol, 35: 1371-1380.
    128.Yoshimura T, Matsuyama W, Kamohara H, (2005), Discoidin domain receptor 1: a new class of receptor regulating leukocyte-collagen interaction, Immunol Res., 31: 219-230.
    129.Saburi S, Nadano D, Akama TO, Hirama K, Yamanouchi K, Naito K, Tojo H, Tachi C, Fukuda MN, (2001), The trophinin gene encodes a novel group of MAGE proteins, magphinins, and regulates cell proliferation during gametogenesis in the mouse, J. Biol Chem., 276: 49378-49389.
    130.Korteweg N, Denekamp FA, Verhage M, Burbach JP, (2000), Different spatiotemporal expression of DOC2 genes in the developing rat brain argues for an additional, nonsynaptic role of DOC2B in early development, Eur. J. Neurosci ,12: 165-171.
    131.Raijmakers MT, Steegers EA, Peters WH, (2001), Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues, Human Reproduction, 16: 2445-2450.
    132.Shayakul C, Hediger MA, (2004), The SLC14 gene family of urea transporters, Pflugers Archiv, 447: 603-609.
    133.Ledermann B, Burki K, (1991), Establishment of a germ-line competent C57BL/6 embryonic stem cell line,Exp. Cell Res., 197: 354-258.
    134.Cai GX, Han R, Shang KG, (1996), Establishment and characteristics of ES cell lines derived from C57BL/6J mice, Chin. J. Cell Biol, 18: 121-126.
    135. He W, Gao JG, Zeng YQ, (1997), Establishment of embryonic stem cell lines from C57BL/6J mice and generation of chimeras, Chin. Dev. Reprod. Biol. Socs., 6: 13-20.
    136. Lemckert FA, Sedgwick JD, Komer H, (1997), Gene targeting in C57BL/6 ES cells: Successful germ line transmission using recipient Balb/C blastocysts developmentally matured in vitro, Nucleic. Acids. Res., 25: 917-918.
    137. Wu BY, Xian MW, Shang KG, Wu H, (1995), The analysis of GPI in chimeric mice of ES cells (MESPU 13), Acta Genetica Sinica, 24: 353-355.
    138. Evans MJ, Kaufman MH, (1981), Establishment in culture of pluripotential cells from mouse embryos, Nature, 92: 154-156.
    139. Gail RM, (1981), Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cell, Proc. Natl. Acad. Sci. USA, 78: 7634-7638.
    140. Doetschman TC, Willimans P, Maeda N, (1988), Establishment of hamster blastocyst-derived embryonic stem (ES) cells, Dev., Biol., 127: 224-227.
    141. Sukoyan MA, Vatolin SY, Golubitsa AN, (1993), Embryonic stem cells derived from morulae, inner cell mass and blastocysts of mink: Comparisons of their pluripotencies, Mol. Reprod. Dev., 36: 148-158.
    142. Wheeler MB, (1994), Development and validation of swine embryonic stem cells: A review, Reprod. Fertil. Dev., 6: 563-568.
    143. Thomson JA, Kalishman J, Golos TG, Duming M, Harris CP, Becker RA, Heam JP, (1995), Isolation of a primate embryonic stem cell line, Proc. Natl. Acad. Sci. USA, 92: 7844-7848.
    144. Schoonjans L, Albricht GM, Li JL, Collen D, Moreadith RW, (1996), Pluripotential rabbit embryonic stem (ES) cells are capable of forming overt coat colour chimeras following injection into blastocysts, Mol. Reprod. Dev., 45: 439-443.
    145. Wells DN, Misica PM, Day TAM, (1997), Production of cloned lambs from an established embryonic cell line: A comparison between in vivo- and in vitro-matured cytoplasts, Biol Reprod., 57: 385-393.
    146. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM, (1998), Embryonic stem cell lines derived from human blastocysts, Science, 282: 1145-1147.
    147. Klug MG, Soonpa MH, Kol GY, (1996), Genetically selected cardiomyocytes from differentiating embryonic stem cells from stable intracardiac graftes, J. Clin. Invest., 98: 206-214.
    148. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G, (1997), A common precursor for primitive erythropoiesis and definitive haematopoiesis, Nature, 386: 488-493.
    149. Bain G, Kitchens D, Yan M, Huettner JE, Gottlieb DI, (1995) Embryonic stem cells express neuronal properties in vitro, Dev. Biol., 168: 342-357.
    150. Geijsen N, Horoschak M Kim K, Gribnau J, Eggan K, Daley GO, (2004), Derivation of embryonic germ cells and male gamete from embryonic stem cells, Nature, 427: 148-154.
    151. Hubner, Fuhrmann G, Lane K, (2003), Derivation of oocytes from mouse embryonic stem cells, Science, 300: 1251-1256.
    152. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC, (1993), Derivation of completely cell culture-derived mice from early-passage embryonic stem cell, Proc. Natl. Acad. Sci. USA, 90: 8424-8427.
    153. Sikorski R, Peter R, (1997), Transgenics on the interent, Nat. Biotechnol., 15: 289.
    1. Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K, 2003, Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism, Redox Rep., 8: 246-250.
    2. Nakamura H, 2005, Thioredoxin and its related molecules: update 2005, Antioxid. Redox Signal, 7: 823-828.
    3. Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP, 2003, Thioredoxin and its role in toxicology, Toxicol. Sci., 78: 3-14.
    4. Pekkari K, Holmgren A, 2004, Truncated thioredoxin: physiological functions and mechanism, Antioxid. Redox Signal, 6: 53-61.
    5. Amer ES, Holmgren A, 2000, Physiological functions of thioredoxin and thioredoxin reductase, Eur. J. Biochem., 267: 6102-6109.
    6.庄静、熊爱生、周熙荣、彭日荷、姚泉洪,2003,硫氧还蛋白与氧化还原反应,生命的化学,23:210-212。
    7. Stefankova P, Kollarova M, Barak I, 2005, Thioredoxin-Structural and functional complexity, Gen. Physiol. Biophys., 24: 3-11.
    8. Biaglow JE, Miller RA, 2005, The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy, Cancer Biol. Ther., 4: 6-13.
    9. Holmgren A, 1989, Thioredoxin and glutaredoxin system, J. Biol. Chem., 264: 13963-13966.
    10. Noiva R, 1999, Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum, Semin. Cell Dev. Biol., 10: 481-493.
    11. Kurooka H, Kato K, Minoguchi S, Takahashi Y, Ikeda JE, Shisa H, Honjo T, 1997, Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin, Genomics, 39: 331-339.
    12. Matsuo Y, Akiyama N, Nakamura H, Yodoi J, Noda M, Kizaka-Kondoh, 2001, Identification of a novel thioredoxin-related transmembrane protein, J. Biol. Chem., 276: 10032-10038.
    13. Lemaire SD, Miginiac-Maslow M, 2004, The thioredoxin superfamily in Chalmydomonas reinhardtii, Photosynth. Res., 82: 203-220.
    14. Eklund H, Gleason FK, Holmgren A, 1991, Structural and functional relations among thioredoxins of different species, Proteins, 11: 13-28.
    15. Sadek CM, Jimenez A, Damdimopoulos AE, Kieselbach T, Nord M, Gustafsson JA, Spyrou G, Davis EC, Oko R, van der Hoom FA, Miranda-Vizuete A, 2003, A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid manchette and axoneme, J. Biol. Chem., 278: 13133-13142.
    16. Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K, 2001, Substitution of the Thioredoxin System for Glutathione Reductase in Drosophila melanogaster, Science, 291: 643-645.
    17. Bauer H, Kanzok SM, Schirmer RH, 2002, Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: isolation and characterization of a second thioredoxin in D. Melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2, J. Biol. Chem., 277: 17457-17463.
    18. Burke-Graffney A, Callister ME, Nakamura H, 2005, Thioredoxin: friend or foe in human disease? Trends Pharmacol. Sci., 26: 398-404.
    19. Laurent TC, Moore EC, Reichard P, 1964, Enzymatic synthesis of deoxyribonucleotides. Ⅳ. Isolation and characterization of thioredoxin, the hydrogen donor from E. coli B, J. Biol. Chem., 239: 3436-3444.
    20. Rundlof AK, Amer ES, 2004, Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events, Antioxid. Redox Signal, 6: 41-52.
    21. Yoshida T, Oka S, Masutani H, Nakamura, Yodoi J, 2003, The role of thioredoxin in the aging process: involvement of oxidative stress, Antioxid. Redox Signal, 5: 563-570.
    22. Das DK, Maulik N, 2004, Conversion of death signal into survival signal by redox signaling, Biochemistry (Mosc), 69: 10-17.
    23. Kwon YW, Masutani H, Nakamura H, Ishii Y, Yodoi J, 2003, Redox regulation of cell growth and cell death, Biol. Chem., 384: 991-996.
    24. Nakamura T, Nakamura H, Hoshino T, Ueda S, Wada H, Yodoi J, 2005, Redox regulation of lung inflammation by thioredoxin, Antioxid. Redox Signal, 7: 60-71.
    25. Hirota K, Nakamura H, Masutani H, Yodoi J, 2002, Thioredoxin superfamily and thioredoxin- inducing agents, Ann. N. Y. Acad. Sci., 957: 189-199.
    26. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J, 2002, Redox control of cell death, Antioxid. Redox Signal, 4: 405-414.
    27. Matsuda M, Masutani H, Nakamura H, Miyajima S, Yamauchi A, Yonehara S, Uchida A, irimajiri K, Horiuchi A, Yodoi J, 1991, Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells, J. Immunol., 147: 3837-3841.
    28. Yokomise H, Fukuse T, Hirata T, Ohkubok, Go T, Muro K, 1994, Effect of recombinant human adult T cell leukemia-derived factor on rat lung reperfusion injury, Respiration, 61: 99-104.
    29. Das Dk, Maulik N, 2003, Preconditioning potentiates redox signaling and converts death signal into survival signal, Arch. Biochem. Biophys., 420: 305-311.
    30. Tohyama Y, Takano T, Yamamura H, 2004, B cell responses to oxidative stress, Curr. Pharm. Des., 10: 835-839.
    31. Patenaude A, Murthy MR, Mirault ME, 2005, Emerging roles of thioredoxin cycle enzymes in the central nervous system, Cell Mol. Life Sci., 62: 1063-1080.
    32. Sutovsky P, Schatten G, 2000, Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion, Int. Rev. Cyto., 195: 1-60.
    33. Curry MR, Watson PF, 1995, Sperm structure and function, In: Gametes, The Spermatozoon, edited by Grudzinskas JG, Yovich JL, Cambridge: Press Syndicate of the University of Cambridge, pp: 45-69.
    34. de Kretser DM, Kerr JB, 1994, The cytology of testis, In: The physiology of Reproduction, edited by Knobil E and Neill JD, New York: Raven Press, pp: 1177-1290.
    35. Rozell B, Hansson HA, Luthman M, Holmgren A, 1985, Immunohistochemical localization of thioredoxin and thioredoxin reductase in adult rats, Eur. J. Cell Biol., 38: 79-86.
    36. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, and Spyrou G, 2002, Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death, J. Biol. Chem., 277: 33249-33257.
    37. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafson J-A, 1997, Cloning and expression of a novel mammalian thioredoxin, J. Biol. Chem., 272: 2936-2941.
    38. Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MO, Gustafssin JA, Sitia R, Spyrou G, 2003, Erdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretoru cells or following ER stress, J. Biol. Chem., 278: 1059-1066.
    39. Lee KK, Murakawa M, Takahashi S, Tsubuki S, Kawashima S, Sakamaki K, Yonehara S, 1998, Purification, molecular cloning, and characterization of TRP32, a novel thioredoxin-related mammalian protein of 32 kDa, J. Biol. Chem., 273: 19160-19166.
    40. Hosoda A, Kimata Y, Tsuru A, Kohno K, 2003, JPDI, a novel endeoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs, J. Biol. Chem., 278: 2669-2676.
    41. Shi HJ, Wu AZ, Santos M, Feng ZM, Huang L, Chen Y, Zhu K, Chen CL, 2004, Cloning and Characterization of Rat Spermatid Protein SSP411: A Thioredoxin-Like Protein, J. Androl., 25: 479-493.
    42. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, Spyrou G, 2001, Characterization of Sptrx, a novel member of the thioredoxin family soecifically expressed in human soermatozoa, J. Biol. Chem., 276: 31567-31574.
    43. Jimenez A, Oko R, Gustafsson JA, Spyrou G, Pelto-Huikko M, Miranda-Vizuete A, 2002, Cloning, expression and characterization of mouse spermatid specific thioredoxin-1 gene and protein, Mol. Hum. Reprod., 8: 710-718.
    44. Jimenez A, Johansson C, Ljung J, Sagemark J,. Bemdt KD, Ren B, Tibbelin G, Gustafasson JA, Miranda-Vizuete A, 2002, Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity, FEBS Lett., 530: 79-84.
    45. Yu Y, Oko R, Miranda-Vizuete A, 2002, Developmental expression of spermatid-specific thioredoxin-1 protein: transient association to the longitudinal columns of the fibrous sheath during sperm tail formation, Biol. Reprod., 67: 1546-1554.
    46. Jimenez A, Prieto-Alamo MJ, Fuentes-Almagro CA, Jurado J, Gustafsson JA, Pueyo C, Miranda-Vizuete A, 2005, Absolute mRNA levels and transcriptional regulation of the mouse testis-specific thioredoxins, Biochem. Biophys. Res. Commun., 330: 65-74.
    47. Sadek CM, Damdimopoulos AE, Pelto-Huikko M, Gustafsson JA, Spyrou G, Miranda-Vizuete A, 2001, Sptrx-2. a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains, is expressed in human testis germ cells, Genes Cells, 6: 1077-1090.
    48. Miranda-Vizuete A, Tsang K, Yu Y, Jimenez A, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Oko R, 2003, Cloning and developmental analysis of murid spermatid-specific thioredoxin-2 (SPTRX-2), a novel sperm fibrous sheath protein and autoantigen, J. Biol. Chem., 278: 44874-44885.
    49. Jimenez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson JA, Oko R, Miranda-Vizuete M, 2004, Spermatocyte/Spermatid-specific Thioredoxin-3, a novel Golgi apparatus-associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis, J. Biol. Chem., 279: 34971-34982.
    50. Sadek CM, Jimenez A, Damdimopoulos AE, Kieselbach T, Nord M, Gustafsson JA, Spyrou G, Davis EC, Oko R, Vaner Hoom FA, Miranda-Vizuete A, 2003, Characterization of human thioredoxin-like 2. A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid manchette and axoneme, J. Biol. Chem., 278: 13133-13142.
    51. Shi HJ, Wu AZ, Feng ZM, Santos M, Chen CL, 2002, Cloning and characterization of the rat Sperm-Supplied Protein gene, a potential novel fertility agent, Annual Meeting of Endocrine Society, Abstract # P3-84.
    52. Shi HJ, Santos M, Chen CL, 2003, Characterization and localization of sperm-supplied protein (rSSP) in rat testis, Annual Meeting of Endocrine Society, Abstract # P1-195.
    53. Shi HJ, Santos M, Huang L, Wu AZ, Feng ZM, Chen YM, Chen CL, 2004, SSP411: a Novel Sperm Protein Containing a Thioredoxin-like Domain, Annual Meeting of Endocrine Society, Abstract # P3-317.
    54. Rundlof AK, Jarnard M, Miranda-Vizuete A, Arner ES, 2004, Evidence for intriguingly complex transcription of human thioredoxin reductase 1, Free Radic. Biol. Med., 36, 641-656.
    55. Sun QA, Kirnarsky L, Sherman S, Gladyshev VN, 2001, Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems, Proc. Natl. Acad. Sci. USA, 98: 3673-3678.
    56. Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, Pueyo C, 2003, Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse, J. Biol. Chem., 278: 45546-45554.
    57. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA, 2004, Delivering spermatozoan RNA to the oocyte, Nature, 429: 154.
    58. Saleh R. A, Agarwal A, Sharma RK, Nelson DR, Thomas AJ, 2002, Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study, Fertil. Steril, 78: 491-499.
    59. Wang X, Sharma RK, Gupta A, George V, 2003, Alteration in mitochondria membrane potential and oxidative stress in infertile man: a prospective pbservational study, Fertil. Steril., 80(Suppl): 844-850.
    60. Said TM, Agarwal A, Sharma PK, Mascha E, Sikka SC, Thomas AJ Jr., 2004, Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility, Fertil. Steril., 82(4): 871-877.
    61. Said TM, Agarwal A, Sharma PK, Thomas AJ Jr., Sikka SC, 2005, Impact of sperm morphology on DNA damage caused by oxidative stress induced by β-nicotinamide ademine dinucleotide phosphate, Fertil. Steril., 83: 95-103.
    62. Cai R, Pan Q, Pan Y, Jia Y, Ma D, Wang X, Cui Y, 2004, Effect of LHRH crasis protein as vaccine on the reproductive function of male rats, Zhonghua Nan Ke Xue., 10: 426-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700