维持耐辐射球菌基因组稳定性的关键基因recQ的功能及调控网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射球菌(Deinococcus radiodurans)是迄今为止发现的对电离辐射、紫外线、干燥、过氧化氢等一些DNA损伤剂都具有极强抗性的微小球菌,它在DNA双链断裂修复上具有超强的能力,是目前研究DNA损伤与修复的模式生物。从1999年Deinococcus radiodurans野生株R1全基因组数据公布以来,该细菌的分子结构特征研究,分子防御机制方面和重要修复基因,如recA、ssb、pprI、pprA等在DNA修复机制方面都取得了很大的进展,但还未能清楚揭示耐辐射球菌的修复机理。
     RecQ解螺旋酶是解螺旋酶在进化中高度保守的一个亚族,它在维持有机体基因组的稳定性中有重要的作用。耐辐射球菌具有两个特殊结构的RecQ家族成员:DR1289和DR2444,这两个基因在该细菌中的具体功能都未知。本文主要系统地研究这两个基因在耐辐射球菌中的作用机制和调控网络,具体从以下几个方面进行了研究:
     1.先运用生物信息学的方法确定这两个基因在染色体上的具体位置,对DR1289和DR2444进行了结构域的同源性分析,功能预测和进化树分析,结果表明DR1289与细菌及真核生物有较近的亲缘关系,而DR2444相差较远。
     2.运用PCR突变三段连接法克隆具有自身groEL启动子、KAT启动子分别与卡那霉素抗性基因、氯霉素抗性基因融合的DNA片段反向重组到基因组中,构建并鉴定了卡那霉素抗性完全突变株ΔDR1289,氯霉素抗性完全突变株ΔDR2444,双突变株ΔrecQ。辐射条件下和H_2O_2氧化压力下突变株生存率结果表明:ΔDR2444与R1存活率趋势线基本一致,而ΔDR1289和ΔrecQ双突变株较为敏感。根据上述结果推测,DR1289是一个对R1保持极端抗性的必需基因,而DR2444是非必需基因。
     3.分析了突变株ΔDR1289的一些特性,表型数据表明,敲除掉DR1289这个基因后,突变株对UV,丝裂霉素C,过氧化氢都极敏感,对γ-辐射在超过2 kGy剂量下敏感。ΔDR1289生长与野生株相比较为缓慢;脉冲场电泳表明,无论在正常生长状况,还是过氧化氢胁迫条件下,该突变株都具有基因组的不稳定性,尤其是在20mM H_2O_2处理30分钟后,其基因组图谱与R1在高剂量辐射和长期干燥胁迫下的图谱很相似。运用穿梭质粒pRADK进行DR1289各个结构域的功能性补偿,表明helicase结构域和3个串联的HRDC结构域都必不可少。
     4.用大肠杆菌表达系统体外表达了DR1289各个结构域的突变蛋白,并进行了纯化。我们使用荧光染料H33258,长度为2.7 kbp的线性化双链(HindⅢ-pUC19)片断作为底物的荧光染色替代法检测解螺旋酶活性。不同ATP和金属离子浓度下该蛋白的解螺旋酶活性表明,DR1289的解螺旋酶活性至少与曾经报道过的大肠杆菌的RecQ活性相当。SSB蛋白作为一个解螺旋酶功能促进因子,我们发现DR1289解螺旋速率能够被D.radiodurans SSB蛋白提高,且对DR1289蛋白有相同物种专一性的特殊效应。ATPase活性表明helicase结构域对DR1289 ATPase是必需的,而HRDC结构域是达到最适ATPase酶活性所必需的结构域。基于这些实验,我们推测在耐辐射球菌中,DR1289的C-末端三个串联的HRDC结构域已经进化,从而应对各种类型的DNA损伤。
     5.在DR1289删除以后,全基因组转录谱水平约有9.1%发生了2倍以上的改变,如铁离子的代谢,氧化相关基因和细胞分裂相关基因。另外,在20mM H_2O_2压力下,突变株许多重要基因如recA,pprA,ddrA,DR0003,DR0070的转录水平变化趋势与野生株在强剂量辐射和长期干燥条件下的趋势很相象。Western blot分析表明无论在有氧化胁迫条件,还是在正常生长条件下,突变株中RecA水平都上升,表明当DR1289删除后,体内确实存在较大的DNA损伤,进一步佐证了芯片数据。高锰低铁可以促使耐辐射球菌的抗性提高,但ICP-MS测定结果显示DR1289突变体内全铁含量上升,而全锰含量下降,导致Mn/Fe比例从0.38下降到0.07。而顺磁共振实验表明突变株中的自由铁量约为野生株的50%。综上所述,DR1289基因是一个维持耐辐射球菌基因组稳定性和贡献于极端抗性的关键基因。
     6.为了进一步研究耐辐射球菌DR1289蛋白在极端抗性中的调控机制,通过二维液相色谱ProteomeLab PF 2D目标蛋白快速分离系统分析了野生株R1与功能破坏株ΔDR1289在20 mM H_2O_2氧化压力下蛋白表达谱的差异。
     综上所述,耐辐射球菌的两个recQ基因中,DR2444是不参与极端抗性的非必需基因,而DR1289行使着多项重要的功能,体内活性、体外活性、转录谱表达和蛋白谱表达实验均表明它能够维持耐辐射球菌基因组的稳定性,保持细胞体内稳态性且和多个重要基因存在互作,是贡献于耐辐射球菌超强修复能力的关键基因。
The bacterium Deinococcus radiodurans is extremely resistant to ionizing radiation, ultraviolet, hydrogen peroxide and many other agents that damage DNA. Studies show that this resistance is due to D. radiodurans's extremely proficient and accurate DNA repair process. After the release of genome sequence of D. radiodurans wild type strain R1 in 1999, the structure characteristics, molecular defense systems and the biochemical mechanisms of many key repair genes, such as recA、ssb、pprI、pprA are making great progress. But the accurate regulatory network of DNA repair in Deinococcus radiodurans is still remaining unknown in large part.
     As a member of SF1 superfamily, the RecQ helicases are highly conserved in evolution and are required for maintaining genome stability in all organisms. D. radiodurans encodes two recQ genes with unusual domain, DR1289 and DR2444, whose functions, however, remain obscure currently. In this paper, the biochemical mechanism and regulatory network of the two genes were studied thoroughly. The main work and its results are appended following:
     1. Using bioinformatic methods, the loci of DR1289 and DR2444 in the chromosome were localized. Sequence alignment of different domains, biochemical function prediction and construction of phylogenetic tree were performed. Results obtained from all above studies suggest that DR1289 has a close phylogenetic relationship with conserved RecQ family members from bacteria to eukaryotic organisms, whereas DR2444 has distant relationship with RecQ family.
     2. A fusion DNA fragment carrying kanamycin resistance gene with the D. radiodurans groEL promoter, chloramphenicol resistance gene with KAT promoter was cloned by PCR amplification and inserted into the recQ locus in the genome of the wild-type strain R1. Three resulting recg-deficient strains, designated △DR1289,△DR2444 and△recQ (double mutation), were constructed. Results show that△DR1289 and△recQ were very sensitive to ionizing radiation and H_2O_2, while△DR2444 was not. The phenotype of△DR1289 was similar to many RecQ helicase mutants. Therefore, it was presumed that DR1289 was the necessary gene in maintaining the extreme resistance to DNA damaging agents, whereas DR2444 was not. Further research based on genetic and biochemical approaches should help togain a better understanding of the genes involved in DNA repair.
     3. Some phenotypes of mutant△DR1289 were characterized. The mutant strain△DR1289 was sensitive to mitomycine C, hydrogen peroxide and UV. Interestingly, when the dosage of gamma radiation up to 2 kilograys, the radiation resistance of the mutant decreased remarkably compared to that of the wild type R1. After the deletion of DR1289, growth rate of the mutant was significantly slower. In addition, results of pulsed-field gel electrophoresis (PFGE) showed that the genome stability was destroyed in DR1289 mutant. After 20 mM H_2O_2 treatment for 30 minutes, genome mapping of the mutant presented in PFGE was very similar to R1 treated with high dose gamma irradiation and prolonged desiccation. By complementing the DR1289 mutant with various domains of DR1289 in vivo, we have determined that the helicase and all three HRDC domains are indispensable for DNA damage resistance.
     4. The DR1289 protein and its variant proteins were expressed by E. coli expression system and then purified. Using a continuous fluorescent dye-displacement assay, we investigated the optimal conditions for DR1289 unwinding function at various concentrations of ATP and metal ions, indicating that the helicase activity is comparable to that observed of E. coli RecQ. SSB protein servers as a stimulatory factor of the unwinding by DR1289. The unwinding rate of DR1289 increases by addition of D. radiodurans SSB protein, DrSSB has a species-specific effect on DR1289. We also found that the helicase domain is necessary for the ATPase activity and that the three tandem HRDC domains increase the efficiency of these activities. Based on these data, we propose that the C-teiminus of DR1289 has evolved in D. radiodurans to confront the types and amounts of DNA damage caused by this organism's extreme environment.
     5. Global transcriptome profiles response to DR1289 deletion showed that 9.1% of genome changed at least 2-fold in DR1289 mutant strain, such as iron homeostasis, oxidative related genes, and cell division related genes. Furthermore, under 20mM H_2O_2 stress, the profile expression patterns of many genes (e.g., recA, pprA, ddrA, DR0003, DR0070) were similar to acute gamma-irradiation and prolonged desiccation. Western blotting results also demonstrated that RecA was up-regulated in DR1289 mutant, indicating that there were vast DNA damages in vivo. Mn (II) accumulation (with low Fe) facilitates resistance in D. radiodurans, but in DR1289 mutant, the intracellular level of Fe is higher, Mn is lower, which decreased the Mn/Fe ratio significantly, whereas free iron in DR1289 mutant in only fifty percent of wild type by EPR experiment. Taken together, DR1289 is a key gene in maintaining the genome stability and contributing the extraordinary ability to D. radiodurans.
     6. To further unlocking the regulatory mechanism of DR1289 in D. radiodurans, ProteomeLab PF 2D protein quick separation method has been developed for differential display of proteins from cell lysates and applied to a comparison of protein expression between wild type and DR1289 mutant in 20 mM H_2O_2 stress.
     Taken together, among the two recQ genes in D. radiodurans, DR2444 is not the necessary gene to extreme resistance, on the contrary, DR1289 acts as a key gene with multiple roles in vivo and in vitro, which is required for maintaining genome stability, cellular homeostasis and interaction with many important genes.
引文
[1] A. Anderson, H. Nordan, R. Cain, G. Parrish, D. Duggan. Studies on a radoresistant micrococcus. I. Isolation, morphology, cultural charchteristoics, and resistance to gamma radiation. Food Technol., 1956, 10: 575-578
    [2] M. M. Cox, J. R. Battista. Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol, 2005, 3(11): 882-892
    [3] K. W. Minton. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Miorobiol, 1994, 13(1): 9-15
    [4] J. R. Battista. Against all odds: The survival strategies of Deinococcus radiodurans. Annual Review of Microbiology, 1997, 51(1): 203-224
    [5] K. R. Khakhar, J. A. Cobb, L. Bjergbaek, I. D. Hickson, S. M. Gasser. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol, 2003, 13(9): 493-501
    [6] J. A. Cobb, L. Bjergbaek, S. M. Gasser. KecQ helicases: at the heart of genetic stability. FEBS Lett, 2002, 529(1): 43-48
    [7] L. Wu, I. D. Hickson. RecQ helicases and cellular responses to DNA damage. Mutat Res, 2002, 509(12): 35-47
    [8] O. White, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K. S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daiy, K. W. Minton, R. D. Fleischmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, H. O. Smith, J. C. Venter, C. M. Fraser. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 1999, 286(5444): 1571-1577
    [9] K. S. Makarova, L. Aravind, Y. I. Wolf R. L. Tatusov, K. W. Minton, E. V. Koonin, M. J. Daly. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001, 65(1): 44-79
    [10] M. V. Omelchenko, Y. I. Wolf, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, M. J. Daly, E. V. Koonin, K. S. Makarova. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evolutionary Biology, 2005, 2005(5): 57
    [11] S. Levin-Zaidman, J. Englander, E. Shimoni, A. K. Sharma, K. W. Minton, A. Minsky. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science, 2003, 299(5604): 254-256
    [12] J. M. Zimmerman, J. R. Battista. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol, 2005, 5(1): 17
    [13] J. A. Imlay. Pathways of oxidative damage. Annu Rev Microbiol, 2003, 57: 395-415
    [14] B. Tian, Y. Wu, D. Sheng, Z. Zheng, G. Gao, Y. Hua. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 2004, 19(2): 78-84
    [15] H. S. Misra, N. P. Khairnar, A. Batik, K. Indira Priyadarsini, H. Mohan, S. K. Apte. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett, 2004, 57802): 26-30
    [16] M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, D. Ghosal. Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 2004, 306(5698): 1025-1025
    [17] J. K. Fredrickson, H. M. Kostandarithes, S. W. Li, A. E. Plymale, M. J. Daly. Reduction of Fe (Ⅲ), Cr (Ⅵ), U (Ⅵ), and Tc (Ⅶ) by Deinococcus radiodurans R1. Applied and Environmental Microbiology, 2000, 66(5): 2006-2011
    [18] P. D. Gutman, J. D. Carroll, C. I. Masters, K. W. Minton. Sequencing, targeted mutegenesis and expression of a recA gene required for the extreme radioresistance of Deinococeus radiodurans. Gene, 1994, 141(1): 31-37
    [19] J. D. Carroll, M. J. Daly, K. W. Minton. Expression of recA in Deinococcus radiodurans. J Bactedol, 1996, 178(1): 130-135
    [20] C. Bonacossa de Almeida, G. Coste, S. Sommer, A. Bailone. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Molecular Genetics and Genomics, 2002, 268(1): 25-41
    [21] J. I. Kim, M. M. Cox. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci U S A, 2002, 9902): 7917-7921
    [22] M. M. Cox. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu Rev Genet, 2001, 35: 53-82
    [23] I. Narumi, K. Satoh., M. Kikuchi, T. Funayama, T. Yanagisawa, Y. Kobayashi, H. Watanabe, K. Yamamoto The LexA Protein from Deinococcus radiodurans Is Not Involved in RecA Induction following γIrradiation, American Society for Microbiology, 2001, 183 (23): 6951-6956
    [24] D. Sheng, Z. Zheng, B. Tian, B. Shen, Y. Hua. LexA Analog (dra0074) Is a Regulatory Protein That Is Irrelevant to recA Induction. Journal of Biochemistry, 2004, 136(6): 787-793
    [25] A. M. Earl, M. M. Mohundro, I. S. Mian, J. R. Battista. The IrrE Protein of Deinococcus radiodurans R1 Is a Novel Regulator of recA Expression. Journal of Bacteriology, 2002, 184(22): 6216-6224
    [26] Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, B. Shen. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun, 2003, 306(2): 354-360
    [27] G. Gao, B. Tian, L. Liu, D. Sheng, B. Shen, Y. Hua. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair, 2003, 2(12): 1419-1427
    [28] G. Gao, D. Le, L. Huang, H. Lu, I. Narumi, Y. Hua. Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiology Letters, 2006, 257: 195-202
    [29] J. M. Eggington, N. Haruta, E. A. Wood, M. M. Cox. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol, 2004, 42
    [30] D. A. Bernstein, J. M. Eggington, M. P. Killoran, A. M. Misic, M. M. Cox, J. L. Keck. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proceedings of the National Academy of Sciences, 2004, 101(23): 8575-8580
    [31] J. Wang, D. A. Julin. DNA helicase activity of the RecD protein from Deinococcus radiodurans. J Biol Chem, 2004, 279(50): 52024-52032
    [32] S. Kitayama, L Narumi, M. Kikuchi, H. Watanabe. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat Res, 2000, 461(3): 179-187
    [33] B. I. Lee, K. H. Kim, S. J. Park, S. H. Eom, H. K. Song, S. W. Suh. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. The EMBO Journal, 2004, 23(10): 2029-2038
    [34] B. I. Lee, K. H. Kim, S. M. Shim, K. S. Ha, J. K. Yang, H. J. Yoon, J. Y. Ha, S. W. Suh. Crystallization and preliminary X-ray crystallographic analysis of the RecR protein from. Acta Cryst, 2004, 60: 379-381
    [35] M. J. Daly, K. W. Minton. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol, 1996, 178(15): 4461-4471
    [36] D. Kidane, H. Sanchez, J. C. Alonso, P. L. Graumann. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Molecular Microbiology, 2004, 52(6): 1627-1639
    [37] I. Narumi, K. Satoh, S. Cui, T. Funayama, S. Kitayama, H. Watanabe. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol, 2004, 54(1): 278-285
    [38] M. Tanaka, A. M. Earl, H. A. Howell, M. J. Park, J. A. Eisen, S. N. Peterson, J. R. Battista. Analysis of Deinococous radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics, 2004, 168(1): 21-33
    [39] D. R. Harris, M. Tanaka, S. V. Saveliev, E. Jolivet, A. M. Earl, M. M. Cox, J. R. Battista. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol, 2004, 2(10): 304-313
    [40] M. J. Heller. DNA MICROARRAY TECHNOLOGY: Devices, Systems, and Applications. Annual Review of Biomedical Engineering, 2002, 4(1): 129-153
    [41] G. K Smyth. Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, R. Gentlemen, V. Carey, S. Dudoit, R. Irizarry, and W. Huber, eds(New York: Springer), 2005, 397 420
    [42] A. E. Oostlander, G. A. Meijer, B. Ylstra. Mini Review Microarray-based comparative genomic hybridization and its applications in human genetics. Clinical Genetics, 2004, 66(6): 488
    [43] P. A. Clarke, R. te Peele, R. Wooster, P. Workman. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol, 2001, 62(10): 1311-1336
    [44] D. Xu, G. Li, L. Wu, J. Zhou, Y. Xu. PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics, 2002, 18(11): 1432-1437
    [45] Y. Liu, J. Zhou, M. V. Omelchenko, A. S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D. K. Thompson, D. Xu, LB. Rogozin, E. K. Galdamakova, M. Zhai, K. S. Makarova, E. V. Koonin, M. J. Daly. Transcriptome dynamics of Deinecoccus radiodurans recovering from ionizing radiation. Prec Natl Acad Sci U S A, 2003, 100(7): 4191-4196
    [46] Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, T. P. Speed. Normalization for cDNA micronrray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 2002, 30(4): 15
    [47] J. S. Edwards, J. R. Battista. Using DNA microarray data to understand the ionizing radiation resistance of Deinocoecus radiodurans. Trends Biotechnol, 2003, 21(9): 381-382
    [48] A. Pandey, M. Mann. Proteomics to study genes and genomes. Nature, 2000, 405(6788): 837-846
    [49] K. Gevaert, J. Vandekerckhove. Protein identification methods in proteomics. Electrophoresis, 2000, 21(6): 1145-1154
    [50] A. Tanaka, H. Hirano, M. Kikuchi, S. Kitayama, H. Watanabe. Changes in cellular proteins ofDeinococcus radioduraus followingγ-irradiation. Radiation and Environmental Biophysics, 1996, 35(2): 95-99
    [51] R. Tanaka, T. Kamiya, T. Sakai, M. Fukuda, Y. Kobayashi, A. Tanaka, H. Watanabe. Recent technical progress in application of ion accelerator beams to biological studies in tiara. Kek Proceedings, 1998, 894-898
    [52] M. S. Lipton, L. Pasa-Tolic, G. A. Anderson, D. J. Anderson, D. L. Auberry, J. R. Battista, M. J. Daly, J. Fredrickson, K. K. Hixson, H. Kostandarithes. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proceedings of the National Academy of Sciences , 2002, 99(17): 11049-11054
    [53] C. Zhang, J. Wei, Z. Zheng, N. Ying, D. Sheng, Y. Hua. Proteomic analysis of Deinococcus radiodurans recovering from a-irradiation. Proteomics, 2005, 5: 138-143
    [54] I. D. Hickson. RecQ heliceses: caretakers of the genome. Nature Reviews Cancer, 2003, 3(3): 169-178
    [55] J. C. Shen, L. A. Loeb. The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet, 2000, 16(5): 213-220
    [56] P. L. Opresko, W. H. Cheng, V. A. Bohr. Junction of RecQ helicase biochemistry and human disease. J Biol chem, 2004, 279(18): 18099-18102
    [57] V. Morozov, A. R. Mushegian, E. V. Koonin, P. Bork. A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. Trends Biochem Sci, 1997, 22(11): 417-418
    [58] P. L. Opresko, M. Otterlei, J. Graakjaer, P. Bruheirn, L. Dawut, S. Kolvraa, A. May, M. M. Seidman, V. A. Bohr. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell, 2004, 14(6): 763-774
    [59] S. Gangioff, C. Soustelle, F. Fabre. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet, 2000, 25(2): 192-194
    [60] P. Mohaghegh, J. K. Karow, R. M. Brosh Jr, Jr., V. A. Bohr, I. D. Hickson. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases: Nucleic Acids Res, 2001, 29(13): 2843-2849
    [61] J. A. C. Lotte Bjergbaek, Susan M. Gasser. RecQ helicases and genome stability: lessons from model organisms and human disease. SWISS MED WKLY, 2002, 132: 433-442
    [62] H. Cohen, D. A. Sinclair. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Nat1 Acad Sci U S A, 2001, 98(6): 3174-3179
    [63] H. Sun, R. J. Bennett, N. Maizeis. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res, 1999, 27(9): 1978-1984
    [64] A. Ui, Y. Satoh, F. Onoda, A. Miyajima, M. Seki, T. Enomoto. The N-terminal region of Sgs1, which interacts with Top3, is required for oomplementation of MMS sensitivity and suppression of hyper-recombinafion in sgs1 disruptants. Mol Genet Genomics, 2001, 265(5): 837-850
    [65] Z. Liu, M. J. Macias, M. J. Bottomley, G. Stier, J. P. Linge, M. Nilges, P. Bork, M. Sattler. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure Fold Des, 1999, 7(12): 1557-1566
    [66] K. Hanada, M. Iwasaki, S. Ihashi, H. Ikeda UvrA and UvrB suppress illegtimate recombination: synergistic action with RecQ helicase, The National Academy of Sciences, 2000, 97: 5989-5997
    [67] K. Hanada, T. Ukita, Y. Kohno, K. Saito, J. Kato, H. Ikeda RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli, The National Academy of Sciences of the USA, 1997, 94: 3860-3865
    [68] F. G. Harmon, S. C. Kowalczykowski. Biochemical characterization of the DNA helicase activity of the escherichia coli RecQ helicase. J Biol Chem, 2001, 276(1): 232-243
    [69] F. G Harmon, J. P. Brockman, S. C. Kowalczykowski. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase Ⅲ. J Biol Chem, 2003, 278(43): 42668-42678
    [70] F. G Harmon, S. C. Kowalczykowski. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev, 1998, 12(8): 1134-1144
    [71] D. A. Bernstein, J. L. Keck. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res, 2003, 31 (11): 2778-2785
    [72] C. a. Z. B. I. D. HICKSON. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J, 2003, 374: 577-606
    [73] K. Nakayama, N. Irino, H. Nakayama. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet, 1985, 200(2): 266-271
    [74] J. K. Karow, R. H. Newman, P. S. Freemont, I. D. Hickson. Oligomeric ring structure of the Bloom's syndrome helicase. Curr Biol, 1999, 9(11): 597-600
    [75] S. Huang, S. Beresten, B. Li, J. Oshima, N. A. Ellis, J. Canpisi. Characterization of the human and mouse WRN 3'→5' exonuclease. Nucleic Acids Res, 2000, 28(12): 2396-2405
    [76] H. Q. Xu, E. Deprez, A. H. Zhang, P. Tauc, M. M. Ladjimi, J. C. Brochon, C. Auclair, X. G. Xi. The EScherichia coli RecQ helicase functions as a monomer. J Biol Chem, 2003, 278(37): 34925-34933
    [77] P. Janscak, P. L. Garcia F. Hamburger, Y. Makuta, K. Shiraishi, Y. Imai, H. Ikeda, T. A. Bickle. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein. J Mol Biol, 2003, 330(1): 29-42
    [78] J. Courcelle, J. R. Donaldson, K. H. Chow, C. T. Courcelle. DNA damage-induced replication fork regression and processing in Escherichia coli. Science, 2003, 299(5609): 1064-1067
    [79] J. A. Cobb, L. Bjergbaek, K. Shimada, C. Frei, S. M. Gasser. DNA polymerase stabilization at stalled replication forks requires Mecl and the RecQ helicase Sgsl. Embo J, 2003, 22(16): 4325-4336
    [80] R. M. Brosh, Jr., C. yon Kobbe, J. A. Sommers, P. Karmakar, P. L. Opresko, J. Piotrowski, I. Dianova, G. L. Dianov, V. A. Bohr. Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. Embo J, 2001, 20(20): 5791-5801
    [81] S. Sharma, J. A. Sommers, L. Wu, V. A. Bohr, I. D. Hickson, R. M. Brosh, Jr. Stimulation of flap endonuclease-1 by the Bloom's syndrome protein. J Biol Chem, 2004, 279(11): 9847-9856
    [82] A. Constantinou, M. Tarsounas, J. K. Karow, R. M. Brush, V. A. Bohr, I. D. Hickson, S. C. West. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Pep, 2000, 1(1): 80-84
    [83] S. Sakamoto, K. Nishikawa, S. J. Heo, M. Goto, Y. Furulchi, A. Shimamoto. Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. Genes Cells, 2001, 6(5): 421-430
    [84] O. Bischof. S. K. Kim, J. Irving, S. Beresten, N. A. Ellis, J. Campisi. Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol, 2001, 153(2): 367-380
    [85] A. S. Kamath-Loeb, L. A. Loeb, E. Johansson, P. M. Burgers, M. Fry. Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J Biol Chem, 2001, 276(19): 16439-16446
    [86] J. P. Laine, P. L. Opresko, F. E. Indig, J. A. Harrigan, C. von Kobbe, V. A. Bohr. Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Res, 2003, 63(21): 7136-7146
    [87] G. Ira, A. Malkova, G. Liberi, M. Foiani, J. E. Haber. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell, 2003, 115(4): 401-411
    [88] P. Sung, L. Krejci, S. Van Komen, M. G. Sehom. Rad51 recombinase and recombination mediators. J Biol Chem, 2003, 278(44): 42729-42732
    [89] M. P. Cooper, A. Machwe, D. K. Orren, R. M. Brosh, D. Ramsden, V. A. Bohr. Ku complex interacts with and stimulates the Werner protein. Genes Dev, 2000, 14(8): 907-912
    [90] P. Karmakar, J. Piotrowski, R. M. Brosh, Jr., J. A. Sommers, S. P. Miller, W. H. Cheng, C. M. Snowden, D. A. Ramsden, V. A. Bohr. Werner protein is a target of DNA-dependent protein Kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem, 2002, 277(21): 18291-18302
    [91] J. A. Harrigan, P. L. Opresko, C. von Kobbe, P. S. Kedar, R. Prasad, S. H. Wilson, V. A. Bohr. The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem, 2003, 278(25): 2268622695
    [92] M. D. Huber, D. C. Lee, N. Maizels. G4 DNA unwinding by BLM and Sgslp: substrate specificity and substrate-specific inhibition. Nucleic Acids Res, 2002, 30(18): 3954-3961
    [93] J. K. Karow, A. Constantinou, J. L. Li, S. C. West, I. D. Hickson. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A, 2000, 97(12): 6504-6508
    [94] R. M. Brosh, Jr., P. Karmakar, J. A. Sommers, Q. Yang, X. W. Wang, E. A. Spillare, C. C. Harris, V. A. Bohr. p53 Modulates the exonuclease activity of Werner syndrome protein. J Biol Chem, 2001, 276(37): 35093-35102
    [95] L. Chen, S. Huang, L. Lee, A. Davalos, R. H. Schiestl, J, Campisi, J. Oshima. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell, 2003, 2(4): 191-199
    [1] O. White, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Fieischmarm, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, C.M. Fraser. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 1999, 286(5444): 1571-1577
    [2] R.R.K.J.A.C.L.B.I.D.H.a.S.M. Gasser. RecQ helicases: multiple roles in genome maintenance. TRENDS in Cell Biology, 2003, 13(9): 493-501
    [3] V. Morozov, A. R. Mushegian, E.V. Koonin, P. Bork. A putative nucleic acid-binding domain in Bloom's and Wemer's syndrome helicases. Trends Biochem Sci, 1997, 22(11): 417-418
    [4] J. A. C. Lotte Bjergbaek, Susan M. Gasser. RecQ helicases and genome stability: lessons from model organisms and human disease. SWISS MED WKLY, 2002, 132:4 33-442
    [5] K. S. Makarova, L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, M. J. Daly. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001, 65(1): 44-79
    [6] J. A. Eisen, P. C. Hanawalt. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res, 1999, 435(3): 171-213
    [7] J. K. Karow, R. K. Chakraverty, I. D. Hickson The Bloom's Syndrome Gene Product Is a 3'-5'DNA Helicase, JBC, 1997, 272: 30611-30614
    [8] M. D. Gray, J. C. Shen, A. S. Kamath-Loeb, A. Blank, B.L. Sopher, G.M. Martin, J. Oshima, L.A. Loeb. The Werner syndrome protein is a DNA helicase. Nature Genetics, 1997, 17: 100-103
    [9] P. M. Watt, I. D. Hickson, R. H. Borts, E. J. Louis. SGS1, a Homologue of the Bloom's and Wemer's Syndrome Genes, Is Required for Maintenance of Genome Stability in Saccharomyces cerevisiae. Genetics, 1996, 144(3): 935-945
    [10] C. E. Yu, J. Oshima, Y. H. Fu, E. M. Wijsman, F. Hisama, R. Alisch, S. Matthews, J. Nakura, T. Miki, S. Ouais. SchellenbergGD. Positionalcloning of the Wemer's syndrome gene. Science, 1996, 272: 258-262
    [11] N. A. Ellis, J. Groden, T. Z. Ye, J. Straughen, D.J. Lennon, S. Ciocci, M. Proytcheva, J. German. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell, 1995, 83(4): 655-666
    [12] T. Hishida, Y. W. Han, T. Shibata, Y. Kubota, Y. Ishino, H. Iwasaki, H. Shinagawa. Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev, 2004, 18(15): 1886-1897
    [13] L. Chen, S. Huang, L. Lee, A. Davalos, R. H. Schiestl, J. Campisi, J. Oshima. WRN, the protein deficient in Wemer syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell, 2003, 2(4): 191-199
    [1] K. W. Minton. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol, 1994, 13(1): 9-15
    [2] K. S. Makarova, L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, M. J. Daly. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001, 65(1): 44-79
    [3] J. A. Cobb, L. Bjergbaek, S. M. Gasser. RecQ helicases: at the heart of genetic stability. FEBS Lett, 2002, 529(1): 43-48
    [4] P. Mohaghegh, I. D. Hickson. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Human Molecular Genetics, 2001, 10(7): 741-746
    [5] R. R. Khakhar, J. A. Cobb, L. Bjergbaek, I. D. Hickson, S. M. Gasser. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol, 2003, 13(9): 493-501
    [6] S. Kitao, A. Shimamoto, M. Goto, R. W. Miller, W. A. Srnithson, N. M. Lindor, Y. Furnichi. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genetics, 1999, 22: 82-84
    [7] I. D. Hickson. RecQ helicases: caretakers of the genome. Nature Reviews Cancer, 2003, 3(3): 169-178
    [8] H. Nakayama, K. Nakayama, R. Nakayama, N. Irino, Y. Nakayama, P. C. Hanawalt. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet, 1984, 195(3): 474-480
    [9] S. Kitayama, I. Narumi, M. Kikuchi, H. Watanabe. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat Res, 2000, 4610): 179-187
    [10] Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, B. Shen. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biuphys Res Commun, 2003, 306(2): 354-360
    [11] B. Ruan, H. Nakano, M. Tanaka, J. A. Mills, J. A. DeVitos, B. Min, K. B. Low, J. R. Battista, D. Soll. Cysteinyl-tRNACys Formation in Methanocaldococcus jannaschii: the Mechanism Is Still Unknown. Journal of Bacteriology, 2004, 186(1): 8-14
    [12] Guanjun Gao, Huiming Lu, Lifen Huang, Yuejin Hua. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chinese Science Bulletin, 2005, 50(4): 311-316
    [13] A. M. Earl, S. K. Rankin, K. P. Kim, O. N. Lamendola, J. R. Battista. Genetic Evidence that the uvsE Gene Product of Deinococcus radiodurans R1 Is a UV Damage Endonuclease. Journal of Bacteriology, 2002, 184(4): 1003-1009
    [14] F. G. Harmon, J. P. Brockman, S. C. Kowalczykowsld. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase Ⅲ. J Biol Chem, 2003, 278(43): 42668-42678
    [15] K. Hanada, T. Ukita, Y. Kohno, K. Saito, J. Kate, H. Ikeda RecQ DNA helicase is a suppressor of illegitimate recombinationin Escherichia coli, The National Academy of Sciences of the USA, 1997, 94: 3860-3865
    [16] K. Hanada, M Iwasaki, S. Ihashi, H. Ikeda UvrA and UvrB suppress illegitimate recombination: Synergistic action with RecQ helicase, The National Academy of Sciences, 2000, 97: 5989-5994
    [1] R. Meima, H. M. Rothfuss, L. Gewin, M. E. Lidstrom. Promoter Cloning in the Radioresistant Bacterium Deinococcus radiodurans. Journal of Bacteriology, 2001, 183(10): 3169-3175
    [2] E. Lennon, K. W. Minton. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans. Journal of Bacteriology, 1990, 172(6): 2955-2961
    [3] R. Meima, M. E. Lidstrom. Characterization of the Minimal Replicon of a Cryptic Deinococcus radiodurans SARK Plasmid and Development of Versatile Escherichia coli-D. radiodurans Shuttle Vectors. Applied and Environmental Microbiology, 2000, 66(9): 3856-3867
    [4] Guanjun Gao, Huiming Lu, Lifen Huang, Yuejin Hua. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chinese Science Bulletin, 2005, 50(4): 311-316
    [5] V. Mattimore, J.R. Battista. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol, 1996, 178(3): 633-637
    [6] D. R. Harris, M. Tanaka, S. V. Saveliev, E. Jolivet, A. M. Earl, M. M. Cox, J. R. Battista. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol, 2004, 2(10): 304-313
    [7] S. Kitayama, S. Asaka, K. Totsuka. DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol, 1983, 155(3): 1200-1207
    [8] M. Lebel, P. Leder. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A, 1998, 95(22): 13097-13102
    [9] C. a. Z. B. I. D. HICKSON. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J, 2003, 374: 577-606
    [10] R. C. Fry, T. G. Sambandan, C. Rha. DNA damage and stress transcripts in Saccharomyces cerevisiae mutant sgsl. Mech Ageing Dev, 2003, 124(7): 839-846
    [11] S. Gangloff, C. Soustelle, F. Fabre. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet, 2000, 25(2): 192-194
    [12] K. Myung, A. Datta, C. Chen, R. D. Kolodner. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nature Genetics, 2001, 27: 113-116
    [13] L. Crabbe, R. E. Verdun, C. I. Haggblom, J. Karlseder. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science, 2004, 306(5703): 1951-1953
    [14] J. Courcelle, J. R. Donaldson, K. H. Chow, C. T. Courcelle. DNA damage-induced replication fork regression and processing in Escherichia coli. Science, 2003, 299(5609): 1064-1067
    [15] L. Wu, I. D. Hickson. The Bloom's syndrome helicase suppresses crossing over during homologous recombination.Nature, 2003, 426(6968): 870-874
    [16] S. Kitao, A. Shimamoto, M. Goto, R. W. Miller, W.A. Smithson, N. M. Lindor, Y. Furuichi. Mutations in RECQL4 cause a subset of cases of Rothrnund-Thomson syndrome. Nature Genetics, 1999, 22: 82-84
    [17] M. Tanaka, A. M. Earl, H. A. Howell, M.J. Park, J.A. Eisen, S.N. Peterson, J.R. Battista. Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics, 2004, 168(1): 21-33
    [18] D. Sheng, G. Gao, B. Tian, Z. Xu, Z. Zheng, Y. Hua. RecX is involved in antioxidant mechanisms of the radioresistant bacterium Deinococcus radiodurans. FEMS Microbiol Lett, 2005, 244(2): 251-257
    [19] J. A. Cobb, L. Bjergbaek, S. M. Gasser. RecQ helicases: at the heart of genetic stability. FEBS Lett, 2002, 529(1): 43-48
    [20] G. Ira, A. Malkova, G. Liberi, M. Foiani, J. E. Haber. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell, 2003, 115(4): 401-411
    [21] P. Pichierri, A. Franchitto, P. Mosesso, L. Proietti de Santis, A. S. Balajee, F. Palitti. Werner's syndrome lymphoblastoid cells are hypersensitive to topoisomerase Ⅱ inhibitors in the G2 phase of the cell cycle. Mutat Res, 2000, 459(2): 123-133
    [22] L. Chen, S. Huang, L. Lee, A. Davalos, R. H. Schiestl, J. Campisi, J. Oshima. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell, 2003, 2(4): 191-199
    [23] J. K. Karow, A. Constantinou, J. L. Li, S. C. West, I. D. Hickson. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A, 2000, 97(12): 6504-6508
    [24] L. Wu, K. Lung Chan, C. Ralf, D. A. Bernstein, P. L. Garcia, V. A. Bohr, A. Vindigni, P. Janscak, J. L. Keck, I. D. Hickson. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. Embo J, 2005, 24(14): 2679-2687
    [25] A. Ui, Y. Satoh, F. Onoda, A. Miyajima, M. Seki, T. Enomoto. The N-terminal region of Sgs1, which interacts with Top3, is required for complementation of MMS sensitivity and suppression of hyper-recombination in sgs1 disruptants. Mol Genet Genomics, 2001, 265(5): 837-850
    [26] M. Nakayama, K. Kawasaki, K. Matsumoto, T. Shibata. The possible roles of the DNA helicase and C-terminal domains in RECQ5/QE: complementation study in yeast. DNA Repair(Amst), 2004, 3(4): 369-378
    [1] V. Mattimore, J. R. Battista. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol, 1996, 175(3): 633-637
    [2] O. White, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft M. L. Gwinn, W. C. Nelson,. D. L. Richardson, K. S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daly, K. W. Minton, R. D. Fleischmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, H. O. Smith, J. C. Venter, C. M. Fraser. Genome sequence of the radioresistant bacterium Deinocoocus radiodurans R1. Science, 1999, 286(5444): 1571-1577
    [3] Y. Liu, J. Zhou, M. V. Omelchenko, A. S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D. K. Thompson, D. Xu, I. B. Rogozin, E. K. Gaidamakova, M. Zhai, K. S. Makarova, E. V. Koonin, M. J. Daly. Trsnscriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A, 2003, 100(7): 4191-4196
    [4] J. S. Edwards, J. R. Battista. Using DNA microarray data to understand the ionizing radiation resistance of Deinococcus radiodurans. Trends Biotechnol, 2003, 21(9): 381-382
    [5] H. Nakayama, K. Nekayama, K. Nakayama, N. Irino, Y. Nakayama, P. C. Hanawalt. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet, 1984, 195(3): 474-480
    [6] R. R. Khakhar, J. A. Cobb, L. Bjergbaek, I. D. Hickson, S. M. Gasser. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol, 2003, 13(9): 493-501
    [7] K. Nakayama, N. Irino, H. Nakayama. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet, 1985, 200(2): 266-271
    [8] M. Lebel, P. Leder. A deletion within the routine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A, 1998, 95(22): 13097-13102
    [9] P. Pichierri, A. Franchitto, P. Mosesso, L. Proietti de Santis, A. S. Balajee, F. Palitti. Werner's syndrome lymphoblastoid cells are hypersensitive to topoisomerase Ⅱ inhibitors in the G2 phase of the cell cycle. Mutat Res, 2000, 459(2): 123-133
    [10] J. German. Bloom's syndrome. Dermatol Clin, 1995, 13(1): 7-18
    [11] J. C. Shen, L. A. Loeb. The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet, 2000, 16(5): 213-220
    [12] E. M. Vennos, W. D. James. Rothmund-Thomson syndrome. Dermatol Clin, 1995, 13(1): 143-150
    [13] L. Crabbe, R. E. Verdun, C. I. Haggblom, J. Karlseder. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science, 2004, 306(5703): 1951-1953
    [14] J. K. Karow, A. Constantinou, J. L. Li, S. C. West, I. D. Hickson. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A, 2000, 97(12): 6504-6508
    [15] X. Wu, N. Maizeis. Substrate-specific inhibition of RecQ helicase. Nucleic Acids Res, 2001, 29(8): 1765-1771
    [16] M. D. Huber, D. C. Lee, N. Maizels. G4 DNA unwinding by BLM and Sgslp: substrate specificity and substrate-specific inhibition. Nucleic Acids Res, 2002, 30(18): 3954-3961
    [17] F. G Harmon, J. P. Brockman, S. C. Kowalczykowski. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase Ⅲ. J Biol Chem, 2003, 278(43): 42668-42678
    [18] J. A. Cobb, L. Bjergbaek, S. M. Gasser. RecQ helicases: at the heart of genetic stability. FEBS Lett, 2002, 529(1): 43-48
    [19] T. Hishida, Y. W. Han, T. Shibata, Y. Kubota, Y. Ishino, H. Iwasaki, H. Shinagawa. Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev, 2004, 18(15): 1886-1897
    [20] V. Morozov, A. R. Mushegian, E. V. Koonin, P. Bork. A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. Trends Biochem Sci, 1997, 22(11): 417-418
    [21] A. E. Gorbalenya, E. V. Koonin. Helicases: amino acid sequence comparisons and stmcture-function relationships. Curr. Biol., 1993, 3: 419-429
    [22] D. A. Bernstein, J. L. Keck. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res, 2003, 31(11): 2778-2785
    [23] LeBowitz Biochemical mechanism of strand initiation in bacteriophage lambda DNA replication, Johns Hopkins University, Baltimore, 1985.
    [24] J. M. Eggington, N. Haruta, E. A. Wood, M. M. Cox. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol, 2004, 42
    [25] F. G. Harmon, S. C. Kowalczykowski. Biochemical characterization of the DNA helicase activity of the escherichia coli RecQ helicase. J Biol Chem, 2001, 276(1): 232-243
    [26] A. K. Eggleston, N. A. Rahim, S. C. Kowalczykowski. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res, 1996, 24(7): 1179-1186
    [27] L. F. Huang, X. T. Hua, H. M. Lu, G. J. Gao, B. Tian, B. H. Shen, Y. J. Hua. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans. J Zhejiang Univ Sci B, 2006, 7(5): 373-376
    [28] C. a. Z. B. I. D. HICKSON. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J, 2003, 374: 577-606
    [29] K. Umezu, H. Nakayama. RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol, 1993, 230(4): 1145-1150
    [30] L. A. MAKARova KIRA S. , YURI I. WOLF et al. Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics. Microbiology and Molecular Biology Reviews, 2001, 65: 44-79
    [31] M. P. Killoran J. L. Keck. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemicalactivity. J Biol Chem, 2006, 281(18): 12849-12857
    [32] L. Wu, K. Lung Chan, C. Ralf, D. A. Bernstein, P. L. Garcia, V. A. Bohr, A. Vindigni, P. Janscak, J. L. Keck, I. D. Hickson. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. Embo J, 2005, 24(14): 2679-2687
    [33] A. Ui, Y. Satoh, F. Onoda, A. Miyajima, M. Seki, T. Enomoto. The N-terminal region of Sgsl, which interacts with. Top3, is required for complementation of MMS sensitivity and suppression of hyper-recombination in sgsl disruptants. Mol Genet Genomics, 2001, 265(5): 837-850
    [34] M. Nakayama, K. Kawasaki, K. Matsumoto, T. Shibata. The possible roles of the DNA helicase and C-terminal domains in RECQS/QE: complementation study in yeast. DNA Repair(Amst), 2004, 3(4): 369-378
    [35] Z. Liu, M. J. Macias, M. J. Bottomley, G. Stier, J. P. Linge, M. Nilges, P. Bork, M. Sattler. The three-dimensional structure of the HRDC domain and implications for the Wemer and Bloom syndrome proteins. Structure Fold Des, 1999, 7(12): 1557-1566
    [36] T. Ftmayama, I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, K. Yamamoto. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Murat Res, 1999, 435(2): 151-161
    [37] I. N. Shigeru Kitayama, Masahiro Kikuchi, et al. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutation Research, 2000, 461: 179-187
    [38] J. Wang, D. A. Julin. DNA helicase activity of the ReeD protein from Deinoooocus radiodurans. J Biol Chem, 2004, 279(50): 52024-52032
    [39] K. Knsano, Y. Sunohara, N. Takahashi, H. Yoshikura, I. Kobayashi. DNA double-strand break repair: genetic determinants of flanking crossing-over. Proc Natl Acad Sci U S A, 1994, 91(3): 1173-1177
    [40] V. M. Mendonca, H. D. Klepin, S. W. Matson. DNA helicnses in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair. J Bacteriol, 1995, 177(5): 1326-1335
    [41] V. Lanzov, I. Stepanova, G. Vinogradskaja. Genetic control of recombination exchange frequency in Escherichia coli K-12. Biochimie, 1991, 73(2-3): 305-312
    [42] M. P. Cooper, A. Machwe, D. K. Orren, R. M. Brosh, D. Ramsden, V. A. Bohr. Ku complex interacts with and stimulates the Werner protein. Genes Dev, 2000, 14(8): 907-912
    [43] L. Chen, S. Huang, L. Lee, A. Davalos, R. H. Schiestl, J. Campisi, J. Oshima. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repalr. Aging Cell, 2003, 2(4): 191-199
    [44] I. Narumi, K. Satoh, S. Cui, T. Funayama, S. Kitayama, H. Watanabe. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol, 2004, 54(1): 278-285
    [45] Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, B. Shen. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun, 2003, 306(2): 354-360.
    [1] M. J. Heller. DNA MICROARRAY TECHNOLOGY: Devices, Systems, and Applications. Annual Review of Biomedical Engineering, 2002, 4(1): 129-153
    [2] A. E. Oostlander, G. A. Meijer, B. Ylstra. Mini Review Microarray-based comparative genomic hybridization and its applications in human genetics. Clinical Genetics, 2004, 66(6): 488
    [3] P. A. Clarke, R. te Poele, R. Wooster, P. Workman. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol, 2001, 62(10): 1311-1336
    [4] J. S. Edwards, J. R. Battista. Using DNA microarray data to understand the ionizing radiation resistance of Deinococcus radiodurans. Trends Biotechnol, 2003, 21(9): 381-382
    [5] A. Airo, S. L. Chan, Z. Martinez, M. O. Platt, J. D. Trent. Heat Shock and Cold Shock in Deinococcus radiodurans. Cell Biochem. Biophys, 2004, 40:277 288
    [6] Y. Liu, J. Zhou, M. V. Omelchenko, A. S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D. K. Thompson, D. Xu, I. B. Rogozin, E. K. Gaidamakova, M. Zhai, K. S. Makarova, E. V. Koonin, M. J. Daly. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A, 2003, 100(7): 4191-4196
    [7] V. Mattimore, J. R. Battista. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol, 1996, 178(3): 633-637
    [8] J. F. Ma, U. A. Ochsner, M. G. Klotz, V. K. Nanayakkara, M. L. Howell, Z. Johnson, J. E. Posey, M. L. Vasil, J. J. Monaco, D. J. Hassett. Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J Bacteriol, 1999, 181(12): 3730-3742
    [9] K. Keyer, J. A. Imlay. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA, 1996, 93(24): 13635-13640
    [10] D. Ghosal, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H. M. Kostandarithes, H. Brim, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, M. J. Daly. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev, 2005, 29(2): 361-375
    [11] G. Zhao, P. Ceci, A. Ilari, L. Giangiacomo, T. M. Laue, E. Chiancone, N. D. Chasteen. Iron and Hydrogen Peroxide Detoxification Properties of DNA-binding Protein from Starved CellsA FERRITIN-LIKE DNA-BINDING PROTEIN OF ESCHERICHIA COLI. Journal of Biological Chemistry, 2002, 277(31): 27689-27696
    [12] I. Brune, H. Wemer, A. T. Huser, J. Kalinowski, A. Puhler, A. Tauch. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics, 2006, 2006(7): 21
    [13] M. Elgrably-Weiss, S. Park, E. Schlosser-Silverman, I. Rosenshine, J. Imlay, S. Altuvia. A Salmonella enterica Serovar Typhimurium hemA Mutant Is Highly Susceptible to Oxidative DNA Damage. Journal of Bacteriology, 2002, 184(14): 3774-3784
    [14] M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, D. Ghosal. Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiationresistance. Science, 2004, 306(5698): 1025-1028
    [15] J. A. Imlay. Pathways of oxidative damage. Annu Rev Microbiol, 2003, 57:395-418
    [16] R. R. Khakhar, J. A. Cobb, L. Bjergbaek, I. D. Hickson, S. M. Gasser. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol, 2003, 13(9): 493-501
    [17] P. L. Opresko, W. H. Cheng, V. A. Bohr. Junction of RecQ helicase biochemistry and human disease. J Biol Chem, 2004, 279(18): 18099-18102
    [18] R. C. Fry, T. G. Sambandan, C. Rha. DNA damage and stress transcripts in Saccharomyces cerevisiae mutant sgs1. Mech Ageing Dev, 2003, 124(7): 839-846
    [19] D. R. Harris, M. Tanaka, S. V. Saveliev, E. Jolivet, A. M. Earl, M. M. Cox, J. R. Battista. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol, 2004, 2(10): 1629-1639
    [20] W. Gao, Y. Liu, C. S. Giometti, S. L. Tollaksen, T. Khare, L. Wu, D. M. Klingeman, M. W. Fields, J. Zhou. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics, 2006, 7:76
    [21] J. C. Crack, J. Green, N. E. Le Brun, A. J. Thomson. Detection of sulfide release from the oxygen-sensing [4Fe-4S] cluster of FNR. J Biol Chem, 2006,
    [22] N. S. Jakubovics, H. F. Jenkinson. Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology, 2001, 147 (7): 1709-1718
    [23] B. Tian, Y. Wu, D. Sheng, Z. Zheng, G. Gao, Y. Hua. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 2004, 19(2): 78-84
    [24] K. Hanada, T. Ukita, Y. Kohno, K. Saito, J. Kato, H. Ikeda RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli, The National Academy of Sciences of the USA, 1997, 94:3860-3865
    [25] R.R.K.J.A.C.L.B.I.D.H.a.S.M. Gasser. RecQ helicases: multiple roles in genome maintenance. TRENDS in Cell Biology, 2003, 13(9): 493-501
    [26] C.Z. Bachrati, I. D. Hickson. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J, 2003, 374:577 606
    [27] G. Liberi, G. Maffioletti, C. Lucca, I. Chiolo, A. Baryshnikova, C. Cotta-Ramusino, M. Lopes, A. Pellicioli, J. E. Haber, M. Foiani. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev, 2005, 19(3): 339-350
    [28] M. M. Cox. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu Rev Genet, 2001, 35:53-82
    [29] T. U. KATSUHIRO HANADA, YUKO KOHNO, KAZUE SAITO, JUN-ICHI KATO, AND HIDEO IKEDA. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci, 1997, 94:3860 3865
    [30] L. Wu, I. D. Hickson. RecQ helicases and cellular responses to DNA damage. Mutat Res, 2002, 509(12): 35-47
    [31] L. Chen, S. Huang, L. Lee, A. Davalos, R. H. Schiestl, J. Campisi, J. Oshima. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell, 2003, 2(4): 191-199
    [32] K. S. Makarova, L. Aravind, Y. I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, M.J. Daly. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001, 65(1): 44-79
    [33] M. M. Cox, J. R. Battista. Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol, 2005, 3(11): 882-892
    [34] I. Narumi, K. Satoh, S. Cui, T. Funayama, S. Kitayama, H. Watanabe. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol, 2004, 54(1): 278-285
    [35] P. Wang, H. E. Schellhorn. Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol, 1995, 41(2): 170-176
    [1] A. Pandey, M. Mann. Proteomics to study genes and genomes. Nature, 2000, 405(6788): 837-846
    [2] Q. Fu, J. E. Van Eyk. Proteomics and heart disease: identifying biomarkers of clinical utility. Export Review of Proteomics, 2006, 3(2): 237-249
    [3] K. Gevaert J. Vandekerckhove. Protein identification methods in proteomics. Eleetrophoresis, 2000, 21(6): 1145-1154
    [4] C. Zhang, J. Wei, Z. Zheng, N. Ying, D. Sheng, Y. Hua. Proteomic analysis of Deinoceccusradiodurans recovering from a-irradiation. Proteomics, 2005, 5: 138-143
    [5] M. T. Kachman, H. Wang, D. R. Schwartz, K. R. Cho, D. M. Lubman. A 2-D Liquid Separations/Mass Mapping Method for Interlysate Comparison of Ovarian Cancers. Electrophoresis, 2000, 21: 679-686
    [6] D. M. Lubman, M. T. Kachman, H. Wang, S. Gong, F. Yan, R. L. Hamler, K. A. O'Neil, K. Zhu, N. S. Buchanan, T. J. Barder. Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 782(12): 183-196
    [7] M. H. Simonian, E. Betgovargez. Proteome Analysis of Human Plasma with the ProteomeLab PF 2D System. Beckman Coulter, Inc. Application Information Bulletin A- 1963A, 2003,
    [8] H. Wang, S. Hanash. Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 787(1): 11-18
    [9] D. M. Lubman. A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/mass mapping technique. Electrophoresis, 2002, 23: 3168-3181
    [10] F. C. Chahal, J. Entwistle, N. Glover, G. C. Macdonald. A targeted proteomic approach for the identification of tumor-associated membrane antigens using the ProteomeLab (trade mark) PF-2D in tandem with mass spectrometry. Biochem Biophys Res Commun, 2006, 348(3): 105-1062
    [11] M. Soldi, C. Sarto, C. Valsecchi, F. Magni, V. Proserpio, D. Ticozzi, P. Mocarelli. Proteome profile of human urine with two-dimeusional liquid phase fractionation. Proteomics, 2005, 5: 2641-2647
    [12] Y. Yamakoshi, J. C. Hu, H. Zhang, T. Iwata, F. Yamakoshi, J. P. Simmer. Proteomic analysis of enamel matrix using a two-dimensional protein fractionation system. Eur J Oral Sci, 2006, 114(1): 266-271
    [13] A. Pirondini, G. Visioli, A. Malcevschi, N. Marmiroli.A 2-D liquid-phase chromatography for proteomic analysis in plant tissues. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 833(1): 91-100
    [14] Y. Wang, R. Wu K. R. Cho, K. A. Shedden, T. J. Barder, D. M. Lubman. Classification of Cancer Cell Lines Using an Automated Two-dimensional Liquid Mapping Method with Hierarchical Clustering Techniques*. Molecular & Cellular Proteomics, 2006, 5(1): 43-52
    [15] T. Linke, A. C. Ross, E. H. Harrison. Proteomic anaysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr A, 2006
    [16] 彭艳,郑颖,蒋平,何玮,侯彦强,周聪,郭春香,倪健,焦炳华.肿瘤细胞蛋白质组的二维液相色谱分离.第二军医大学学报,2004,25(8):862-864
    [17] 朱俊萍,孙立连,卫灿东,李琳琳,金奇.肠道病毒 71 型感染前后宿主细胞蛋白质组的二维液相色谱分离和比较.病毒学报,2005,21(4):248-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700