生物信息学和生物信号识别领域的机器学习算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面分析和了解了生物信息学中操纵子预测和生物信号识别中味觉信号识别等的研究现状、研究热点和发展趋势的基础上,重点研究了操纵子预测和味觉信号识别的计算机识别算法。在将已有机器学习方法应用于操纵子预测和辅助搭建多种味觉信号识别系统模型基础上,提出了三种新型的可应用于操纵子预测和味觉信号识别的算法。本文的主要贡献和研究内容如下:
     (1)对生物信息学中的操纵子预测和生物信号识别中的机器味觉识别研究进行了全面综述。介绍了操纵子预测和机器味觉研究的产生背景、应用领域、研究现状、面临的挑战和发展趋势。将已有神经网络、支持向量机及遗传算法应用于操纵子预测中,辅助完成多种味觉信号识别系统模型。这些内容的讨论和分析是开展进一步研究的基础。
     (2)阐述了操纵子预测和机器味觉的相关机器学习基础理论。介绍了基本的多层前向神经网络的结构设计和学习理论、进化计算的基础理论以及概率分析和统计学习理论相关基础。
     (3)提出了一种最小不确定性神经网络味觉信号识别系统模型。
     (4)提出了一种边界法加速支持向量机的方法。
     (5)提出了一种量子群进化算法模型。
     本文的研究结果丰富了机器学习理论的应用研究,在概率分析与神经网络结合、神经网络的结构设计和参数学习、支持向量机学习和改进优化进化计算方法等方面的研究具有一定的理论意义和应用价值,为操纵子预测和机器味觉的实用化研究提供了有意义的方法和手段。
Bioinformatics is an interdisciplinary approach drawing from specific disciplines such as biology, computer science and mathematics. It rised with human genome project at the end of 80's. Because the current bioinformatics research is rooted in life science as well as microscopic molecular biology in structure research, the development of bioinformatics is mainly focusing on expanding the use of nucleotide and amino acid sequence data, including those to acquire, store, organize, archive, or analyze such data. Therefore during the process of explaining the essence of life, it is already known that not only the genetic information but also the expression regulation of genetic information is very important for organisms. So the construction of gene expression regulation network also becomes the key to discover the mystery of life. However as the regulation network research is too complexity and variety, scientists change their attentions to the individually sub-unit of regulation network which called operon. And furthermore they are trying to reconstruct the whole regulation network through the operon research.
     Similarly to bioinformatics, the macroscopic biological signals also are playing as important roles in our living, such as visual signal, sound signal, touch signal and so on. At present, vision sensation, hearing sensation and tactual sensation are all developed greatly in the robotics research domain. Some robots, which equipped with vision, hearing and touch abilities, have been used for practical purposes. Along with the development of life science and artificial intelligence research, the attempt of explore and imitate the sense function of taste and smell also has profound theory significance and wide spread application prospect. At present, Japan is in the top level of world in the research of taste and smell. But because involved so many disciplines, many crucial questions are still waiting for further studies.
     Though the research objects of operon prediction and taste signal recognition are different, the involved prediction and recognition algorithms of machine learning are similar. That provides the foundation for our research on machine learning algorithms in bioinformatics and biologic signal recognition.
     Machine Learning studies how to simulate human learning. It is converging from several sources, such as artificial intelligence, computational intelligence, statistics, mathematics, psychological, philosophy, adaptive control theory, informatics, biology etc. It nearly includes all human cognition domains. Fusing correlation machine learning methods, supplementing their superiorities, and then proposing new models and algorithms will promote the development of bioinformatics and biological signal recognition effectively.
     After comprehensively analyzing and understanding the present research status, opening topics and developing trendency in operon prediction of bioinformatics and taste signal recognition of biologic signal recognition, we mainly focus on the research of machine learning algorithms in operon prediction and taste signal recognition. And on the foundation of introduced known machine learning algorithms to operon prediction and assistanted to implement taste signal recognition system, we proposed three novel algorithms which may apply to operon prediction and taste signal recognition in the near future.
     (1) Introduced neuro network, support vector machine and evolutionary algorithm to operon prediction; assistanted to implement fuzzy neuro network based on voting strategy in taste signal recognition; used entropy clustering algorithm, class cover algorithm and rough sets algorithm to partition input space and extract rules respectively. All these works make the foundation of further research and study.
     (2) Introduced related basic machine learning theory in the operon prediction and the machine taste recognition, including multilayer feedforward neural network, evolution computation as well as statistics theory. The content has provided stabile theoretics and rationale for the application of our purpose.
     (3) A new model of taste signals recognition based on minimal uncertainty neural networks is proposed in this article. The model uses Bayesian Theorem and Particle Swarm Optimization (PSO) as tools to determine the parameters of the networks rapidly and efficiently. The identification of the taste signals of 10 kinds of tea is successful in utilization of this model. The experimental results show the feasibility and probability of this model to the identification of taste signals of tea.
     (4) We propose a boundary method to accelerate constructing the optimal hyperplane of support vector machines. The boundary, called key vector set, is an approximate small superset of support vectors set which extracted by Parzen window density estimation in the feature space. Experimental results on checkboard data and double helixs sets show that the proposed method is more efficient than conventional method and requires much less memory.
     (5) A new quantum swarm evolutionary algorithm (QSE) is presented, which is based on the quantum-inspired evolutionary algorithm (QEA). A new definition of Q-bit expression called quantum angle is proposed and an improved particle swarm optimization (PSO) is employed to update quantum angles automatically. The simulated results in solving 0-1 knapsack problem show that QSE is superior to QEA and many traditional heuristic algorithms. Meanwhile, the experimental results of 14 cities traveling salesman problem (TSP) show that it is feasible and effective for small-scale TSPs, which indicates a promising novel approach for solving TSPs.
     The research of this article has enriched the study of machine learning theory application. It has significance in applications, such as combination of probability analysis with neuro network, design and parameter study of neuro network structure, improvement and optimization of support vector machine, improvement of evolution computational etc. Furthermore, it provided significantthe method and strategy for the application of operon prediction and taste signal recognition.
引文
[1] Francis S. Collins, Eric D. Green, Alan E. Guttmacher, Mark S. Guyer: A Vision for the Future of Genomics Research, Nature, Apr 24,2003: 835-847
    [2] Francis S. Collins, Michael Morgan, Aristides Patrinos: The Human Genome Project: Lessons from Large-Scale Biology, Science, 2003, 300: 286-290
    [3] Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 1961, 3:318-356.
    [4] Zheng,Y.,Szustakowski,J.D.,Fortnow,L.,Rberts,R.J. and Kasif,S.: Computational identification of operons in microbial genomes. Genome Research, 2002, 12(8): 1221-1230.
    [5] Xu,Y.: Computational genome annotation,chapter 3 of Microbial Fuctional Genomics (J.Zhou,D.Thompson,Y.Xu,and J.Tidge), John Wiley and Sons, 2004.
    [6] Pamela Yeh, Ariane I Tschumi, and Roy Kishony.: Functional classification of drugs by properties of their pairwise interactions. Nature Genetics, 2006, 38:489-494.
    [7] Patrick Aloy, Robert B. Russell.: Structural systems biology: modelling protein interactions. Nature Reviews Molecular Cell Biology, 2006, 7:188-197.
    [8] Stephanie Gon, Johanna E Camara, Hege K Klungs?yr, Elliott Crooke, Kirsten Skarstad, Jon Beckwith.: A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. The EMBO Journal, 2006, 25:1137-1147.
    [9] Sabatti,C., Rohlin,L., Oh,M.K. and Liao,J.C.: Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucleic Acids Research, 2002, 30(13):2886-2893.
    [10] Michael B. Eisen, Paul T. Spellman, Patrick O.Brown, and David Botstein.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA Genetics, 1998, 95:14863-14868.
    [11] Salgado,H., Moreno-Hagelsieb,G., Smith,T. and Collado-Vides,J.: Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad. Sci, 2000, 97:6652-6657.
    [12] Marcotte,E.M.,Pellegrini,M.,Thompson,M.J.,Yeast,T.O.,and Eisenberg,D.: A combined algorithm for genome-wide prediction of protein function. Nature, 1999, 402:83-86.
    [13] Marcotte,E.M.: Computational genetics:Finding protein function by nonhomology methods, Curr.Opin.Struct.Biol ,2000,10:359-365.
    [14] Huynen,M.,Snel,B.,Lathe,W.,and Bork,P.: Predicting protein function by genomic context:Quantitative evaluation and qualitative inferences. Genome Res, 2000, 10:1024-1210.
    [15] Liberles,D., Thoren,A., Heijne,G., and Elofsson,A.: The use of phylogenetic profiles of gene predictions. Current Genomies, 2002, 3:131-137.
    [16] Pellegrini,M.,Marcotte,E.,Thomopson,M.,Eisenberg,D.,and Yeates,T.: Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles, Proc. Natl, Acad. Sci. 1999,96:4285-4288.
    [17] Maria D. Ermolaev, Owen White and Steven L. Salzberg.: Prediction of Operons in microbial genomes. Nucleic Acids Research, 2001, 29(5):1216-1221.
    [18] E. Jacob, R. Sasikumar, and K. N. R. Nair.: A fuzzy guided genetic algorithm for operon prediction Bioinformatics. 2005, 21: 1403-1407.
    [19] Tatusov,R.,Natale,D.,Garkavtsev,I.,Tatusova,T.,Schankavaram,U.,Rao,B.,Kiryutin,B.,Galperin,M.,Fedorova,N.and Koonin,E.: The COG databases: new development in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 2001, 29(1):22-28.
    [20] X. Chen, Z. Su, P. Dam, B. Palenik, Y. Xu, and T. Jiang: Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome. Nucleic Acids Research, 2004, 32: 2147-2157.
    [21] Ermolaeva,M., Khalak,H., White,O., Smith,H. and Salzberg,S.: Prediction of transcription terminators in bacterial genomes.J. 2000, 301:27-33.
    [22] Prestridge,D.: SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements .CABIOS, 1991, 7:203-206.
    [23] Heladia Salgado, Socorro Gama-Castro, Martín Peralta-Gil, Edgar Díaz-Peredo, Fabiola Sánchez-Solano, Alberto Santos-Zavaleta, Irma Martínez-Flores, Verónica Jiménez-Jacinto, César Bonavides-Martínez, Juan Segura-Salazar, Agustino Martínez-Antonio, and Julio Collado-Vides.: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res, 2006, 34: 394-397.
    [24] X. Chen, et al.: Computational Prediction of Operons in Synechococcus sp.WH8102. Genome Inform ser Workshop Genome Inform, 2004, 15 (2):211-222.
    [25] Yada,T.,Nakao,M.,Totoki,Y. and Nakai, K.: Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov Models. Bioinformatics, 1999, 15:987-993.
    [26] Joseph Bockhorst, Yu Qiu, Jeremy Glasner, Mingzhu Liu, Frederick Blattner, and Mark Craven.: Predicting bacterial transcription units using sequence and expression data. Bioinformatics, 2003, 19:34-43.
    [27] Craven,M., Page,D., Shavlik,J., Bockhorst,J. and Glasner,J.: A probabilistic learning approach to whole-genome operon prediction. In Proc. the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB), 2002.
    [28] Altschul,S.,Madden,T.,Schaffer,A.,Zhang,J.,Zhang,Z.,Miller,W.and Lipman,D.: Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17) :3389-3402.
    [29] Phuongan, Dam., Victor, Olman., and Ying Xu.: Improving Operon Prediction in E. coli. 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW), 2005:69-70.
    [30] Brian Tjaden, David R. Haynor, Sergey Stolyar, Carsten Rosenow, and Eugene Kolker: Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis. Bioinformatics, 2002, 18:337-344.
    [31] Hitoshi Shimizu, Shigeyuki Oba, Shin Ishii: Operon Prediction by DNAMicroarray: An Approach with a Bayesian Network Model. Genome Informatics, 2003, 14:310-311.
    [32] W. Du, Y. Wang, S.Q. Wang, X.M. Wang, F.X. Sun, C. Zhang, C.G. Zhou, C.Q. Hu and Y.C. Liang.: Operon Prediction by GRNN Based on Log-Likelihoods and Wavelet Transform. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, to be published.
    [33] X.M. Wang, Y. Wang, S.Q. Wang, W. Du, F.X. Sun, C. Zhang, C.G. Zhou, C.Q. Hu and Y.C. Liang.: Operon prediction combined with Co-expression data based on SVM. Waiting for decision.
    [34] S.Q. Wang, Y. Wang, W. Du, F.X. Sun, X.M. Wang, Y.C. Liang and C.G. Zhou: A Multi-approach Guided Genetic Algorithm for Operon Prediction. The 8th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA'07), 2007, Warsaw, Poland, to be published. (ISTP)
    [35] K.Toko, K.Hayashi, M.Yamanaka and K.Yamafuji: Multi-Channel taste sensor with lipid membrance. Tech.Digest, 9th Sensor Symp., Tokyo, Japan, 1990:193-196.
    [36] H.Ikezki, K.Toko, K.Hayashi, R.Toukubo, M.Yamanaka, K.Satou and K.Yamafuji: Intelligent multi-channel taste sensor with Lipid membranes, Tech.Digest, 10th Sensor Symp., Tokyo, Japan, 1991:173-176.
    [37] M.Shimize, Y.Kanai, H.Uchida, C.G.Zhou, H.Maekawa, T.Katsube: Integrated Biosensor Employing A Surface Photo-Voltage Technique. The 7th International Conference on Solid-state Sensors and Actuators. Yokohama, Japan, June, 1993:495-498.
    [38] Y.Kanai, M.Shimize, H.Uchida, H.Nakahare, C.G.Zhou, T.Katsube: Integrated Taste Sensor with Surface Photovoltage Technique. The 7th International Conference on Solid-state Sensors and Actuators., Yokohama, Japan, June, 1993:407-410.
    [39] Y.Kanai, M.Shmizy, H.Uchida, H.Nakahara, C.G.Zhou, H.Maekawa, T.Katsube: Integrated Taste Sensor Using Surface Photo-voltage Technique. Sensors and Actuators, B20, 1994:9-13.
    [40] 清水正章,金井康通,内田修和,周春光,胜部昭明:光重合性ハイドログル用いた表面光检出型マルチ硝素センサ试作. CHEMICAL SENSORS. Vol.2, 1994:117-120.
    [41] Y.Sasaki, Y.Kanai, H.Uchida and T.Katsube: Highly sensitive taste sensor with a new differential LAPS method, Sensors and Actuators B24-25, 1995:819-822.
    [42] H.Uchida, W.Y.Zhang, and T.Katsube: High speed chemical image sensor with digital LAPS system, Sensors and Actuators B34, 1996:1-4.
    [43] 都甲潔:味とにおいセンサ.电子情报通信学会志,Vol.80, No.8, 1997:805-811.
    [44] Z.Wenyi, H.Hatakeyama, H.Uchida, H.Maekawa, T.Katsube: Integrated taste sensor using a semiconductor ion sensor. T.IEE Japan Vol.117-E, No.6, 1997:326-331.
    [45] 池崎秀和,谷口晃,都甲潔:マルチチャネル脂质膜センサによる味の定量化.日本化学センサシステム研究会,CS-98-1-7,1998:11-16.
    [46] 渡部俊一郎,橫山聖,張文芸,安彥剛志,內田秀和,滕部昭明: ィオンセンサを用いた味覚センサの動作機構,電気学会論文誌 Vol.CS-98-30, 1998.7:13-18.
    [47] 横山圣,内田秀和,张文艺,胜部昭明:味觉センサにおける基本味の定量评价.日本化学センサシステム研究会,CS-99-43-58,1999:7-10.
    [48] Takahiro Uchida, Yohko Miyanaga, Hiromi Tanaka, Koichi Wada, Seisuke Kurosaki, Toshimitsu Ohki, Makiko Yoshida, and Kenji Matsuyama.: Quantitative Evaluation of the Bitterness of Commercial Medicines Using a Taste Sensor. Chem. Pharm. Bull., 48(11), 2000 :1843-1845.
    [49] Ronggang Chen, Masaaki Habara and Kiyoshi Toko.: Study of Saltiness Using Taste Sensor with Different Lipid/Polymer Membranes. Sensors and Materials, Vol.15, No. 3(2003):155-163.
    [50] Hirano A, Wakabayashi M, Matsuno Y, Sugawara M.: A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor, Biosens Bioelectron. 2003 Aug, 18(8)
    [51] Habara M, Ikezaki H, Toko K.: Study of sweet taste evaluation using taste sensor with lipid/polymer membranes. Biosens Bioelectron. 2004 Jul 15, 19(12):1559-1563.
    [52] Akira Yokoyama, Hidekazu Uchida and Teruaki Katsude: Quantitive Sampling Analysis for a Taste Sensor.3rd International Conference Engineering Design and Automation, 1999, Vol.9, No.3:7-10.
    [53] H.Yamada,Y.Mizota,K.Toko and T.Doi: Highly Sensitive Discrimination of Taste of Milk with Homogenization Treatment Using Taste Sensor, Materials Science & Engineering, Vol.C5,1997:41-45.
    [54] 饭山, 池田, 都甲, 八寻:マルチチャネル味觉センサを用いた酱油の味の评价.日本食品科学工学会志,Vol.44,1997:615-622.
    [55] 池崎,谷口,都甲:味センサを用いた绿茶の味の定量化.电气学会论文志E,Vol.117E, No.9, 1997:465-470.
    [56] 江崎,都甲,津田,中谷:味觉センサにょるビールの味质と成分の分析.电气学会论文志 E,Vol.117E, No.9, 1997:449-455.
    [57] 八寻美希, 都甲潔,饭山悟:マルチチャネル味觉センサを用いた米の味の识别.电气学会论文志 E,Vol.117E, No.4, 1997:187-193.
    [58] 都甲潔 : 味センサを用いた食品ゃ医药品の味の计测 . フードサインス,Vol.32,1998:229-238.
    [59] 安彦刚志,渡边俊一郎,张文艺,内田秀和,胜部昭明:ハイブリッドチャンネルを 用 い た 高 安 定 ぉ 茶 味 セ ン サ . 日 本 化 学 セ ン サ シ ス テ ム 研 究会,CS-98-1-7,1998:17-21.
    [60] Masaaki Habara and Kiyoshi TOKO.: Discrimination of Saltiness with Coexisting Components Using Multichannel Taste Sensor with Lipid Membranes. IEICE TRANS. ELECTRON, VOL. E83-C, NO.7 JULY 2000.
    [61] Hirotaka Kaneda, Naoyuki Kobayashi, Junji Watari, Ken Shinotsuka, Masachika Takashio, and Yoshio Okahata.: A New Taste Sensor for Evaluation of Beer Body and Smoothness Using a Lipid-Coated Quartz Crystal Microbalance. American Society of Brewing Chemists. 60(2), 2002: 71-76.
    [62] Maxsim Yap Mee Sim, Teo Jau Shya, Mohd Noor Ahmad, Ali Yeon Md Shakaff, Abdul Rahman Othman and Muhammad Suzuri Hitam.: Monitoring of Milk Quality with Disposable Taste Sensor. Sensors 2003, 3:340-349.
    [63] Atsu Tanigake, Yohko Miyanaga, Tomoko Nakamura, Eriko Tsuji, Kenji Matsuyama, Masaru Kunitomo, and Takahiro Uchida: The Bitterness Intensity of Clarithromycin Evaluated by a Taste Sensor,November 2003Chem. Pharm. Bull. 51(11), 2003:1241-1245.
    [64] Toshihiko Ishizaka, Yohko Miyanaga, Junji Mukai, Kiyokazu Asaka, Yuka Nakai ,cEriko Tsuji, and Takahiro Uchida: Bitterness Evaluation of Medicines for Pediatric Use by a Taste Sensor,August 2004 Chem. Pharm. Bull. 52(8),2004:943-948.
    [65] Shinji Ohmori, Yasuo Ohno, Tadashi Makino, Toshio Kashihara: Application of an electronic nose system for evaluation of unpleasant odor in coated tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2004:1–9.
    [66] Hao Bo, Hitoshi Maekawa, Yutaka Sasaki, Hidekazu Uchida and Teruaki Katsube: Feature Extraction for Taste Sensor Signal Processing by Neural Network, Technical Report of IEICE, CPM94-34, Ome94-29, 1994:34-40.
    [67] 周春光,胜部昭明: 神经网络味觉信号的学习和识别. 吉林大学自然科学学报.No.11994:31-34.
    [68] 周春光:味觉信号的特征抽取. 吉林大学自然科学学报. No.2, 1994:25-28.
    [69] 周春光,张冰,程彦丰,胡成全:遗传算法在训练前向神经网络中的应用.小型微型计算机系统. Vol.17, No.9, 1996:54-58.
    [70] 田勇,周春光,梁艳春:基于模糊神经网络味觉信号的识别研究. 计算机应用. No.1, 1998:42-48.
    [71] 周春光,梁艳春,田勇,胡成全,孙新:基于模糊神经网络味觉信号识别的研究. 计算机研究与发展. Vol.36, No.4, Apr.1999:401-409.
    [72] 黄艳新,周春光,杨国慧,邹淑雪:基于熵聚类模糊神经网络味觉信号识别的研究,计算机研究与发展,2004,Vol.41, No.3:414-419.
    [73] Yan-Xin Huang,Chun-Guang Zhou,Shu-Xue Zou,Yan Wang,and Yan-Chun Liang: A Rough-Set-Based Fuzzy-Neural-Network System for Taste Signal Identification. International Neural Network ISNN 2004, Part II Springer, August 19-21, 2004:327-343.
    [74] HUANG Yanxin, ZHOU Chunguang.: Recognizing Taste Signals Using A Clustering-based Fuzzy Neural Network. Chinese Journal of Electronics. Vol. 14, No. 1, Jan. 2005:21-25.
    [75] 王岩, 周春光, 黄艳新, 丰小月:基于最小不确定性神经网络的茶味觉信号识别.计算机研究与发展.2005 年 1 月, Vol 42, No.1:66-71.
    [76] Y. Wang, C.G. Zhou, Y.X. Huang and X.Y. Feng: Training Minimal Uncertainty Neural Networks by Bayesian Theorem and Particle Swarm Optimization. ICONIP 2004, Calcutta, India, Lecture Notes in Computer Science, Vol. 3316, 2004: 579-584.
    [77] Zheng Yan, Zhou Chunguang: Taste Identification of Tea Through a Fuzzy Neural Network Based on Fuzzy C-means Clustering, The Journal of China University of Posts and Telecommunication, Vol. 10, No.3, 2003:55-61.
    [78] Y.X. Huang, Y. Wang, C.G. Zhou, S.X. Zou, X.W. Yang, Y.C. Liang: Reduction and Optimization for A Support-Vector-Machine-Based Fuzzy-Classification-System. Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004:3402-3407.
    [79] 王平.《人工嗅觉与人工味觉》.科学出版社,2000
    [80] 中野馨:ニュ-ロンコンピュ-タ,技术评论社,平成 3 年:225-231.
    [81] 黄艳新,周春光,邹淑雪,王岩:一种基于类覆盖和粒子群优化的模糊神经网络系统,计算机研究与发展,2004,vol 41,No.7:1053-1061
    [82] Y.X. Huang, Y. Wang, W.G. Zhou and C.G. Zhou: A Fuzzy Neural Network System Based on Generalized Class Cover Problem. FSKD2005, Changsha, China, Lecture Notes in Artificial Intelligence, Vol. 3613, 2005: 735-742.
    [83] 张智星,孙春在,水谷英二.《神经-模糊和软计算》.西安交通大学出版社,2000年 6 月
    [84] 周春光,梁艳春. 《计算智能》.吉林大学出版社,2001 年 11 月
    [85] Simon Haykin. Neural Networks: A Comprehensive Foundation (Second Edition).Tsinghua Universty Press. 2001.10
    [86] 焦李成.《神经网络系统理论》.西安电子科技大学出版社,1996 年 9 月
    [87] 王正志,薄涛.《进化计算》.国防科技大学出版社,2000 年 11 月
    [88] J.Kennedy and R.C.Eberhart.: Particle Swarm Optimization. In Proceeding of IEEE International Conference on Neural Networks, Volume IV, Perth, Australia, 1995:1942-1948.
    [89] F.van den Bergh.: Particle Swarm Weight Initialization in Multi-layer Perception Artificial Neural Networks. In Development and Practice of Artificial Intelligence Techniques, Durban, South Africa, September 1999:41-45.
    [90] F.van den Bergh and A.P.Engelbrecht.: Cooperative Learning in Neural Networks using Particle Swarm Optimisers. South African Computer Journal, Vol.26, November, 2000:84-90.
    [91] Y.Shi and R.C.Eberhart.: Empirical Study of Particle Swarm Optimization. In proceedings of the Congress on Evolutionary Computation, Washington D.C, USA, July 1999. IEEE Service Center, Piscataway, NJ:1945-1949.
    [92] Y.Shi and R.C.Eberhart.: A Modified Particle Swarm Optimizer. In IEEE International Conference of Evolutionary Computation, Anchorage, Alaska, May 1998.
    [93] R.C.Eberhart, P.Simpson and Dobbins.: Computational Intelligence PC Tools, chapter 6. Academic Press Professional, 1996:212-226.
    [94] P.J.Angeline.: Using Selection to Improve Particle Swarm Optimization. In Proceedings of IJCNN’99, Washington, USA, July 1999:84-89.
    [95] M.L?vbjerg, T.K.Rasmussen, and T. Krink.: Hybrid Particle Swarm Optimiser with Breeding and Subpopulations. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), San Francisco, USA, July 2001.
    [96] E.Ozcan and C.K.Mohan.: Analysis of a Simple Particle Swarm Optimization System. In Intelligence Engineering Systems Through Artificial Neural Networks, Volume 8, 1998:253-258.
    [97] E.Ozcan and C.K.Mohan.: Particle Swarm Optimization: Surfing the Waves. In Proceedings of the International Congress on Evolutionary Computation, Washington USA, 1999:1939-1944.
    [98] M.Clerc and J.Kennedy.: The Particle Swarm: Explosion, Stability and Convergence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary Computation, 2001.
    [99] Frans van den Bergh.: An Analysis of Particle Swarm Optimizers [PH.D thesis]. Natural and Agricultural Science Department, Univ. of Pretoria, 2001. (http://www.evalife.dk/bbase/list_author.php?au_id=15428)
    [100] Richard A. Bruldi 著,冯舜喜,罗平,裴伟东 译.《组合数学》. 机械工业出版社, 2002:123-139.
    [101] R. C. Eberhart and Y. Shi.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary Computing, San Diego, USA, 2000. IEEE Service Center, Piscataway, NJ:84-89.
    [102] V.Vapnik. The Nature of Statistical Learning Theory. Springer Verlag. 1995
    [103] V.Vapnik. Statistical Learning Theory. Wiley.1998
    [104] V.Vapnik 著,张学工 译.《统计学习理论的本质》.北京,清华大学出版社,2000年 9 月
    [105] Stockholm, Sweden. Ander Holst: The Use of a Bayesian Neural Network Model for Classification Tasks. [PhD dissertation]. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, September 1997.
    [106] Osuna E, Freund R, Girosi F.: Training support vector machines: An application to face detection. In Proceedings of CVPR’97, Puerto Rico, 1997.
    [107] John C P.: Fast training of support vector machines using sequential minimal optimization. In Scholkopf B. et al(ed.), Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press, 1999:185-208.
    [108] T. Joachims.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. SchOlkopf and C. Burges and A. Smola (ed.),MIT Press, Cambridge,USA, 1999.
    [109] Johansen, M. M.: Evolving Neural Networks for Classification. Topics of Evolutionary Computation 2002,Collection of Student Reports:57-63
    [110] Kochi, India. Ninan Sajeeth Philip and K.Babu Joseph.: Boosting the Differences: A Fast Bayesian Classifier Neural Network. Intelligent Data Analysis, 4 (2000), IOS press, Netherlands, 2000:463-473.
    [111] Matthew A.Kupinski, Darrin C.Edwards, Maryellen L.Giger and Charles E.Metz.: Ideal Observer Approximation Using Bayesian Classification Neural Networks. IEEE Transactions On Medical Imaging, Vol.20, No.9, Sep.2001:886-899.
    [112] Jakob Vesterstrom and Jacques Riget.: Particle Swarms –Extensions for improved local, multi-modal, and dynamic search in numerical optimization. [Master thesis]. EVALife Group,Department of Computer Science Ny Munkegade,Bldg, 540, University of Aarhus DK-800 Aarhus C.Denmark, May 2002
    [113] Settles, M. and Rylander, B.: Neural network learning using particle swarm optimizers. Advances in Information Science and Soft Computing, 2002:224-226.
    [114] Zheng, S.F.: Unsupervised Clustering Based Reduced Support Vector Machines. Computer Engineering and Application, 2004, 14:74-76(in Chinese).
    [115] Yang M.H. and Ahuja N.: A Geometric Approach to Train Support Vector Machines, in Proc. IEEE Conf. Computer Vision and Pattern Rec.2000 (CVPR 2000), Hilton Head Island ,2000 June:430-437.
    [116] Bian Z.Q. and Zhang X.G. (2000): Pattern Recognition. 2nd edition,Tsinghua University Press, Beijing.
    [117] Kwak N. and Choi C.H.: Input feature selection by mutual information based on Parzen window, IEEE Transaction on Pattern Analysis and Machine Intelligence. Vol. 24, No. 12, 2002, Dec.:1667-1671.
    [118] URL. (1999), Check Board: http://www.cs.wisc.edu/~olvi/data/check1.txt
    [119] P. Benioff.: The Computer as a Physical System: a Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines. J. Stat. Phys., 1980, Vol. 22:563-591.
    [120] R. Feynman. Simulating Physics with Computers. Internat. J. Theoret. Phys., 1982, 21(6):467-488.
    [121] L.K. Grover.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Piscataway, NJ, IEEE Press, 1994:124-134.
    [122] P.W. Shor.: Quantum Computing. Documenta Mathematica, Extra Volume, Proceedings of the International Congress of Mathematicians, Berlin, Germany, 1998:467-486.
    [123] K.H. Han and J.H. Kim.: Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Transactions on Evolutionary Computation, IEEE Press, 2002, 6(6):580-593.
    [124] K.H. Han and J.H. Kim.: Quantum-Inspired Evolutionary Algorithms With a New Termination Criterion, H?Gate, and Two-Phase Scheme. IEEE Transactions on Evolutionary Computation, 2004, 8(2):156-169.
    [125] 杨俊安,李斌,庄镇泉,钟子发.基于量子遗传算法的盲源分离算法研究.小型微型计算机系统, 2003, 24(8):1518-1523.
    [126] L.G. Bendall: Domination Analysis Beyond the Traveling Salesman Problem. [Ph.D. Thesis], Department of Mathematics, University of Kentucky, 2004.
    [127] X.J. Tang: Genetic Algorithms with Application to Engineering Optimization. Ph.D. Thesis, University of Memphis, 2004.
    [128] Standard TSPLIB, 1997. Online Available: http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
    [129] K.P. Wang, L. Huang, C.G. Zhou, W. Pang: Particle Swarm Optimization for Traveling Salesman Problem, in: Proceeding of the 2nd ICMLC, Xi’an, China, Vol. 3 (IEEE Press, 2003)1583-1585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700