Ⅲa期NSCLC中ERCC1、HMGB1、Bcl-2/Bax和Caspase-3表达与化疗敏感性和预后分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究探讨Ⅲa期非小细胞肺癌(NSCLC)患者原始肿瘤转移性淋巴结组织内ERCC1、HMGB1、Bcl-2/Bax和Caspase-3蛋白的表达与以铂类药物为基础的三代化疗药物联合化疗的标准化疗方案的化疗敏感性的关系及预后影响因素分析。
     方法:收集2004年1月1日至2007年12月31日在天津医科大学附属肿瘤医院肺部肿瘤科住院行纵隔镜手术确诊,临床资料及随访资料完整的Ⅲa期NSCLC患者,入组标准为:①行纵隔镜手术前排除全身远处转移、②经讨论可手术切除者、③行纵隔镜手术前从未经过任何放化疗者共计85例,其中存档石蜡标本中符合实验条件的共有80例。入组患者确诊后行以铂类为基础的第三代化疗药物联合化疗的标准化疗方案化疗2~3周期,末次化疗2~3周后复查CT,影像学缓解者RR(CR:16例+PR:19例):35例(43.75%),SD:17例(21.25%),PD:28例(35.00%),影响学缓解者(RR)35例和估计可完全切除的SD中的14例共计49例患者均于末次化疗后3~4周行手术根治治疗:肺叶切除术+淋巴结清扫术:36例(73.47%);全肺切除术+淋巴结清扫术:8例(16.33%);姑息性局部切除术:5例(10.20%);其中支气管残端阳性者9例(18.37%)。所有术后病理类型报告与纵隔镜手术病理相同(其中鳞癌:38例,腺癌:42例)。术后再次进行TNM分期:Ⅲa期:39例,Ⅱb期:10例,按照术后组织病理缓解标准原纵隔镜所取区域淋巴结(N病理缓解):CR:10例,PR:23例,SD:16例。我们按组织病理缓解标准将CR+PR归入有效组(RR):33例,SD+PD(其中包括未手术的影响学SD和PD)归入无效组:47例。并进行临床资料进行分析,采用免疫组织化学ElivisionTM两步法检测80例由纵隔镜所取转移淋巴结有完整蜡块标本中ERCC1、HMGB1、Bcl-2/Bax和Caspase-3蛋白的表达状况,进一步行这5种蛋白表达水平与Ⅲa期NSCLC以铂类为基础的三代化疗药物联合化疗标准化疗方案化疗敏感性的关系及预后影响因素分析研究。
     结果:
     1、临床资料分析结果
     80例Ⅲa期NSCLC总体1年、2年、3年生存率分别为74.10%、62.20%和45.50%。Log-Rank单因素分析显示影响患者预后的因素为支气管断端是否阳性、原始T分期、影像类型、术后N分期、N病理缓解和是否手术切除等因素对患者预后的影响有统计学意义(P<0.05);而病理类型、年龄大于或小于60岁、性别、吸烟史、影像类型、术后辅助化疗、生物治疗等因素对患者预后的影响无统计学意义(P>0.05)。Cox回归多因素分析显示:是否手术切除、N病理缓解、残端阳性是Ⅲa期NSCLC患者独立的预后因素。
     2、ERCC1、HMGB1、Bcl-2/Bax和Caspase-3的蛋白表达水平与化疗有效率的关系
     本组患者中,ERCC1染色阳性42例(52.50%)、HMGB1染色阳性48例(60.00%)、Bcl-2染色阳性18例(22.50%)、Bax染色阳性44例(55.00%)、Caspase-3染色阳性35例(43.75%)。全组化疗总体病理缓解率RR为41.25%;单一蛋白表达显示:ERCC1、Bcl-2阴性表达者化疗有效率明显高于阳性者(P<0.05),HMGB1、Caspase-3阳性表达者化疗有效率明显高于阴性者(P<0.05);而Bax蛋白表达与化疗有效率未见相关性(P>0.05)。蛋白联合表达显示:ERCC1和Bcl-2两种蛋白表达均阴性者化疗有效率显著高于均阳性者(P<0.05)。HMGB1、Caspase-3两种蛋白表达均阳性者化疗有效率显著高于均阴性者(P<0.05)。ERCC1(-)/HMGB1(+)者化疗有效率显著高于ERCC1(+)/HMGB1(-)者(P<0.05)。
     3、ERCC1、HMGB1、Bcl-2/Bax和Caspase-3的蛋白表达水平与Ⅲa期NSCLC预后的关系
     Log-rank单因素分析显示ERCC1、HMGB1、Bcl-2、Caspase-3蛋白表达水平与Ⅲa期NSCLC预后相关,并具有统计学意义(P<0.05)。而Bax蛋白表达水平与Ⅲa期NSCLC预后未见相关性(P>0.05)。COX多因素回归分析示ERCC1、HMGB1与Caspase-3蛋白表达是影响Ⅲa期NSCLC患者预后的独立因素。
     结论:1、是否能手术切除、N病理缓解、残端阳性是Ⅲa期NSCLC患者临床上独立的预后因素。2、ERCC1、HMGB1、Bcl-2、Caspase-3蛋白的表达水平是影响标准化疗方案中铂类药物敏感性差别的重要因素,本研究可为临床Ⅲa期NSCLC患者提供个体化疗方案。ERCC1、HMGB1和Caspase-3蛋白的表达水平是Ⅲa期NSCLC患者独立的预后因素。
Objective:To research the expression of ERCC1,HNGB1,Bcl-2/Bax, Caspase-3 in patients withⅢa stage non-small cell lung carcinoma(NSCLC)as well as their correlation with platinum-based chemotherapy sensitivity and clinical prognostic significance.
     Method:Clinic data of 85 inpatient cases in The Cancer Hospital of Tianjin Medical University,whose final diagnosis were conformed by Mediastinoscopy,from 2004-2008,were retrospectively reviewed.Expression of ERCC1、HMGB1、Bcl-2/Bax、caspase-3 of 80 cases that were surgically resected by Mediastinoscopy NSCLC specimens(including 38 Squamous carcinomas and 42 Adenocarcinomas) were studied by immunohistochemistry.The value of the five factors' statistics analysis of the platinum-based chemotherapy sensitivity and clinical prognosis ofⅢa stage NSCLC were studied.
     Result:
     1.Results of clinical datas
     The overall 1,2 and 3-year survival rates were 74.10%,62.20%and 45.50% respectively.Univariate analysis showed the main prognostic factors were primary tumor diameter,bronchial stump,post-surgery N stage,N patho-relieve,surgery and imaging category(P<0.05).Cox regression analysis suggested that surgery,N patho-relieve and bronchial stump were the most important significant independent prognostic factor.
     2.The expression of ERCC1,HMGB1,Bcl-2/Bax and Caspase-3 and the correlation with platinum-based chemotherapy sensitivity inⅢa stage NSCLC.
     The positive rate of ERCC1,HMGB1,Bcl-2/Bax and Caspase-3 were 52.50%, 60.00%,22.50%,55.00%and 43.75%respectively in the 80 cases.The totol patho-relieve (RR)was 41.25%.The study on the expression of ERCC1,HNGB1, Bcl-2/Bax,Caspase-3 and chemotherapeutic response showed:the negative expression of ERCC1 and Bcl-2 have a significantly better patho-relieve than positive expression and the positive expression of HMGB1,Caspase-3 have a significantly better patho-relieve than negative expression.However,between the expression of Bax and patho-relieve have no significantly different.The study on the relationship between combined detection of every two proteins and chemotherapeutic response showed:the cases of ERCC1(-)/Bcl-2(-)have a significantly better patho-relieve than ERCC1(+)/Bcl-2(+),the cases of HMGB1(+)/Caspase-3(+)have a significantly better patho-relieve than the cases of HMGB1(-)/Caspase-3(-)and the cases HMGB1(+)/ERCC1(-)have a significantly better patho-relieve than the cases of HMGB1(-)/ERCC1(+).
     3.The expression of ERCC1,HMGB1,Bcl-2/Bax and Caspase-3 and the correlation with the prognosis inⅢa stage NSCLC.
     Log-rank mon-factor analysis showed that the expression of ERCC1,HMGB1, Bcl-2 and Caspase-3 have significantly correlation with the prognosis inⅢa stage NSCLC.COX multivariate regression analysis showed that the expression of ERCC1, HMGB1 and Caspase-3 were independent prognostic factors forⅢa stage NSCLC.
     Conclusion:1.surgery,N patho-relieve and bronchial stump were the most important significantly independent clinical prognostic factor inⅢa stage NSCLC.2. The expression of ERCC1,HNGB1,Bcl-2 and Caspase-3 were significantly independent factors with platinum-based chemotherapy sensitivity inⅢa stage NSCLC.The expression of ERCC1,HNGB1 and Caspase-3 were the most important significantly independent prognostic factors inⅢa stage NSCLC
引文
[1]Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2002: Cancer incidence, mortality and prevalence worldwide, Version 2.0[M]. IARC CancerBase No.5. Lyon: IARC Press, 2004.
    [2]Li LD, Zhang SW, Lu FZ, et al. Analysis of variation trend and short term detection of Chinese malignant tumor mortality during twenty years[J]. Chin J Oncol, 1997; 19(1): 3-9.
    [3]The International Adjuvant Lung Cancer Trial Collaborative Group. Cisplatin-Based Adjuvant Chemotherapy in Patients with Completely Resected Non-Small-Cell Lung Cancer[M]. The new england journal of medicine, 2004.
    [4]St rauss GM. Role of chemot herapy in stage I to III non-small cell lung Cancer, Chest, 1999,116 (1 6) :509.
    [5] Rot h IA ,At kinson EN, Fosella F ,et al. Long-term follow-up of patients enrolled in a randomized trial comparing perioperative chemotherapy and surgery wit h surgery along in respectable stage Ⅲa non-small cell lung cancer[J]. Lung Cancer, 1998, 21(1): 126.
    [6]Rosell R, Gomez2Codina J , Camps C , et al. preresectional chemotherapy in stage ⅢA non-small cell lung cancer : a 7-year assessment of a randomized cont rolled trial[J]. Lung Cancer, 1999,26 (1): 7-14.
    [7]De Pierre A ,Overview of the role for neoadjuvant therapy for early-stage non-small cell lung cancer[J]. Lung Cancer, 2000 , 29(Suppl 2): 124-125.
    [8]Kiernan PD, Sheridan MJ , Lamberti J, et all Mediastinal staging of non-small cell lung carcinoma using computed and positron emission tomography [J]. South Med J, 2002, 95 (10): 1168-11721.
    [9]Zorbas H, Keppler BK. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? [J]. Chembiochem, 2005; 6(7): 1157-66.
    [10] Wang K, Gan L, Jeffery E, et al. Monitoring gene exp ression p rofile changes in ovarian carcinomas using Cdna microarray [J]. Gene, 1999, 299 (1 - 2): 101
    [11]MuHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance [J]. Lancet Oncol, 2001,2:483
    [12]StevenW. Johnson, James P, et al. Cisp latin and Its Analogues [M].Cancer: Princip les and Practice of Oncology, 6 th Edition. Lipp incott Williams &Wilkins,USA, 2001. 380 - 382
    [13]Rosell R, Taron M, Camp s C. Influence of genetic markers on survival in non - small cell lung cancer[J]. Drugs Today Barc, 2003,39 (10): 775
    [14]Wood RD. Nucleotide excision repair in mammalian cells [J]. Boil Chem, 1997, 272 (38):23465
    [15]Banet JM, Cadou M., Hill BT. Inhibition of nucleotide excision repair and sensitization of cells to DNA cross - linking anticancer drugs by F 11782, a novel fluorinated ep ipodophylloid [J]. Biochem Phamacol, 2002, 63 (20): 251
    [16]Yang LY, LiL, J iang H, et al. Exp ression of ERCC1 antisense RNA abiogates gemicitabine - mediated cytotoxic synergism with cisp latin in human colon tumor cells defective in mismatch repair but p roficient in nucleotide excision repair[J]. Clin Cancer Res, 2000, 6 (3): 773
    [17]Ma L, Hoeijmakers J H J, van der Eb A J. Mammalian nucleotide exci2 sion repair[J]. Bioxhen BiophysActa, 1995,1242 (2):. 137
    [18]Lily Y,Annie W. Enhanced hose cell reactivation capacity and exp res2 sion of DNA repair genes in human breast cancer cells resistant to bi -function alklating agents[J]. Mutat Res, 1995, 337 (2): 179
    [19]Vaisman A et al. Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts[J]. Biochemistry, 1999; 38(34): 11026-39.
    [20] Vaisman A et al. Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts[J]. Biochemistry, 1999; 38(34):11026-39.
    [21]Graoilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bcl22, bax nd bcl2x gene exp ression in sentinel lymph nodes from elanoma patients[J]. J Clin Oncol, 2003, 21 (2): 306-312.
    [22]Kamihira S, Yamada Y, Hirakata Y, et al. Aberrant exp ression ofcaspase cascade regulatory genes in adult T cell leukaemia: sur2 vivin is an important determinant for p rognosis[J]. Br J Hematol, 001,114 (1) :63.
    [23]Tai YT,Strobel T,Kufe D,et al.In vivo cytotoxicity of o2 arian cancer cells through tumor-selective expression of he BAX gene[J].Cancer Res,1999,59(9):2121-2126
    [24]杨连君,司晓辉,王文亮.凋亡相关蛋白bax在肝细胞癌的表达及其意义[J].诊断病理学杂志,2001,8(5):2822284
    [25]贺海新,斐香涛,鱼咏涛,等.细胞凋亡的分子机制及其在白血病治疗中的应用意义[M].见:李春海,郭亚军,主编.肿瘤分子生物学研究进展.北京军事医学科学出版社,2000:79291
    [26]Paradiso A,Simone G,LenaMD,et al.Expression of ap2op tosis-related markers and clinical outcome in patientswith advanced colorectal cancer[J].Br J Cancer,2001,84(5):6512658
    [27]Oltvai ZN,Mlillman CL,Korsmeyer SJ,et al.Bcl22 heterodimerize n vivo with a conserved homolog bax,that accelerates pro2 grammed cell death[J].Cell,1993,74(4):6541-6553.
    [28]张晓宇,张家洪,钟立厚,等.Survivin在非小细胞肺癌中的表达及其与p53、细胞凋亡的关系[J].山东医药,2006,(04).
    [29]卢春来,葛棣,曾亮.生存素与非小细胞肺癌[J].上海医学,2006,01)
    [30]Mandic A et al.Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling[J].J Biol Chem,2003;278(11):9100-6.
    [31]Breckenridge DG et al.Regulation of apoptosis by endoplasmic reticulum pathways[J].Oncogene,2003;22(53):8608-18.
    [32]Nakagawa T,Yuan J.Cross-talk between two cysteine protease families.Activation of caspase-12 by calpain in apoptosis[J].J Cell Biol 2000;150(4):887-94.
    [33]Nawrocki ST et al.Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis[J].Cancer Res,2005;65(24):11658-66.
    [34]Al Haddad S,Zhang Z,Leygue E,et al.Psoriasin(S100A7)expression and invasive reast cancer[J].Am J Pathol,1999;155:2057-66.
    [35]Handra-Luca A,Bilal H,Bertrand JC,Fouret P.Extra-cellular signal-regulated ERK-1/ERK-2 pathway activation in human salivary gland mucoepidermoid carcinoma:association to aggressive tumor behavior and tumor cell proliferation [J].Am J Pathol,2003;163:957-67.
    [36]Rosell R,Danenberg KD,Alberola V,et al;Spanish Lung Cancer Group.Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin2t reated advanced non2small cell lung cancer patients[J].Clin Cancer Res,2004,10(4):318-325.
    [37]Monzo M,Rosell R,Taron M.Drug resistance in non2small cell lung cancer[J].Lung Cancer,2001,34(12):912-94.
    [38]Oltvai ZN,Mlilliman CL,Korsmeyer SL,et al.Bcl-2 het2 erodimerizes in vivo wit h a conserved homolog Bax,that accel2 erates programmed cell deat h[J].Cell,1993,74(2):41
    [39]肖延风,刘雅,田玮,等.Survivin在白血病中表达及其与Caspase-3、Fas相关性研究[J].实用儿科临床杂志,2005,20(1):132-151
    [40]王拥军,孙鹏,刘梅,等.大鼠椎间盘软骨细胞中Bax、Bcl-2及Caspase-8的表达[J].中国脊柱脊髓杂志,2004,14(8):480-484.
    [41]耿伟,沈志祥,陈水清等.凋亡相关基因Caspase29,Bax在大肠腺瘤和大肠癌中的表达和意义[J].胃肠病学和肝病学杂志,2004,13(6):635-638
    [1] Rosenberg B et al. Platinum compounds: a new class of potent antitumour agents [J]. Nature, 1969; 222(191):385-6.
    [2] Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin[J]. Mutat Res, 2001;478(1-2):23-43.
    [3]Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs[J]. Nat Rev Drug Discov, 2005; 4(4):307-20.
    [4]Samimi G et al. Novel mechanisms of platinum drug resistance identified in cells selected for resistance to JM118 the active metabolite of satraplatin[M]. Cancer Chemother Pharmacol.
    [5]Sternberg CN et al. Phase III trial of satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer[J]. Oncology, 2005; 68(1):2-9.
    [6]Zorbas H, Keppler BK. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? [J]. Chembiochem, 2005; 6(7): 1157-66.
    [7]Woynarowski JM et al. Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA[J]. Mol Pharmacol, 1998; 54(5):770-7.
    [8]Woynarowski JM et al. Oxaliplatin-induced damage of cellular DNA[J]. Mol Pharmacol, 2000;58(5):920-7.
    [9]Faivre S et al. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells[J]. Biochem Pharmacol, 2003; 66(2): 225-37.
    [10]Fuertes MA, Alonso C, Perez JM. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance[J]. Chem Rev, 2003; 103(3):645-62.
    [11] Di Francesco AM, Ruggiero A, Riccardi R. Cellular and molecular aspects of drugs of the future: oxaliplatin[J]. Cell Mol Life Sci, 2002; 59(11):1914-27.
    [12]Misset JL et al. Oxaliplatin clinical activity: a review[J]. Crit Rev Oncol Hematol, 2000; 35(2):75-93.
    
    [13]Eastman A, Barry MA. Interaction of trans-diamminedichloroplatinum(II) with DNA: formation of monofunctional adducts and their reaction with glutathione[J]. iochemistry, 1987; 26(12):3303-7.
    [14]Vaisman A et al. Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts[J]. Biochemistry, 1999; 38(34): 11026-39.
    [15]Reeves R, Adair JE. Role of high mobility group (HMG) chromatin proteins in DNA repair [J]. DNA Repair (Amst), 2005; 4(8):926-38.
    [16]Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance [J].Oncogene,2003;22(47):7265-79.
    [17]He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin[J]. Proc Natl Acad Sci USA, 2000;97(11):5768-72.
    
    [18]Mandic A et al. Cisplatin induces endoplasmic reticulum stress and nucleus- independent apoptotic signaling[J]. J Biol Chem, 2003; 278(11):9100-6.
    [19]Breckenridge DG et al. Regulation of apoptosis by endoplasmic reticulum pathways[J]. Oncogene,2003;22(53):8608-18.
    [20]Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis[J]. J Cell Biol, 2000; 150(4):887-94.
    [21]Nawrocki ST et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis[J]. Cancer Res, 2005; 65(24):11658-66.
    [22]Kashani-Sabet M, Wang W, Scanlon KJ. Cyclosporin A suppresses cisplatin-induced c-fos gene expression in ovarian carcinoma cells[J]. J Biol Chem, 1990; 265(19):11285-8.
    [23]Scanlon KJ et al. Ribozyme-mediated cleavage of c-fos Mrna reduces gene expression of DNA synthesis enzymes and metallothionein[J]. Proc Natl Acad Sci USA, 1991; 88(23): 10591-5.
    [24]Moorehead RA, Singh G. Influence of the proto-oncogene c-fos on cisplatin sensitivity[J]. Biochem Pharmacol, 2000;59(4): 337-45.
    [25] Wilson LA, Yamamoto H, Singh G. Role of the transcription factor Ets-1 in cisplatin resistance [J]. Mol Cancer Ther,2004; 3(7):823-32.
    [26]Eliopoulos AG et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2[J]. Oncogene, 1995;11(7):1217—28.
    [27]Li J et al. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins[J]. Endocrinology, 2001;142(1):370-80.
    [28]Fujie Y et al. Oxaliplatin, a potent inhibitor of survivin, enhances paclitaxel-induced apoptosis and mitotic catastrophe in colon cancer cells[J]. Jpn J Clin Oncol,2005;35(8):453-63.
    [29]Huang RY et al. Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae[J]. Cancer Res, 2005; 65(13):5890-7.
    [30]Fox ME, Feldman BJ, Chu G. A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1994;14(12):8071-7.
    [31]Ishida S et al. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctrl in yeast and mammals[J]. Proc Natl Acad Sci USA, 2002; 99(22): 14298-302.
    [32]Schenk PW et al. SKY1 is involved in cisplatin-induced cell kill in Saccharomyces cerevisiae, and inactivation of its human homologue, SRPK1, induces cisplatin resistance in a human ovarian carcinoma cell line[J]. Cancer Res, 2001; 61(19):6982-6.
    [33]Schenk PW et al. Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: a novel component involved in cisplatin-and doxorubicinprovoked cell kill[J]. Mol Pharmacol, 2003; 64(2):259-68.
    [34]Qiu YY, Mirkin BL, Dwivedi RS. Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells[J]. Cancer Detect Prev,2005;29(5):456-63.
    [35]Deng HB et al. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells[J]. J Biol Chem, 2002; 277(17): 15035-43.
    
    [36]Danford AJ et al. Platinum anticancer drug damage enforces a particular rotational setting of DNA in nucleosomes[J]. Proc Natl Acad Sci USA, 2005; 102(35):12311-6.
    [37]Kosmoski JV, Smerdon MJ. Synthesis and nucleosome structure of DNA containing a UV photoproduct at a specific site[J]. Biochemistry, 1999; 38(29):9485-94.
    [38]Suquet C, Smerdon MJ. UV damage to DNA strongly influences its rotational setting on the histone surface of reconstituted nucleosomes[J]. J Biol Chem, 1993;268(32):23755-7.
    [39]Zamble DB et al. Repair of cisplatin-DNA adducts by the mammalian excision nuclease[J]. Biochemistry, 1996;35(31): 10004-13.
    [40]Moggs JG et al. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts[J]. Nucleic Acids Res, 1997; 25(3):480-91.
    [41]Dabholkar M et al. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinumbased chemotherapy[J]. J Clin Invest, 1994;94(2):703-8.
    [42]Li Q et al. Association between the level of ERCC-1 expression and the repair of cisplatin-induced DNA damage in human ovarian cancer cells[J]. Anticancer Res, 2000;20(2A):645-52.
    [43] Dabholkar M et al. Increased mRNA levels of xeroderma pigmentosum complementation group B (XPB) and Cockayne's syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or metallothionein-II (MT-II) in platinum-resistant human ovarian cancer tissues[J]. Biochem Pharmacol, 2000; 60(11): 1611-9.
    [44]Metzger R et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy[J]. J Clin Oncol,1998;16(1): 309-16.
    [45]Koberle B et al. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours[J]. Curr Biol 1999; 9(5):273-6.
    [46] Welsh C et al. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer, 2004;110(3):352-61.
    [47]Hector S et al. In vitro studies on the mechanisms of oxaliplatin resistance[J]. Cancer Chemother Pharmacol, 2001; 48(5):398-406.
    [48]Reardon JT et al. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts[J]. Cancer Res, 1999;59(16):3968-71.
    [49]Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease[J]. Mol Cell Biol, 2000; 20(24):9173-81.
    [50]Kosmoski JV, Ackerman EJ, Smerdon MJ. DNA repair of a single UV photoproduct in a designed nucleosome[J]. Proc Natl Acad Sci USA , 2001;98(18):10113-8.
    [51]Wang D et al. Nucleotide excision repair from site-specifically platinum-modified nucleosomes[J]. Biochemistry, 2003;42(22):6747-53.
    [52]Hara R, Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle[J]. Mol Cell Biol,2002;22(19):6779-87.
    [53]Fink D et al. The role of DNA mismatch repair in platinum drug resistance [J]. Cancer Res,1996;56(21):4881-6.
    [54]Karran P, Offman J, Bignami M. Human mismatch repair, druginduced DNA damage, and secondary cancer[J]. Biochimie, 2003;85(11):1149—60.
    [55]Obmolova G et al. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA[J]. Nature, 2000;407(6805):703-10.
    [56]Aebi S et al. Loss of DNA mismatch repair in acquired resistance to cisplatin[J]. Cancer Res, 1996;56(13):3087-90.
    [57]Stojic L, Brun R, Jiricny J. Mismatch repair and DNA damage signalling[J]. DNA Repair (Amst), 2004;3(8-9):1091-101.
    [58]Durant ST et al. Dependence on RAD52 and RADl for anticancer drug resistance mediated by inactivation of mismatch repair genes[J]. Curr Biol, 1999;9(1):51-4.
    [59]Drotschmann K et al. Mutations in the nucleotide-binding domain of MutS omologs uncouple cell death from cell survival [J]. DNA Repair (Amst), 2004;3(7):729-42.
    [60]Clodfelter JEBGM, Gentry MB, Drotschmann K. MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatininduced genome instability [J]. Nucleic Acids Res, 2005; 33(10): 3323-30.
    [61]Mesquita B et al. No significant role for beta tubulin mutations and mismatch repair defects in ovarian cancer resistance to paclitaxel/cisplatin[J]. BMC Cancer, 2005;5:101.
    [62]Aebi S et al. Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells[J]. Clin Cancer Res, 1997;3(10):1763-7.
    [63]Arzimanoglou II et al. Microsatellite instability differences between familial and sporadic ovarian cancers[J]. Carcinogenesis, 1996; 17(9): 1799—804.
    [64]Cai KQ et al. Microsatellite instability and alteration of the expression of hMLHl and hMSH2 in ovarian clear cell carcinoma[J]. Hum Pathol, 2004;35(5):552-9.
    [65]Fujita M et al. Microsatellite instability and alterations in the hMSH2 gene in human ovarian cancer[J]. Int J Cancer, 1995; 64(6): 361-6.
    [66]Geisler JP et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma[J]. Cancer, 2003;98(10):2199-206.
    [67]Haas CJ et al. Microsatellite analysis in serous tumors of the ovary[J]. Int J Gynecol Pathol, 1999; 18(2): 158-62.
    [68]Orth K et al. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci USA, 1994;91(20):9495-9.
    
    [69]Pieretti M et al. Genetic alterations distinguish different types of ovarian tumors. Int J Cancer 1995;64(6):434-40.
    
    70. Singer G et al. Different types of microsatellite instability in ovarian carcinoma. Int J Cancer 2004;l 12(4):643-6.
    71. Nehme A et al. Induction of JNK and c-Abl signalling by cisplatin and oxaliplatin in mismatch repair-proficient and -deficient cells. Br J Cancer 1999;79(7-8):1104-10.
    72. Frankenberg-Schwager M et al. Cisplatin-mediated DNA double-strand breaks in replicating but not in quiescent cells of the yeast Saccharomyces cerevisiae. Toxicology 2005 ;212(2-3): 175-84.
    73. Adair GM et al. Role of ERCC1 in removal of long nonhomologous tails during targeted homologous recombination. Embo J 2000;19(20):5552-61.
    74. Ivanov EL, Haber JE. RADl and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae [J]. Mol Cell Biol, 1995;15(4):2245-51.
    [75] Sargent RG et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells[J]. Nucleic Acids Res, 2000;28(19):3771-8.
    [76]Sargent RG et al. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1 [J]. Proc Natl Acad Sci USA, 1997;94(24): 13122-7.
    [77]De Silva IU et al. Defects in interstrand cross-link uncoupling do not account for the extreme sensitivity of ERCC1 and XPF cells to cisplatin[J]. Nucleic Acids Res, 2002;30(17):3848-56.
    [78]Groen HJ et al. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines[J]. Br J Cancer, 1995;72(6): 1406-11.
    [79]Havener JM et al. Translesion synthesis past platinum DNA adducts by human DNA polymerase mu[J]. Biochemistry, 2003; 42(6): 1777-88.
    [80]Hoffmann JS et al. DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene[J]. Proc Natl Acad Sci USA, 1995;92(12):5356-60.
    [81]Masutani C et al. Mechanisms of accurate translesion synthesis by human DNA polymerase eta[J]. Embo J,2000;19(12): 3100-9.
    [82]Vaisman A, Chaney SG. The efficiency and fidelity of translesion synthesis past cisplatin and oxaliplatin GpG adducts by human DNA polymerase beta[J]. J Biol Chem, 2000; 275(17): 13017-25.
    [83]Vaisman A et al. Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta[J]. Biochemistry, 2000; 39(16):4575-80.
    [84]Albertella MR, Lau A, O'Connor MJ. The overexpression of specialized DNA polymerases in cancer[J]. DNA Repair (Amst), 2005;4(5):583-93.
    [85]Bergoglio V et al. Enhanced expression and activity of DNA polymerase beta in human ovarian tumor cells: impact on sensitivity towards antitumor agents[J]. Oncogene, 2001;20(43): 6181-7.
    [86]Canitrot Y et al. Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs [J]. Proc Natl Acad Sci USA, 1998;95(21): 12586-90.
    [87]Horton JK et al. Strategic down-regulation of DNA polymerase beta by antisense RNA sensitizes mammalian cells to specific DNA damaging agents[J]. Nucleic Acids Res, 1995; 23(19):3810-5.
    [88]Lin X et al. DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair[J]. Clin Cancer Res, 2006;12(2):563-8.
    [89]Albertella MR et al. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage[J]. Cancer Res, 2005; 65(21):9799-806.
    [90]Hartmann JT, Lipp HP. Toxicity of platinum compounds[J]. Expert Opin Pharmacother, 2003;4(6):889-901.
    [91]Donzelli E et al. Neurotoxicity of platinum compounds: comparison of the effects of cisplatin and oxaliplatin on the human neuroblastoma cell line SH-SY5Y[J]. J Neurooncol, 2004;67(1-2):65-73.
    
    [92]Stachurska A et al. Cisplatin up-regulates the in vivo biosynthesis and degradation of renal polyamines and c-Myc expression[J]. Biochim Biophys Acta, 2004; 1689(3):259-66.
    [93]Wagstaff AJ et al. Carboplatin. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the treatment of cancer [J]. Drugs, 1989; 37(2): 162-90.
    [94]Rybak LP, Whitworth CA. Ototoxicity: therapeutic opportunities [J]. Drug Discov Today, 2005;10(19):1313-21.
    [95]Reddel RR et al. Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration[J]. Cancer Treat Rep, 1982;66(1):19-23.
    [96]Lanvers-Kaminsky C et al. Continuous or repeated prolonged cisplatin infusions in children: A prospective study on ototoxicity, platinum concentrations, and standard serum parameters [J]. Pediatr Blood Cancer, 2006;47(2): 183-93.
    [97]Banfi B et al. NOX3, a superoxide-generating NADPH oxidase of the inner ear[J]. J Biol Chem, 2004;279(44):46065-72.
    [98]Lee JE et al. Role of reactive radicals in degeneration of the auditory system of mice following cisplatin treatment[J]. Acta Otolaryngol, 2004; 124(10):1131-5.
    [99] Wang J et al. Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss[J]. Cancer Res 2004; 64(24):9217-24.
    [100]Kalkanis JG, Whitworth C, Rybak LP. Vitamin E reduces cisplatin ototoxicity [J]. Laryngoscope, 2004; 114(3):538-42.
    [101]Fetoni AR et al. Protective effects of alpha-tocopherol and tiopronin against cisplatin-induced ototoxicity [J]. Acta Otolaryngol, 2004; 124(4):421-6.
    [102]Cassidy J, Misset JL. Oxaliplatin-related side effects: characteristics and management [J]. Semin Oncol, 2002;29(5 Suppl 15): 11-20.
    [103] Wolfgang GH et al. Comparative nephrotoxicity of a novel platinum compound, cisplatin, and carboplatin in male Wistar rats[J]. Fundam Appl Toxicol, 1994; 22(1):73-9.
    [104]Ikari A et al. Sodium-dependent glucose transporter reduces peroxynitrite and cell injury caused by cisplatin in renal tubular epithelial cells[J]. Biochim Biophys Acta, 2005; 1717(2): 109-17.
    [105]Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis[J]. Am J Physiol, 1996; 270(4 Pt 2):F700-8.
    [106]Tanaka T et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity [J]. Am J Physiol Renal Physiol, 2005;289(5):F1123-33.
    [107]Gorboulev V et al. Cloning and characterization of two human polyspecific organic cation transporters [J]. DNA Cell Biol, 1997;16(7):871-81.
    [108]Ciarimboli G et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2[J]. Am J Pathol 2005; 167(6): 1477-84.
    [109]Yonezawa A et al. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat[J]. Biochem Pharmacol, 2005;70(12): 1823-31.
    [110]Dickey DT et al. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels[J]. J Pharmacol Exp Ther, 2005;314(3): 1052-8.
    [111]Viale M et al. Cisplatin combined with tiopronin or sodium thiosulfate: cytotoxicity in vitro and antitumor activity in vivo[J]. Anticancer Drugs, 1999; 10(4):419-28.
    [112]Meijer C et al. Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy[J]. Neurotoxicology, 1999;20(6):883-7.
    [113]Pisano C et al. Paclitaxel and Cisplatin-induced neurotoxicity: a protective role of acetyl-L-carnitine[J]. Clin Cancer Res, 2003;9(15):5756-67.
    [114]Bove L et al. A pilot study on the relation between cisplatin neuropathy and vitamin E[J]. J Exp Clin Cancer Res, 2001;20(2): 277-80.
    [115]Halliwell B, Gutteridge JMC. Free radicals in biology and medicine[M]. Oxford: Oxford University Press; 1993, p. 188-276.
    [116]Argyriou AA et al. A randomized controlled trial evaluating the efficacy and safety of vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results [J]. Support Care Cancer.
    [117]Orhan B et al. Erythropoietin against cisplatin-induced peripheral neurotoxicity in rats[J]. Med Oncol, 2004;21(2): 197-203.
    [118]Bianchi R et al. Protective effect of erythropoietin and its carbamylated derivative in experimental Cisplatin peripheral neurotoxicity [J]. Clin Cancer Res, 2006;12(8):2607-12.
    [119]Canetta R, Rozencweig M, Carter SK. Carboplatin: the clinical spectrum to date [J]. Cancer Treat Rev, 1985; 12(suppl A): 125-36.
    [120]Heinzlef O, Lotz JP, Roullet E. Severe neuropathy after high dose carboplatin in three patients receiving multidrug chemotherapy [J]. J Neurol Neurosurg Psychiatry, 1998; 64(5):667-9.
    [121]Markman M et al. Neurotoxicity associated with a regimen of carboplatin (AUC 5-6) and paclitaxel (175 mg/m2 over 3 h) employed in the treatment of gynecologic malignancies[J]. J Cancer Res Clin Oncol, 2001;127(1):55-8.
    [122]Gamelin E et al. Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures[J]. Semin Oncol, 2002;29(5 Suppl 15): 21-33.
    [123]Grolleau F et al. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltagegated sodium channels[J]. J Neurophysiol, 2001; 85(5):2293-7.
    [124]Gamelin E, Gamelin L, Delva R. Prevention of oxaliplatin peripheral sensory neuropathy by calcium + gluconate/Mg + chloride infusions: a retrospective study [J]. Proc Am Soc Clin Oncol, 2002;21 :a624.
    [125]Grothey A. Clinical management of oxaliplatin-associated neurotoxicity[J]. Clin Colorectal Cancer, 2005;5(Suppl 1): S38-46.
    [126]Tewari KS, Monk BJ. Gynecologic oncology group trials of chemotherapy for metastatic and recurrent cervical cancer[J]. Curr Oncol Rep, 2005;7(6):419-34.
    [127]Jacobs C et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck[J]. J Clin Oncol, 1992;10(2):257-63.
    [128]Andrews PA et al. cis-Diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells[J]. Cancer Res, 1988; 48(1):68-73.
    [129]Dornish JM, Melvik JE, Pettersen EO. Reduced cellular uptake of cis-dichlorodiammine-platinum by benzaldehyde[J]. Anticancer Res, 1986; 6(4):583-8.
    [130]Dornish JM, Pettersen EO. Protection from cis-dichlorodiammineplatinum-induced cell inactivation by aldehydes involves cell membrane amino groups[J]. Cancer Lett, 1985;29(3): 235-43.
    [131]Dornish JM, Pettersen EO. Modulation of cis-dichlorodiammineplatinum(II)-induced cytotoxicity by benzaldehyde derivatives [J]. Cancer Lett, 1989; 46(1):63-8.
    [132]Pettersen EO et al. Antitumour effect of benzylidene-glucose (BG) in rats with chemically induced hepatocellular carcinoma[J]. Anticancer Res, 1986; 6(2): 147-52.
    [133]Holzer AK et al. Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells[J]. Clin Cancer Res, 2004; 10(19):6744-9.
    [134]Song IS et al. Role of human copper transporter Ctrl in the transport of platinum-based antitumor agents in cisplatinsensitive and cisplatin-resistant cells[J]. Mol Cancer Ther, 2004;3(12):1543-9.
    [135]Holzer AK et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells[J]. Mol Pharmacol, 2004;66(4):817-23.
    [136]Holzer AK, Manorek GH, Howell SB. The contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin and oxaliplatin[M]. Mol Pharmacol.
    [137]Komatsu M et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance [J]. Cancer Res, 2000;60(5): 1312—6.
    [138]Nakayama K et al. Expression and cisplatin sensitivity of copper-transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinoma cell lines[J]. Oncol Rep, 2001;8(6): 1285-7.
    [139]Nakayama K et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP [J]. Int J Cancer, 2002;101(5):488-95.
    [140]Katano K et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper[J]. Cancer Res, 2002;62(22):6559-65.
    [141]Samimi G et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells[J]. Clin Cancer Res, 2004;10(14):4661-9.
    [142]Samimi G et al. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B[J]. Mol Pharmacol, 2004 ; 66(1): 25-32.
    [143]Ishikawa T et al. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells[J]. J Biol Chem, 1996;271(25):14981-8.
    [144]Lautier D et al. Multidrug resistance mediated by the multidrug resistance protein (MRP) gene[J]. Biochem Pharmacol, 1996;52(7):967-77.
    [145]Schrenk D et al. Up-regulation of transporters of the MRP family by drugs and toxins[J]. Toxicol Lett, 2001;120(1-3):51-7.
    [146]Liedert B et al. Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin[J]. J Invest Dermatol, 2003;121(1): 172-6.
    [147]Shen DW et al. Decreased accumulation of [14C]carboplatin in human cisplatin- resistant cells results from reduced energy-dependent uptake[J]. J Cell Physiol, 2000,183(1):108-16.
    [148]Safaei R et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells [J]. Mol Cancer Ther, 2005;4(10):1595-604.
    [149]Rudin CM et al. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance[J]. Cancer Res, 2003;63(2): 312-8.
    [150]Godwin AK et al. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis[J]. Proc Natl Acad Sci USA, 1992;89(7): 3070-4.
    [151]Byun SS et al. Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione- related enzyme activities [J]. BJU Int, 2005;95(7):1086-90.
    [152]Goto S, Kamada K, Soh Y, Ihara Y, Kondo T. Significance of nuclear glutathione S-transferase pi in resistance to anticancer drugs [J]. Jpn J Cancer Res, 2002;93:1047-56.
    [153]Mayr D, Pannekamp U, Baretton GB, Gropp M, Meier W, Flens MJ, et al. Immunohistochemical analysis of drug resistanceassociated proteins in ovarian carcinomas[J]. Pathol Res Pract, 2000;196:469-75.
    [154]Satoh T, Nishida M, Tsunoda H, Kubo T. Expression of glutathione Stransferase pi (GST-pi) in human ovarian tumors[J]. Eur J Obstet Gynecol Reprod Biol, 2001;96:202-8.
    [155]Surowiak P, Materna V, Kaplenko I, Spaczynski M, Dietel M, Lage H, et al. Augemented expression of metallothionein and glutathione S-transferase pi as unfavourable prognostic factors in cisplatin-treated ovarian cancer patients[J]. Virchows Arch, 2005;447:626-33.
    [156]Nishimura T, Newkirk K, Session RB, Andrews PA, Trock BJ, Rasmussen AA, et al. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer[J]. Clin Cancer Res, 1996;2:1859-65.
    [157]Ikeda K, Sakai K, Yamamotot R, Hareyama H, Tsumura N, Watari H, et al. Multivariate analysis for prognostic significance of histologica subtype, GST-pi, MDR-1, and p53 in stages II—IV ovarian cancer[J]. Int J Gynecol Cancer, 2003; 13:776-86.
    [158]Van der Zee AGJ, Hollema H, Suurmeijer AJH, Krans M, Sluiter PHB, et al. Value of P-glycoprotein, glutathione- S-transferase pi, c-erbB2, and p53 as prognostic factors in ovarian carcinomas [J]. J Clin Oncol, 1995; 13:70-8.
    [159]Konishi I, Nanbu K, Mandai M, Tsuruta Y, Kataoka N, Nagata Y. Tumor response to neoadjuvant chemotherapy correlates with the expression of Pglycoprotein and PCNA but not GST-pi in the tumor cells of cervical carcinoma [J]. Gynecol Oncol, 1998;70:365-71.
    [160]Miyatake K, Gemba K, Ueoka H, Mishii K, Kiura K, Tabata M, et al. Prognostic significance of mutant p53 protein, Pglycoprotein and glutathione S-transferase-pi in patients with unresectable non-small cell lung cancer[J]. Anticancer Res, 2003;23:2829-36.
    [161]Arner ESJ, Nakamura H, Sasada T, Yodoi J, Homgren A, Spyrou G. Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase; glutaredoxin by cis-diamminidischloroplatinum(II) and its major metabolite, the glutathione-platinum complex[J]. Free Radic Biol Med, 2001 ;31:1170-8.
    [162]Witte AB et al. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds[J]. Free Radic Biol Med, 2005;39(5):696-703.
    [163]Siegsmund MJ, Marx C, Seeman O, Schummer B, Steidler A, Toktomambetova L, et al. Cisplatin-resistant bladder carcinoma cells: enhanced expression of metallotioneins[J]. Urol Res, 1999;27:157-63.
    [164]Toyoda H, Mizushima T, Satoh T, Izuka N, Nomoto A, Chiba H, et al. HeLa cell transformants overproducing mouse metallothioneinshow in vivo resistant to cis-platinum in nude mice[J]. Jpn J Cancer Res, 2000;91:91-8.
    [165]Hishikawa Y, Koji T, Dhar DK, Kinugasa S, Yamaguchi M, Nagasue N. Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the esophagus[J]. Br J Cancer, 1999;81:712—20.
    [166]Siu LL, Banerjee D, Khurana RJ, Pan X, Pflueger R, Tannock IF.The prognostic role of p53, metallothionein, P-glycoprotein, and MIB-1 in muscle-invasive urothelial transitional cell carcinoma[J]. Clin Cancer Res, 1998;4:559—64.
    [167]Muramatsu Y, Yasegawa Y, Fukano H, Ogawa T, Namuba M, Mour S, et al. Metallothionein immunoreactivity in head and neck carcinomas - special reference to clinical behaviors and chemotherapy responses[J]. Anticancer Res, 2000;20:257-64.
    [168]Meijer C, TImmer A, DeVries EG, Groten JP, Knol A, Zwart N, et al. Role of metallothionein in cisplatin sensitivity of germcell tumors[J]. Int J Cancer, 2000; 85(6):777-81.
    [169]Itamochi H et al. Mechanisms of cisplatin resistance in clear cell carcinoma of the ovary[J]. Oncology, 2002;62(4):349-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700