氧化葡萄糖酸杆菌高密度培养及生物催化合成羟基酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基酸可作为许多生物起源化合物的双功能构建模块,是重要的医药、农药和精细化工产品的中间体。开展生物催化醇类化合物制备羟基酸的研究具有重要的理论价值和现实意义。
     氧化葡萄糖酸杆菌(Gluconobacter oxydans)具有大量的膜结合脱氢酶,能够不完全氧化多种糖、醇化合物生成相应的醛、酮和酸。本论文以两种羟基酸(羟基乙酸和β-羟基异丁酸)的生物合成为研究对象,详细探讨了氧化葡萄糖酸杆菌的培养、全细胞催化过程以及产物的分离等方面内容。
     第一,以氧化葡萄糖酸杆菌DSM 2003为出发菌株,对它的高密度培养进行了较为系统的研究,目的是为了获得大量的细胞催化剂和高效的催化效率。
     (1)首先采用单因素法和均匀设计法对氧化葡萄糖酸杆菌的培养基组分进行优化,确定发酵培养基的最佳配方:山梨醇73.0g/l,酵母粉18.4g/l,硫酸铵1.5g/l,磷酸二氢钾1.52g/l,七水硫酸镁0.47g/l,并初步确定了氧化葡萄糖酸杆菌DSM 2003菌株培养的最适培养条件。在最适条件下,菌体密度为9.6g/l。
     (2)在摇瓶实验的基础上,进行3.7L发酵罐放大培养,菌体密度达到44.3g/l,比摇瓶的培养结果提高了361%。采取合适的补料策略,菌体的密度进一步提高到54.2g/l(干重14.1g/l),高于目前文献报道的最好结果13.5g/l(干重),同时细胞的相对催化活性也提高了40%。高密度、高活性细胞的获得,为羟基酸的生物法合成奠定了基础。
     第二,以氧化葡萄糖酸杆菌全细胞催化乙二醇合成羟基乙酸为模式反应,揭示催化反应的关键酶,详细研究生物催化合成羟基酸的过程。
     (1)通过基因敲除和互补以及全细胞催化实验,鉴定了氧化葡萄糖酸杆菌中催化乙二醇的关键酶——膜结合的乙醇脱氢酶(GOX1067-1068)。
     (2)确定了氧化葡萄糖酸杆菌在摇瓶中转化乙二醇的最优反应条件,并在摇瓶实验的基础上在3.7L生物反应器中进行转化过程的放大,通过流加底物,提高溶氧水平和在线调节pH等优化手段,经过50h的反应,羟基乙酸的浓度达到74.5g/l,转化率达到87.1%。产物抑制效应是限制反应产率的关键问题。
     (3)针对乙二醇反应过程中存在的产物抑制问题,引入原位分离技术,进行乙二醇的催化过程研究。
     ①选择D315树脂作为原位分离的介质。为了截留细胞,选用聚乙烯醇-海藻酸钠对细胞进行固定化。经过72h的原位分离转化,羟基乙酸的浓度达到90.2g/l,转化率为80.3%。
     ②鉴于固定化细胞催化活性较低、在剪切力下容易破碎的问题,引入中空纤维膜模块,实现游离细胞的循环利用。经过50h的原位分离转化,羟基乙酸浓度达到93.2g/l,转化率为81%。相比于常规的分批转化结果,采用膜反应器原位分离技术后,羟基乙酸的最终浓度从74.5g/l提高到了93.2g/l,转化效率也从1.5g/(1·h)提高到了1.9g/(1·h)。开展氧化葡萄糖酸杆菌催化乙二醇合成羟基乙酸的研究,对于氧化葡萄糖酸杆菌的开发应用和羟基乙酸的生物法制备都具有十分重要的意义。
     (4)根据催化体系的特点及转化液的组成,详细地给出了羟基乙酸分离提纯的流程。经过活性炭进行脱色、D315阴离子树脂和D113阳离子树脂纯化、浓缩结晶等步骤,过程总收率85%,羟基乙酸晶体的纯度为97.3%。
     第三,对氧化葡萄糖酸杆菌立体选择催化2-甲基-1,3-丙二醇生成(R)-β-羟基异丁酸进行研究。
     (1)首先对2-甲基-1,3-丙二醇的转化产物进行了分离纯化和鉴定,产物是(R)-β-羟基异丁酸,副产物为2-甲基丙烯醛和2-甲基丙烯酸。通过基因敲除、互补和静息细胞催化实验,确定了膜结合的乙醇脱氢酶是催化2-甲基-1,3-丙二醇生成(R)-β-羟基异丁酸反应的关键酶。
     (2)确定了氧化葡萄糖酸杆菌在摇瓶中催化2-甲基-1,3-丙二醇生成(R)-β-羟基异丁酸的最优反应条件,并在摇瓶实验的基础上在3.7L生物反应器中进行放大,经过24h的反应,(R)-β-羟基异丁酸的积累浓度达到50.2g/l,转化率和光学纯度分别达到90.5%和93.2%。这为生物法合成(R)-β-羟基异丁酸提供了新的选择,具有进一步开发前景。
Hydroxy acids are important dual functional building blocks and fine intermediates, which are conventionally used as materials of pharmaceuticals, agrochemicals, etc. Therefore, the studies on the preparation of hydroxy acids from diols by biocatalysis are very important both for the knowledge on biocatalytic mechanism and its application.
     Gluconobacter oxydans is known for its incomplete oxidation of a wide range of carbohydrates and alcohols in a process that is referred to as oxidative fermentation. The corresponding oxidative products are secreted almost completely into the medium. In this dissertation, two hydroxyl acids were selected as the target product of bioconversion. The culture conditions of G.oxydans DSM 2003, bioconversion process by the resting cells and purification of the product were studied in detail.
     In the first section, high cell density culture of Gluconobacter oxydans DSM 2003 was studied.
     (1) Single factor analysis and uniform design were used to optimize the medium components. The optimum medium compositions were as follows:sorbitol 73.0g/l, yeast extract 18.4g/l, (NH4)2SO4 1.5g/l, KH2PO4 1.52g/l, MgSO4·7H2O 0.47g/l. Under the optimal conditions, cell density was 9.6g/l in shaking flasks.
     (2) To enhance G.oxydans DSM 2003 cell growth to higher cell density, the process of fermentation was improved in 3.7L bioreactor based on the optimized parameters in shaking flasks. Cell density achieved was 44.3g/l, which was increased by 361% compared with that in shaking flasks. The final cell density was 54.2g/l (DCW,14.1g/l) from the improved fed-batch culture in 3.7L bioreactor. To the best of our knowledge, this was the highest cell density until now. Furthermore, the activity the resting cells was also improved by 40%. The cells of the high density and the high activity laid the foundation of biosynthesis of hydroxyl acids.
     In the second section, bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003 was studied.
     (1) The mutant strain defective in alcohol dehydrogenase (ADH, GOX1067-1068) and the complementary strain were constructed and the results of bioconversion of ethylene glycol using the resting cells showed that the ADH was the key enzyme responsible for biooxidation of ethylene glycol to glycolic acid in G. oxydans DSM 2003.
     (2) G.oxydans DSM 2003 was used to synthesize glycolic acid through microbial oxidation of ethylene glycol. To enhance glycolic acid production, the process of bioconversion was improved in 3.7L bioreactor based on the optimized parameters in shaking flasks. The ethylene glycol was controlled accurately by maintaining corresponding feeding rate. The pH was well controlled automatically by computer. Dissolve oxygen (DO) was controlled by increasing agitation speed, airflow and bioreactor pressure to keep it over 30% air saturation. Under the optimized reaction conditions,74.5g/l glycolic acid was obtained with a molar conversion yield of 87.1% after a 50-h reaction. The inhibition of glycolic acid was a key limitation for the bioconversion.
     (3) To resolve the problem of product inhibition and improve glycolic acid yield, a bioconversion strategy using ion-exchange resin D315 was investigated.
     ①In order to entrap the cells, PVA-sodium alginate was used as carrier for the immobilization of the cells of Gluconobacter oxydans. D315 resin was chosen to adsorb glycolic acid in situ during the bioconversion. Under the optimized reaction conditions, 90.2g/l glycolic acid was obtained with a molar conversion yield of 80.3% after a 72-h reaction.
     ②A adsorptive bioconversion for glycolic acid production from ethylene glycol using resting cells of Gluconobacter oxydans in a hollow fiber membrane bioreaction system was developed by using D315 resin as the adsorbent for selective removal of glycolic acid from the reaction mixture. This approach allowed the yield of glycolic acid to be increased to 93.2g/l, compared to 74.5g/l obtained from a conventional fed-batch mode after a 50-h reaction. Microbial bioconversion of ethylene glycol by G.oxydans DSM 2003 was very important for the application development of G.oxydans DSM 2003 and biosynthesis of hydroxyl acids.
     (4) According to the reaction mixture of glycolic acid, the process of separation and purification was present in detail. After decolorization by active carbon, purification by D315 and D113 resins, the crystallization was carried out at 4℃, the crystalloid purity of glycolic acid was 97.3%, and the total yield was 85%.
     In the third section, study on microbial asymmetric oxidation of 2-methyl-1, 3-propanediol by Gluconobacter oxydans was investigated.
     (1) Firstly, purification and identification of the reaction products was carried out. Two byproducts were identified to be 2-methyl propenal and methacrylic acid, respectively. Secondly, the alcohol dehydrogenase was demonstrated to serve as the key enzyme for the oxidation reaction of 2-methyl-1,3-propanediol toβ-hydroxyisobutyric acid by gene disruption and complementation.
     (2) We optimized the reaction conditions for (R)-β-hydroxyisobutyric acid production from 2-methyl-1,3-propandiol using G.oxydans DSM 2003. A yield 50.2g/l of (R)-β-hydroxyisobutyric acid was obtained with a molar conversion rate of 90.5% and 93.2% enantiomeric excess within 24 h in a 2-1 batch reaction in a 3.7L fermentor. Microbial asymmetric oxidation of 2-methyl-1,3-propanediol by G.oxydans DSM 2003 provides a new biological methods to synthesis to (R)-β-hydroxyisobutyric acid, an important building block.
引文
[1]刘子宇.短双歧杆菌(Bifidobacterium breve A04)菌株的高密度培养.硕士学位论文.2006,6
    [2]Meesters PAEP, Huijberts GNM, Eggink G. High cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycol as carbon source. Appl Microbbiol Biotechnol.1996,45(5):575-579
    [3]李民,陈长庆.重组大肠杆菌高密度发酵研究进展.生物工程进展.2000,20(2):26-31
    [4]叶勤.现代生物技术原理及其应用.中国轻工业出版社.2003,8.
    [5]刘馨磊.芽孢乳酸杆菌(凝结芽孢杆菌TQ33)的高密度培养.硕士学位论文.2002,3
    [6]Lee J, Lee SY, Park S, Middelberg APJ. Control of fed-batch fermentations. Biotech adv.1999,17(1):29-48
    [7]Roubos JA, Straten G van, Boxtel AJB van. An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance, J Biotechnol.1999,67(3):173-187
    [8]Liu CS, Wu XY. Optimization of operation parameters in ultra filtration process. J Biotechnol.1998,66(3):195-202
    [9]Collins EB, Tillion AW. Detection of antangonistic and symbiotic relationships among bacteria by diffusion chamber procedure. J Dairy Sci.1977,60(3):387-393
    [10]Osborne RJW. Production of frozen concentratated cheese starters by diffusion culture. J Soc Dairy Technol.1977,30(l):40-51
    [11]Gerhardt P, Gallup DM. Dialysis flask for concentrated culture of microorganisms. J Bacteriol.1963,86(5):919-929
    [12]Prigent C, Corre C, Boyaval P. Production of concentrated Streptococcus salivarius subsp. theermophilus by coupling continuous fermentation and ultrafiltration. J Dairy Res.1988, 55(4):569-577
    [13]Chang HN, Yoo IK, Kim BS. High density cell culture by membrane-based cell recycle. Biotech adv.1994,12(3):467-487
    [14]林章凛,曹竹安,邢新会,刘铮.工业生物催化技术.生物加工过程,2003,1(1):12-16
    [15]欧阳平凯.生物技术在化学工业中的应用.江苏化工.1997,25:35-38
    [16]Arnold FH, Directed evolution:Creating new biocatalysts for the future. Chem Eng Sci. 1996,11:5091-5102
    [17]张玉彬,生物催化的手性合成.化学工业出版社.2002年1月
    [18]Kathryn M, Koeller, Chi-Huey Wong, Enzymes for chemical synthesis. Nature.2001, 409:232-240
    [19]Aleu J, Collado I G. Biotransformations by Botrytis species. J Mol Catal B:Enzym.2001, 13:77-93
    [20]Grogan GJ, Holland HL. The biocatalytic reaction of Beauveria spp. J Mol Catal B:Enzym.2000,9:1-32
    [21]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol.2001,12:552-558
    [22]Roberts S M, Wan P W H. Enzyme-catalysed Baeyer-Villiger oxidations. J Mol Catal B: Enzym.1998,4:111-136
    [23]卢定强,韦萍,周华,贾红华,欧阳平凯.生物催化与生物转化的研究进展.化工进展.2004,23(6):9-13
    [24]孙志浩.手性技术与生物催化.生物加工过程.2004,2(4):6-10
    [25]Franke ICH, Fegan M, Hayward C, Leonard G, Stackebrandt E, Sly LI. Description of Gluconobacter sacchari sp. nov. a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from pink sugar-cane mealy bug. Int J Syst Bacteriol.1999, 49:1681-1693
    [26]Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA:the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem.1997,61: 1244-1251
    [27]Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, Komagata. Identification of acetic acid bacteria from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol.1999,45:23-28
    [28]De Ley J, Gillis M, Swings J. The genus Gluconobacter. In:Krieg NR, Holt JG (eds) Bergeys manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore,. 1984,1:267-278
    [29]Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257:a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem.2001,65:2755-2762
    [30]Gupta A, Singh VK, Qazi GN, Kumar A, Gluconobacter oxydans:its biotechnological applications. J Mol Microbiol Biotechnol,2001,3:445-456
    [31]Batter AS, Schaffner DW, Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcocaeticus and Gluconobacter oxydans. J Appl Microbiol, 2001,91:237-247
    [32]Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol.2005,23 (2):195-200
    [33]Pronk JT, Levering PR, Olijve W, Van Dijken JP. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol.1989,11(3):160-164
    [34]Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol.1994,36:247-301
    [35]Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter oxydans. Agric Biol Chem.1978,42:2045-2056
    [36]Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem.1980,44:503-515
    [37]Ameyama M, Shinagawa E, Matsushita K, Adachi O. D-Glucose dehydrogenase of Gluconobacter suboxydans-Solubilization, purification and characterization. Agric Biol Chem.1981,45:851-861
    [38]Shinagawa E, Matsushita K, Adachi O, Ameyama M. D-glucbnate dehydrogenase, 2-keto-D-gluconate yielding, from Gluconobacter dioxyacetonicus purification and characterization. Agric Biol Chem.1984,48:1517-1522
    [39]Shinagawa E, Matsushita K, Adachi O, Ameyama M. Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem. 1981,45:1079-1085
    [40]Shinagawa E, Matsushita K, Adachi O, Ameyama M. Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans vara. Agric Biol Chem.1982,46:135-141
    [41]Choi ES, Lee EH, Rhee SK. Purification of a membranebound sorbitol dehydrogenase from Gluconobacter suboxydans. FEMS Microbiol Lett.1995,125:45-50
    [42]Sugisawa T, and Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem. 2002,66:57-64
    [43]Sugisawa, T., Hoshino, T., and Fujiwara, A. Purification and properties of NADPH-linked L-sorbose reductase from Gluconobacter melanogenus N44-1. Agr Biol Chem.1991,55:2043-2049
    [44]Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O. Solubilization, purification and properties of membrane bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem.1985,49:1001-1010
    [45]Holscher T, Weinert-Sepalage D, Gorisch H. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology.2007,153:499-506
    [46]Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O.5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and Environmental Microbiology.2003,69:1959-1966
    [47]Hauge JG, King TE, Cheldelin VH. Alternate conversion of glycerol to dihydroxyacetone in Acetobacter suboxydans. J Biol Chem.1954,214:1-9
    [48]Hauge JG, King TE, Cheldelin VH. Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem.1954,214:11-26
    [49]Macauley S, Mcneil B, Harvey LM. The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol.2001,21:1-25
    [50]Hancock RD, Viola R. Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol.2001,20:299-305
    [51]Boudrant J. Microbial process for ascorbic acid biosynthesis:a review. Enzyme Microb Technol.1990,12:322-329
    [52]Giridhar R, Strivastava AK. Model based constant feed fed-batch L-sorbose production process for improvement in L-sorbose productivity. Chem Biochem Eng Q.2000,14: 133-140
    [53]Asai T. Acetic acid bacteria:classification and biochemical activities. University of Tokyo Press, Tokyo
    [54]Yamada S, Wade M, Chibata I. Effect of high oxygen partial pressure on the conversion of sorbitol to sorbose by Acetobacter suboxydans. J ferment Technol.1978,56:29-34
    [55]Junge B, Matzke M, Stltefuss J. Chemistry and structure-activity relationships of glucosidase inhibitors. In Kuhlmann, J. and Puls, W. (Eds.), Handbook of experimental pharmacology.1996,119:411-482
    [56]Campbell LK, Baker DE, Campbell RK. Miglitol:assessment of its role in thetreatment of patients with diabetes mellitus. Ann. Pharmacother.2000,34:1291-1301
    [57]Paulsen T. Cyclic monosaccharides having nitrogen substituted derivatives of 1-deoxynojirimycin. Adv Carbohydrate Chemistry.1968,23:115-232
    [58]Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In:Kelly DR(ed) Biotechnology,2000. vol 8b. Biotransformations II. Wiley-VCH, Weinheim, pp:296-308
    [59]Weenk G, Olijve W, Harder W. Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol.1984,20:400-405
    [60]Shinagawa E, Matsushita K, Toyama H, Adachi O. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinine (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. J. Mol. Catal B.1999,6:341-350
    [61]Kawashima K, Itoh H, Chgate J. Nonenzymatic browning reactions of dihydroxyacetone with amino acids or their esters. Agri Biol Chem.1980,44 (7): 1595-1599.
    [62]Stanko RT, Ferguson TL, Newman CW, Newman RK. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J Anim Sci.1989,67: 1272-1278
    [63]张育川.二羟基丙酮.精细与专用化学品.2003,22:21
    [64]Hekmat D, Bauer R, Fricke J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioproc Biosys Eng.2003, 26:109-116
    [65]Asawanonda P, Oberlender S, Taylor C. The use of dihydroxyacetone for photoprotection in variegate porphyria. Int J Dermatol.1999,38(12):916-918
    [66]Claret C, Bories A, Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr Microbiol.1992,25(3):149-155
    [67]Lohray BB. Asymmetric catalysis-a novel chemistry to win the Nobel Prize-2001, Curr Sci.2001,81(12):1519-1525
    [68]Leon R., Prazeres D. M. F., Molinari F. Cabral J. M. S. Microbial stereoselective oxidation of 2-methyl-1,3-propanediol to (R)-beta-hydroxyisobutyric acid in aqueous/organic biphasic systems. Biocatal Biotransform.2002,20(3):201-207
    [69]Gandolfi R, Ferrara N, Molinari F. An easy and effient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett,2001,42(3):513-514
    [70]Molinari F, Gandolfi R, Villa R, Urban E, Kiener A. Enantioselective oxidation of prochiral 2-methyl-1,3-propanediol by Acetobacter pasteurianus. Tetrahedron: Asymmetry.2003,14(14):2041-2043
    [71]Gandolfi R, Borrometi A, Romano A, Sinisterra G, Jose V, Molinari F. Enantioselective oxidation of (±)-2-phenyl-l-propanol to (S)-2-phenyl-l-propionic acid with Acetobacter aceti:influence of medium engineering and immobilization. Tetrahydron:Asymmetry. 2002,13(21):2345-2349
    [72]Molinari F, Villa R, Aragozzini F, Leon R, Prazeres DMF. Enantioselective oxidation of (RS)-2-phenyl-1-propanol to (S)-2-phenyl-1-propionic acid with Gluconobacter oxydans: simplex optimization of the biotransformation. Tetrahydron:Asymmetry.1999,10(15): 3003-3009
    [73]Hayes MJ, Lauren MD. Chemical stress relaxation of polyglycolic acid suture. J. Appl. Biomat.1994,5(3):215-220.
    [74]Shawe S, Buchanan F, Harkin-Jones E, Farrar D. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J. Mater. Sci.2006, 41(15):4832-4838
    [75]Park J, Allen MG, Prausnitz MR. Biodegradable polymer microneedles:Fabrication, mechanics and transdermal drug delivery. J. Controlled Release 2005,104(l):51-66
    [76]Smith WP. Comparative effectiveness of a-hydroxy acids on skin properties. Int. J. Cosmet. Sci.1996,18(2):75-83
    [77]Scholz D, Brooks GJ, Parish DF, Burmeister F. Fruit acid extracts, a fresh approach to skin renewal. Int. J. Cosmet. Sci.1994,16(6):265-272
    [78]Van Scott EJ, Yu RJ. Hyperkeratinization, corneocyte cohesion, and alpha hydroxy acids. J. Am. Acad. Dermatol.1984, 11(5):867-879
    [79]Kirk-Othmer. Encyclopedia of chemical technology [M].3th Ed. New York:John Wiley & Sons Inc,1980,13:92-103
    [80]Loder DJ. Process for manufacture of glycolic acid. US Patent 1939,2,152,852.
    [81]李宇展,刘伟,顾登平.草酸电还原研制乙醇酸.河北师范大学学报(自然科学版).2003,27(4):385-387
    [82]Kobetz P, Lindsay K. Process for the preparation of glycolic acid. US Patent,1975, 3,867,440
    [83]Nakamura, Tetsuji. Microbial manufacture of glycolic acid:JP,1997,09028390[P]
    [83]M Nitriaase. Process for the production of organic acids by biological hydrolysis. US Patent 3,1974,940,316
    [85]Kobayashi Y, Watabe K, Ohira M, Hayakawa K. Process for preparing alpha.-hydroxy acids using microorganism and novel microorganism. US Patent,2000,6,037,155
    [86]Chauhan S, Dicosimo R, Fallon RD, Gavagan JE, Payne MS. Method for producing glycolic acid from glycolonitrile using nitrilase. US Patent,2002,6,416,980
    [87]M Kataoka, M Sasaki, Aklani-Rose G. D. Hidalgo, M Nakano, S Shimizu. Glycolic Acid Production Using Ethylene Glycol-Oxidizing Microorganisms. Biosci Biotechnol Biochem.2001,65(10):2256-2270
    [88]Ohashi T, Hasegawa J. In Chirality in Industry; Collins, A. N.; Sheldrake, G. N.; Crosby, J., Eds.; John Wiley& Sons Ltd:Chichester,1992, p.249
    [89]Smith III AB, Qiu Y, Jones DR, Kobayashi K. Total Synthesis of (-)-Discodermolide. J. Am. Chem. Soc.1995,117(48):12011-12012
    [90]Kim CH, Hong WK, Lee IY, Choi ES, Rhee SK. Enhanced production of D-β-hydroxyisobutyric acid through strain improvement. J. Biotechnol.1999, 69(1):75-79
    [91]Molinari F, Gandolfi R, Villa R, Urban E, Kiener A. Enantioselective oxidation of prochiral 2-methyl-1,3-propandiol by Acetobacter pasteurianus. Tetrahedron: Asymmetry,2003,14(14):2041-2043
    [92]Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme:new class of orally active antihypertensive agents. Science.1977,196(4288):441-444
    [93]Cushman DW, Ondetti MA. Inhibitors of angiotensin-converting enzyme for treatment of hypertension. Biochem Pharmacol.1980,29(3):1871-1875
    [94]Ondetti MA, Cushman DW. Inhibition of the renin-angiotensin system. A new approach to the therapy of hypertension. J Med Chem.1981,24 (4):355-361
    [95]Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry.1977,16 (25):5484-5491
    [96]Goodhue CT, Schaeffer JR. Preparation of L (+) beta-hydroxyisobutyric acid by bacterial oxidation of isobutyric acid. Biochem. Bioeng.1971,13(2):203-214
    [97]Hasegawa J, Ogura M, Kanema H, Noda N, Kawaharada H, Watanabe K. Production of D-beta-hydroxyisobutyric acid from isobutyric acid by Candida rugosa and its mutant. J FERMENT TECHNOL.1982,60(6):501-508
    [98]Gunasekera SP, Gunasekera M, Longley RE, Schulte GE. Discodermolide:a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissolute. J Org Chem.1990,55 (16):4912-4915
    [99]Marashall JA, Johns BA. Total Synthesis of (+)-Discodermolide. J Org Chem.1998, 63(22):7885-7892
    [100]Gunasekera SP,Paul GK, Longley RE, Isbrucker RA, Pomponi SA. Five New Discodermolide Analogues from the Marine Sponge Discodermia Species. J Nat Prod 2002,65 (11):1643-1648
    [101]Evans DA, Sacks CE, Kleschick WA, Taber TR. Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187. J Am Chem Soc.1979, 101 (22):6789-6791
    [102]Collum DB, McDonald III JH, Still WC. Synthesis of the polyether antibiotic monensin. 2. Preparation of intermediates. J Am Chem Soc.1980,102 (6):2118-2120
    [103]McGuirk PR, Collum DB. Total synthesis of (+)-phyllanthocin. J Am Chem Soc.1982, 104:4496-4497
    [104]White JD, Reddy NG, Spessard GO. Total synthesis of (-)-botryococcene. J Am Chem Soc.1988,110 (5):1624-1626
    [105]Mori K, Koseki K. Synthesis of trichostatin a, a potent differentiation inducer of friend leukemic cells, and its antipode. Tetrahedron.1988,44(19):6013-6020
    [106]Mori K, Wu J. Synthesis of the (5S,9S)-isomers of 5,9-dimethylheptadecane and 5, 9-dimethyloctadecane, the major and the minor components of the sex pheromone of Leucoptera malifoliella Costa. Liebigs Ann Chem.1991, pp439-443
    [107]Mori K. Takikawa H. Synthesis of (4S,8S)-and (4S,8R)-4,8-dimethyldecanol, the stereoisomers of the aggregation pheromone of Tribolium castaneum. Liebigs Ann Chem.1991, pp497-500
    [108]R.N.帕特尔.立体选择性生物催化.化学工业出版社.2004
    [109]Ohta H, Tetsukawa H, Noto N. Enantiotopically Selective Oxidation of α, ω-Diols with the Enzyme Systems of Microorganisms. J. Org. Chem.1982,47 (12):2400-2404
    [110]Lee IY, Choi DK, Kim CH, Park YH. Continuous production of D-β-hydroxyisobutyric acid from methacrylic acid by Candida rugosa. Biotechnol Lett.1996,18(4):407-410
    [111]Lee IY, Hong WK, Hwang YB, Kim CH, Choi ES, Rhee SK, Park YH. Production of d-β-hydroxyisobutyric acid from isobutyric acid by Candida rugosa. J Ferment Bioeng. 1996,81(1):79-82
    [112]Lee IY, Kim CH, Yeon BK, Hong WK, Choi ES, Rhee SK. High production of D-β-hydroxyisobutyric acid from methacrylic acid by Candida rugosa and its mutant. Bioprocess Biosyst Eng.1997,16:247-252
    [113]KIM CH, HONG WK, LEE IY, CHOI ES, RHEE SK. Enhanced production of D-β-hydroxyisobutyric acid through strain improvement. J biotechnol.1999, 69(1):75-79
    [114]Romano A, Gandolfi R, Nitti P, Rollini M, Molinari F. Acetic acid bacteria as enantioselective biocatalysts. J Mol Catal B-Enzym.2002,17(6):235-240
    [115]Molinari F, Villa R, Aragozzini F, Leon R, Prazeres DMF. Enantioselective oxidation of (RS)-2-phenyl-l-propanol to (S)-2-phenyl-l-propionic acid with Gluconobacter oxydans:simplex optimization of the biotransformation. Tetrahydron:Asymmetry. 1999,10(15):3003-3009
    [116]Su W, Chang ZY, Gao KL, Wei DZ. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans. Tetrahedron: Asymmetry.2004,15(8):1275-1277
    [117]Nanduri VB, Banerjee A, Howell JM, Brzozowski DB, Eiring RF, Patel RN. Purification of a stereospecific 2-ketoreductase from Gluconobacter oxydans. J Ind Microbiol Biotechnol.2000,25(3):171-175
    [118]Jia, S, Ou H. Y, Chen G, Choi DB, Cho KA, Okabe M, Cha WS. Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol Bioprocess Eng.2004,9(3):166-170
    [119]Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng.2005,99(4):415-422
    [120]Naessens A, Vercauteren R, Vandamme EJ. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans. Process Biochem.2004,39(10):1299-1304
    [121]Naessens M, Cerdobbel A, Soetaert W, Vandamme E. Dextran dextrinase and dextran of Gluconobacter oxydans. J Ind Microbiol Biotechnol.2005,32(8):323-334
    [122]Katrlik J, Vostiar I, Sefcovicova J, Tkac J, Mastihuba V, Valach M, Stefuca V, Gemeiner P. A novel microbial biosensor for selective bioprocess monitoring monitoring of 1,3-propanediol based on mediated Gluconobacter oxydans cells. Biosens Bioelectron.2006
    [123]Vostiar I, Ferapontova EE, Gorton L. Electrical "wiring" of viable Gluconobacter oxydans cells with a flexible osmium-redo polyelectrolyte. Electrochem Commun.2004, 6(7):621-626
    [124]Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E. Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron.2003,18(9):1125-1134
    [125]Setkus A, Razumiene J, Galdikas A, Laurinavicius V, Meskys R, Mironas A. Electrically induced gas sensitive state of enzyme-metal contact in ADH-dry-layer based planar structure. Sens Actuators B-Chem.2003,95(1-3):344-351
    [126]Lobanov AV, Borisov IA, Gordon SH, Greene RV, Leathers TD, Reshetilov AN. Analysis of ethanol-glucose mixtures by two microbial sensors:Application of chemometrics and artificial neural networks for data processing. Biosens Bioelectron. 2001,16(9-12):1001-1007
    [127]Tkac J, Gemeiner P, Svitel J, Benikovsky T, Sturdik E, Vala V, Petrus L, Hrabarova E. Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal Chim Acta.2000,420(1):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700