新疆尉犁蛭石结构及其吸附金属离子和磷酸盐机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用自然界天然自净化功能,寻求与环境相协调的、绿色环保的污染治理与环境修复方法已成为当前人们关注的焦点。其中,自然界广泛存在的天然粘土矿物,由于其具有比表面积大、吸附性能好、储量丰富、来源广泛、处理工艺相对简单的特点,因此在环境对重金属污染的自净化中起着重要作用,是目前重金属废水处理的研究热点。蛭石是天然粘土矿物的一种。有关蛭石在环境方面的应用研究发展很快,但在金属离子的废水处理及含磷废水处理方面的研究还很不深入,仅有一些零散及初步的研究报道,尚缺乏系统的、全面的、深入的研究。
     针对以上问题,本文以新疆尉犁细粒蛭石为研究对象,综合运用环境化学、分析化学、矿物学等学科的知识,采用多种分析手段,对该蛭石进行了结构鉴定研究;并将原蛭石用于吸附金属离子Pb~(2+)、Ag~+、Ni~(2+)、Cd~(2+),系统研究了蛭石吸附单一及混合金属离子的动力学和热力学机理;进而制备了两类具有重要应用前景的新型吸附材料,即羟基铝柱撑蛭石和CaCl_2改性蛭石,将其用于磷酸盐吸附,并对吸附过程的影响因素及吸附机理进行了详细探讨。
     吸附剂本身的结构性质,是决定该吸附剂吸附潜力的关键。通过扫描电镜(SEM)、傅立叶变换红外光谱分析(FT-IR)、热重分析(TG)、X射线衍射方法(XRD)对新疆尉犁蛭石进行了结构鉴定。结果表明,该蛭石属于Na、Ca混合型的层状硅酸盐矿物,既含有独立的蛭石成分,也含有水金云母成分,属于V(蛭石)+P(金云母)/V型无序矿物。为了计算新疆尉犁蛭石矿中蛭石和金云母的混层比,建立了以参比强度为基础的XRD定量分析新方法,该方法优于传统的分晶层定量方法。同时,首次通过MS modeling软件构建了新疆尉犁蛭石矿中的纯蛭石模型和水金云母模型及其粉末衍射模拟XRD谱图,表明该蛭石矿确实是纯蛭石和水金云母的混合体,弥补了定性分析中因缺乏粉末衍射卡PDF而无法进行相分析的不足。
     在对蛭石结构进行系统研究基础上,将原蛭石用于吸附金属离子Pb~(2+)、Ag~+、Ni~(2+)、Cd~(2+),系统研究了蛭石吸附单一金属离子的动力学和热力学机理。结果表明:蛭石对Pb~(2+)的吸附动力学可用拟一级速率方程和拟二级速率方程表示,蛭石对单一离子Ag~+、Ni~(2+)、Cd~(2+)的吸附动力学可用拟二级速率方程来描述,计算值与实测值吻合甚好,室温下相关系数(R~2)均达到0.99以上。蛭石对4种金属离子的吸附速率大小分别为:Ag~+>Pb~(2+)>Cd~(2+)>Ni~(2+)。蛭石对单一离子Pb~(2+)、Ag~+、Ni~(2+)、Cd~(2+)的吸附等温线均符合Langmuir和Freundlich等温方程式,室温下相关系数(R~2)分别达到0.9以上。且4种金属离子按其吸附容量大小的排序为Pb~(2+)>Cd~(2+)>Ag~+>Ni~(2+)。考察了温度对蛭石吸附单一离子Pb~(2+)、Ag~+的影响。温度升高,蛭石对单一离子Pb~(2+)、Ag~+的平衡吸附量均增大,说明该吸附反应是吸热反应。首次求得了蛭石吸附Pb~(2+)、Ag~+的焓变(△H)、熵变(△S),及不同温度下的吉布斯自由能变化(△G),弥补了目前关于温度对蛭石吸附金属离子的影响尚无定量描述方法的不足。同时,蛭石吸附不同金属离子(如Pb~(2+)、Ag~+、Ni~(2+)、Cd~(2+))前后的XRD分析表明,蛭石吸附不同的金属离子,其晶面间距d_(001)呈现不同值。这是由于金属离子的电子构型、电价及半径不同造成的。蛭石吸附Pb~(2+)后的热重分析(TG)和X光电子能谱分析(XPS)表明,吸附到蛭石上的Pb(Ⅱ)存在多种形态,如Pb-O-Si、Pb-OH、Pb(OH)等。
     基于上述实验结果,进一步研究了二元金属离子体系(Pb~(2+)/Ag~+、Pb~(2+)/Ni~(2+)、Pb~(2+)/Cd~(2+)、Ag~+/Ni~(2+)、Ag~+/Cd~(2+)、Ni~(2+)/Cd~(2+)),三元金属离子体系(Pb~(2+)/Ag~+/Ni~(2+)、Pb~(2+)+/Ag~(2+)/Cd~(2+)、Pb~(2+)/Ni~(2+)/Cd~(2+)、Ag~(2+)/Ni~(2+)/Cd~(2+))和四元金属离子体系(Pb~(2+)/Ag~+/Ni~(2+)/Cd~(2+))在蛭石上的竞争吸附行为。结果表明:蛭石对4种金属离子的竞争吸附能力大小顺序为:Pb~(2+)>cd~(2+)>Ni~(2+)>Ag~(2+)。且各混合体系中蛭石对Pb~(2+)的吸附均符合Langmuir等温方程式。在溶液pH值、蛭石的粒径、用量等外界条件一致的情况下,影响蛭石对金属离子吸附能力的主要因素是金属离子自身的因素,如离子水合能、离子半径、有效水合半径、电价、电负性等。蛭石对4种金属离子的竞争吸附速率大小依次为Ag~+>Pb~(2+)>Ni~(2+)>Cd~(2+)。拟二级速率方程能很好的描述蛭石对各金属离子的吸附动力学,实验数据与方程吻合甚好,相关系数(R~2)均达到0.98以上。
     为了提高蛭石对Ag~+的吸附容量,将蛭石进行热改性和酸改性。结果表明:蛭石经不同温度灼烧处理后,随着灼烧温度从100℃升高到600℃,其d_(001)值逐渐变小,阳离子交换容量(CEC)逐渐减小到几乎为0。蛭石经100℃灼烧处理后,其吸附Ag~+的能力较原蛭石强。而蛭石经200℃、300℃、600℃灼烧处理后,其对Ag~+的吸附率越来越低,说明蛭石吸附Ag~+的能力变差。经100℃处理的蛭石对Ag~+的吸附等温线均符合Langmuir和Freundlich方程,室温下相关系数(R~2)分别达到0.999和0.975。蛭石经不同浓度HCl处理后,随着HCl浓度增大,蛭石的d_(001)衍射峰强度明显降低,半峰宽明显增大,直至该衍射峰消失。阳离子交换容量(CEC)也逐渐减小到几乎为0。蛭石经0.1mol/L HCl处理后,其对Ag~+的吸附能力较原蛭石强,0.2000 g改性蛭石对100 mg/L Ag~+的吸附率达到77.08%,比原蛭石对Ag~+的吸附率增大了10%。随着HCl浓度增大,其对Ag~+的吸附能力反而降低。经0.1 mol/L HCl处理的蛭石对Ag~+的吸附等温线均符合Langmuir和Freundlich方程,室温下相关系数(R~2)分别达到0.997和0.961。
     由于原蛭石对磷酸盐的吸附能力较弱,将原蛭石改性,首次制备了两类对磷酸盐有较好吸附效果的新型吸附材料,即羟基铝柱撑蛭石和CaCl_2改性蛭石,系统研究了其制备方法和吸附磷酸盐机理。结果表明:将新疆尉犁蛭石矿依次经过HNO_3酸化,600℃灼烧,草酸酸化,NaCl交换5次后,增加Si/Al比值,使其层电荷降低。再用Keggin离子插层,得到了18(?)的羟基铝柱撑蛭石。进而将此改性蛭石用于磷酸盐废水处理,实验了不同pH值下改性蛭石吸附磷酸盐的效果,并与原蛭石作比较。结果发现,pH3条件下,改性后的蛭石对磷酸盐的吸附率最大,达到11.51%,比原蛭石提高了约3倍。其吸附机理主要为将原蛭石进行羟基铝柱撑改性后,Keggion离子进入层间,其中的Al-OH基团可与H_2PO_4~-离子发生离子交换反应:Al-OH+H_2Po_4~-→Al-OPO_3H_2+OH~-另外,除了离子交换反应外,羟基铝插层后游离出的少量Al~(3+)会与磷反应生成磷酸铝沉淀,以及蛭石表面的-Si-OH、-Al-OH等基团与磷的络合反应等。
     建立了CaCl_2改性蛭石吸附磷酸盐的新方法,讨论了溶液pH值、温度、时间对吸附效果的影响,探讨了吸附机理,并与原蛭石作比较。结果表明:将蛭石进行CaCl_2改性后,改性蛭石对磷浓度为20mg/L的磷酸盐的吸附率达到98.5%。不同pH值条件下,CaCl_2改性蛭石对磷酸盐的吸附率明显高于原蛭石。pH<10时,改性蛭石对磷酸盐的吸附率≤5.0%。pH>10后,吸附率明显增大,出现突跃,在pH=12时达到最高值。原蛭石对磷酸盐的吸附率变化趋势与CaCl_2改性蛭石类似,但是各pH值下对磷酸盐的吸附率均较改性蛭石低。pH<10时原蛭石对磷酸盐的吸附率≤1.5%。pH>10.5后,吸附率明显增大,出现突跃,在pH=12时达到最高值。CaCl_2改性蛭石及原蛭石对磷酸盐的吸附动力学行为均符合拟一级动力学方程和拟二级动力学方程,室温下相关系数(R~2)均在0.98以上。拟一级动力学方程计算所得的改性蛭石及原蛭石吸附磷酸盐的总的反应速率常数分别为0.1289 min~(-1)和0.07765 min~(-1);拟二级动力学方程计算所得的改性蛭石及原蛭石吸附磷酸盐的反应速率常数分别为0.2809 g·mg~(-1)·min~(-1)和0.2273 g·mg~(-1)·min~(-1)。说明CaCl_2改性蛭石吸附磷酸盐的速率较原蛭石快。CaCl_2改性蛭石及原蛭石对磷酸盐的吸附平衡均符合Lamgmuir和Freundlich等温方程式,室温下其与两类方程的相关系数(R~2)均达到0.9以上。且随着温度升高,两种蛭石对磷酸盐的最大吸附量Q_(max)甜逐渐增大,CaCl_2改性蛭石从10℃的11.29mg/g增加到60℃的12.79 mg/g,原蛭石从10℃的3.856 mg儋增加到60℃的5.000mg/g。说明CaCl_2改性蛭石对磷酸盐的吸附能力比原蛭石对磷酸盐的吸附能力强得多。求得了CaCl_2改性蛭石和原蛭石吸附磷酸盐的△H分别为4.072 kJ/mol、128.7 kJ/mol;△S分别为25.72 J/mol·K、461.7 J/mol·K;CaCl_2改性蛭石吸附磷酸盐的△G分别为-3.289 kJ/mol(10℃)、-3.537 kJ/mol(30℃)、-4.140 kJ/mol(45℃)、-4.549 kJ/mol(60℃);原蛭石吸附磷酸盐的△G分别为-1.52 kJ/mol(10℃)、-10.64 kJ/mol(30℃)、-21.74 kJ/mol(45℃)、-22.72 kJ/mol(60℃)。表明两种蛭石对磷酸盐的吸附反应均是自发进行的,温度越高,自发进行的程度越大。且两种蛭石对磷酸盐的吸附反应是吸热反应,温度升高,有利于反应的进行。原蛭石及改性蛭石对磷酸盐的吸附作用除了物理吸附外,还存在化学吸附,如蛭石中的Ca~(2+)与磷酸盐结合生成磷灰石,温度升高降低了反应的活化能,有利于形成化学键,利于化学吸附。
Natural self-purification, a potential mechanism in nature whereby mankind and the earth are interrelated with each other, has been playing an increasingly important role in the field of harnessing contamination and remedying environment. Metal pollutants treatment by natural clay minerals is based on the law of nature and reflects natural self-purification function in the inorganic world. Vermiculite is one of the natural clay minerals, which is relatively cheap and easily available in China. Although previous researches have highlighted the utility of this very low cost and environmentally friendly vermiculite in the removal of heavy metals and phosphates from wastewater, little attention has been paid to the mechanisms of kinetics and the thermodynamics for the metal adsorption on natural vermiculite and for the phosphate adsorption on the modified vermiculite.
     Therefore, the objective of this paper was to investigate the structure characteristics of the vermiculite supplied by the Weili mine of Xinjiang by using kinds of analysis methods based on the knowledge of environmental chemistry, analysis chemistry and mineralogy. Moreover, the kinetics and thermodynamics mechanisms of Ag~+, Pb~(2+), Cd~(2+) and Ni~(2+) adsorption on natural vermiculite were studied. Furthermore, two new kinds of adsorption materials of Al-pillared vermiculite and CaCl_2 modified vermiculite were prepared, and phosphates sorption experiments were carried out for the two modified vermiculites to investigate sorption behaviors and mechanisms of phosphates.
     The structure of an adsorbent is the key to decide itsadsorption ability. By using SEM, FT-IR, TG and XRD methods, the structure characteristics of the vermiculite were investigated, which indicated that the vermiculite is not pure vermiculite but a mixture of hydrobiotite and vermiculite. In addition, a new method for computing the proportion of phlogopite and vermiculite crystal layer of phlogopite-vermiculite interstratified mineral from Weili mine of Xinjiang was established based on the analysis of XRD, which is better than the traditionai method of individual crystal layer chemical formula. Furthermore, the tridimentional models of the vermiculite layer and the hydrobiotite crystal layer of Weili vermiculite of Xinjiang were established firstly by the MS modeling software.
     Based on the systemic investigation of the structure characteristics of the vermiculite, the kinetics and thermodynamics mechanisms of Ag~+, Pb~(2+), Cd~(2+), Ni~(2+) adsorption on natural vermiculite were studied. The kinetics of Pb~(2+) adsorption on vermiculite can be best described by pseudo-first order kinetics model and pseudo-second order kinetics model. The kinetics of Ag~+, Cd~(2+) and Ni~(2+) adsorption on vermiculite Can be best described by pseudo-second order kinetics model. The adsorption capacities calculated by the model were consistent with those actual measurements, which the correlation coefficient (R~2) was more than 0.99 at room temperature. The adsorption rates for metal ions were in the order of Ag~+>Pb~(2+)>>Cd~(2+)>Ni~(2+). The adsorption isotherms for Ag~+, Pb~(2+), Cd~(2+) and Ni~(2+) adsorption on vermiculite followed both Langmuir and Freundlich isotherm model, which the correlation coefficients (R~2) were more than 0.9 at room temperature. The adsorption capacities for metal ions were in the order of Pb~(2+)>Cd~(2+)>Ag~+>Ni~(2+). Furthermore, the effects of temperature on the Pb~(2+), Ag~+ adsorption on vermiculite were studied. Increase of temperature from 10℃to 80℃increased the sorption of Pb~(2+) and Ag~+, indicating the process to be endothermic. Thermodynamic parameters such as change in enthalpy (△H), change in entropy (△S), and change in free energy (△G) at different temperature were firstly evaluated by applying the Van't Hoff equations. In addition, the XRD patterns for vermiculite adsorbed different metal ions, such as Pb~(2+), Ag~+, Cd~(2+), Ni~(2+) indicated that the d_(001) space was different from one metal to another, which were related to many factors, such as electron conformation, ion charges and ionic radius. The TG and XPS for vermiculite adsorbed Pb~(2+) indicated that there were more Pb(Ⅱ) forms adsorption on vermiculite, such as Pb-O-Si, Pb-OH, Pb(OH)_2 and so on.
     Moreover, the competitive adsorption capacity of metal ions Ag~+, Pb~(2+), Cd~(2+), Ni~(2+) in a binary, ternary and quadruple systems on vermiculite followed Pb~(2+)>Cd~(2+)>Ni~(2+)>Ag~+. Such behaviors were determined by the ion charge, the hydrated ionic radius and the hydration energies of metal species. The adsorption equilibrium of Pb~(2+) in a binary, ternary and quadruple system on vermiculite can be described by the Langmuir isotherm model. The adsorption rate among the four metal ions adsorbed onto vermiculite followed Ag~+>pb~(2+)>Ni~(2+)>Cd~(2+). The pseudo-second order kinetics model best described the kinetics of four metals. The adsorption capacities calculated by the model were consistent with those actual measurements, which the correlation coefficient (R~2) were more than 0.98.
     In order to improve the adsorption capacity of Ag~+ on vermiculite, the natural vermiculite was modified by heat-treatment and acid-treatment. After heated at different temperature, with temperature increasing from 100℃to 600℃, the cation exchanged capacity (CEC) of the vermiculite decreased to almost zero, and the peak of d_(001) decreased in intensity. The adsorption capacity of Ag~+ for the vermiculite heated at 100℃was higher than that for the untreated vermiculite, while the adsorption capacities of Ag~+ for the vermiculite heated at 200℃, 300℃, 600℃respectively were lower than that for the untreated vermiculite. The Ag~+ adsorption on the vermiculite heated at 100℃obeyed both Langmuir and Freundlich model, and the correlation coefficients (R~2) were 0.999 and 0.975 at room temperature, respectively.
     In addition, after leached with different concentration of HCl, with HCl concentration increasing from 0.1mol/L to 2.0mol/L, the peak of d_(001) for vermiculite decreased to dismiss in intensity, and the cation exchange capacity (CEC) decreased to almost zero. The adsorption capacity of Ag~+ for the vermiculite leached with 0.1 mol/L HCl was 10% higher than that for the untreated vermiculite, while the adsorption capacities of Ag~+ for the vermiculites leached with 0.5 mol/L, 1.0 mol/L, 2.0 mol/L HCl respectively were lower than that for the untreated vermiculite. The Ag~+ adsorption on the vermiculite leached with 0.1 mol/L HCl obeyed both Langmuir and Freundlich model, and the correlation coefficients (R~2) were 0.961 at room temperature, respectively.
     Because of the poor adsorption ability of phosphates on natural vermiculite, two new kinds of adsorption materials of Al-pillared vermiculite and CaCl_2 modified vermiculite were prepared. A new method for preparation of Al-pillared vermiculite using the natural vermiculite supplied from Weili mine of Xinjiang has been established. The natural vermiculite was submitted to a nitric acid treatment followed by calcination, oxalic acid treatment, and sodium form by ion exchange, which results in an increase of the framework Si/Al ratio, thus, the reduction of the layer change density, and the conversion of the vermiculite into a form of sodium-vermiculite. Then the 18A Al-pillared vermiculite was obtained by contact with the aluminum pillaring solution. Furthermore, phosphate sorption experiments were carried out for Al-pillared vermiculite and untreated vermiculite under different pH condition to investigate sorption behaviors and mechanisms of phosphates. The phosphate sorption maxima for the Al-pillared vermiculite were 11.51% at pH 3, which were higher by about 3 orders than those for natural vermiculite.
     A new method for CaCl_2 modified vermiculite adsorption phosphate has been established. The adsorption ratio of phosphate with P concentration of 20 mg/L on the 0.1g vermiculite modified by CaCl_2 was 98.5 %. The phosphate sorption to the untreated and CaCl_2 modified vermiculite strongly depended on pH. For the untreated vermiculite, the phosphate adsorption was lower under pH less 10.6. From pH 10.6 to pH 13, the phosphate adsorption increased largely. From pH 12 to pH 13, the phosphate adsorption reached a plateau value and remained constant, ranging from 66 % to 66.5 %. For the CaCl_2 modified vermiculite, the phosphate adsorption was higher than that the untreated vermiculite with different pH. At pH less 4, the phosphate sorption was 4 %. At pH 8.0, the phosphate sorption increased to 5%. From pH 9.5 to pH 13, the phosphate sorption increased sharply, reached 99% with pH-12. The kinetics of phosphate adsorption on CaCl_2 treated vermiculite and untreated vermiculite can be best described by pseudo-first order kinetics model and pseudo-second order kinetics model. The adsorption capacities calculated by the model were consistent with those actual measurements, which the correlation coefficient (R~2) were more than 0.98. The overall rate constants for phosphate adsorbed on modified vermiculite and untreated vermiculite were 0.1289 min~(-1) and 0.07765 min ~(-1) respectively by pseudo-first order kinetics model. The rate constants calculated by pseudo-second order kinetics model for phosphate adsorption on modified vermiculite and untreated vermiculite were 0.2809 g·mg~(-1)·min~(-1) and 0.2273 g·mg~(-1)·min~(-1) respectively. The adsorption isotherms for CaCl_2 modified vermiculite and untreated vermiculite followed both Langmuir and Freundlich isotherm model, which the correlation coefficients (R~2) were more than 0.9 at room temperature. Increase of temperature from 10℃to 60℃increased the sorption capacity of P from 11.29 mg/g to 12.79 mg/g by CaCl_2 modified vermiculite and from 3.856 mg/g to 5.000 mg/g by untreated vermiculite, indicating that CaCl_2 modified vermiculite was better than untreated vermiculite to remove phosphate. For the CaCl_2 modified vermiculite and untreated vermiculite, the△H were 4.072 kJ/mol, 128.7 kJ/mol respectively, which indicated that rise in temperature favored the adsorption and the adsorption process was an endothermic reaction in nature. The△S were 25.71 J/mol K, 461.7 J/mol K respectively, and the△G were negative at different temperature. It indicated that the adsorption was spontaneous in the nature and the spontaneous increased with increasing temperature. This observation can be explained by the fact that for the CaCl_2 modified vermiculite and untreated vermiculite, there are more than one mechanism for phosphate adsorption. Along with the usual physisorption, the chemisorption of phosphate at the active sites in the vermiculite surface, such as P precipitation induced by Ca~(2+) also took place. Increasing temperature not only increased the active surface centers available for adsorption, but also decreased the activation energy for the adsorption. All of these are favor to chemisorption.
引文
[1] 张立生.长江流域城市生态环境可持续发展战略研究[J].城市研究.2000.2:36-39.
    [2] 吴平霄.粘土矿物材料与环境修复[M].北京:化学工业出版社.2004:276-277.
    [3] 陈静生,王立新,洪松等.各国水体沉积物重金属质量基准的差异及原因分析[J].环境化学.2001.20(5):417-422.
    [4] 王绍文.重金属废水治理技术[M].北京:冶金工业出版社.1993.
    [5] 杜军.石灰中和法处理含重金属离子废水[J].工业水处理.1987.7(4):23-24.
    [6] 姜玉兰.含铜锌重金属废水处理.工业水处理[J].1987.7(1):52-54.
    [7] 严刚.石灰混凝法处理重金属废水的实验研究[J].青海大学学报(自然科学版).2006.24(2):13-16.
    [8] Tien-Yung, J. C. Fly ash put to use in wastewater [J]. Journal of WPCF. 1978. 50(9):2234-2251.
    [9] 任高平.化学法治理铜件酸洗废水并电解回收铜[J].工业水处理.1986.6(6):46-47.
    [10] 刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工.2005. 4:36-39.
    [11] 宋世林.化学法处理含铬废水试验[J].电镀与环保.1984.4(2):31-34.
    [12] 孙权一.铁粉法处理铬离子废水应用与研究[J].化学世界.1980.3:148-151.
    [13] 巫瑞中.石灰-铁盐法处理含重金属及砷工业废水[J].江西理工大学学报.2006.27(3):58-61.
    [14] 朱洪涛,王军.铁屑在重金属废水处理中的应用[J].工业安全与环保.2005.31(8):6-8.
    [15] 张国春,艾翠玲,王书民.含铬重金属废水处理的试验研究[J].湖南大学学报(自然科学版).2005.32(5):100-103.
    [16] 尹爱君.在冶炼废水处理中应用[J].湖南冶金.1995.3:25-27.
    [17] 车荣睿.离子交换法治理含铬废水进展[J].水处理技术.1987.13(6):324-329.
    [18] 孙春宝,刑奕,李秋华等.木屑黄原酸酯的研制及在重金属废水处理中的应用[J].北京科技大学学报.2006.28(2):108-112.
    [19] 龚盛昭.利用蔗渣或稻草制备重金属废水处理剂——纤维素黄原酸酯的实验[J].甘蔗糖业.1999.5:43-45.
    [20] 周定,杨硕林.新型螯合树脂—木屑柠檬酸酯的合成及其应用[J].环境化学.1984.6:30-33.
    [21] 罗道成,易平贵,陈安国,等.腐殖酸树脂对电镀废水中重金属离子的吸附[J].材料保护.2002.35(4):54-56.
    [22] 来风习,王九思,杨玉华.铁氧体法处理重金属废水研究[J].甘肃联合大学学报(自然科学版).2006.20(3):64-66.
    [23] 赵如金,吴春笃.常温铁氧体法处理重金属离子废水研究[J].化工环保.2005.25(4):263-266.
    [24] 蒋继穆.“八五”期间重有色金属冶炼技术进展概述[J].世界有色金属.1997.12:1-5.
    [25] 张一先,等.废铁粉的应用研究[J].北京师范大学学报.1984.2:45-48.
    [26] 顾雪斤,等.槽边循环电解法从酸性镀铜废水中回收铜[J].电镀与环保.1984.4(2):26-28.
    [27] 刘瑞轩,干爱华,王韬,等.电生物膜处理含重金属离子废水的浓度在线检测方法[J].西南给排水.2005.27(4):36-39.
    [28] 刘瑞轩,干爱华,王韬,等.电生物膜处理重金属离子有机废水[J].水处理技术.2005.31(9):45-48.
    [29] 李书申,吴开芬.大孔径聚砜超滤膜的研究[J].环境化学.1993.12(6):463-46.
    [30] 吴开芬,李书申.聚醚砜超滤膜的研究[J].环境化学.1993.12(6):449-455.
    [31] 吴玲玲,刘淑秀.聚砜酰胺超滤膜及其应用[J].水处理技术.1983.9(1):22-24.
    [32] 颜翠平,王成端,张明星,等.超滤膜处理实验室废水中重金属离子实验研究[J].环境卫生工程.2006.14(5):17-21.
    [33] 谢辉玲,叶红齐,曾坚贤.膜分离技术在重金属废水处理中的应用[J].化学与生物工程.2005.5:41-46.
    [34] 黄万抚,徐洁.反渗透法处理矿山含重金属离子废水的试验研究[J].矿业工程.2005.3(4):36-38.
    [35] 黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术.2006.32(2):9-12.
    [36] Sigworth, E. A.; Smith, S. B. Adsorption of inorganic compounds by activated carbon [J]. Journal of American Water Works Association. 1972.64 (6): 386.
    [37] Mohan, D.; Gupta,V. K.; Srivastava S. K; et al. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste [J]. Colliods and Surfaces A. 2001. 177(2-3): 169.
    [38] Brown, P. A.; Gill, S. A.; Allen, S. J. Metal removal from wastewater using peat [J]. Water Research. 2000. 34 (16): 3907.
    [39] Ho, Y. S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss flat [J]. Water Research. 2000.34 (3): 735.
    [40] Texier, A.C.; Andres, Y.; Le Cloirec, P. Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa [J]. Environmental Science and Technology. 1999.33 (3): 489.
    [41] Reddad, Z.; Gerente, C.; Andres, Y.; et al. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies [J]. Environmental Science and Technology. 2002.36 (9): 2067.
    [42] Gupta, V. K.; Rastogi, A.; Saini, V. K. Biosorption of copper (Ⅱ) from aqueous solutions by algae spirogyra species [J]. Journal of Colloid and Interface Science. 2006.296(1): 59.
    [43] Gupta, V. K.; Shrivastava, S. K.; Jain, N. Biosorption of chromium (Ⅵ) from aqueous solutions by green algae spirogyra species [J]. Water Research. 2001.35(17): 4079.
    [44] Calace, N.; Di Muro, A.; Nardi, E.; et al. Adsorption Isotherms for Describing Heavy-Metal Retention in Paper Mill Sludges [J]. Industrial Engineering and Chemical Research. 2002. 41: 5491-5497.
    [45] Mohan, D.; Gupta, V. K.; Srivastava S. K; et al. Kinetics of rriercury adsorption from wastewater using activated carbon derived from fertilizer waste [J]. Colliods and Surfaces A. 2001. 177(2-3): 169.
    [46] 李红,赵雪丽,任乃林.吸附法处理含铅废水的研究[J].韩山师范学院学报.2001.2:69-73.
    [47] Gupta V. K.; Sharma, S. Removal of cadmium and zinc from aqueous solutions using red mud. Environmental Science and Technology. 2002.36 (16): 3612.
    [48] Viraraghavan, T.; Rao, A. K. Adsorption of cadmium and chromium from wastewater by fly ash [J]. Journal of Environmental Science Health Part A. 1991.26 (5): 721.
    [49] Ricou, P.; Lecuyer, l.; Cloirec, P. L. Experimental design methodology applied to adsorption of metallic ions onto fly ash [J]. Water Research. 2001. 35 (4): 965.
    [50] Gupta, V. K.; All, I. Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste [J]. Journal of Colliod Interface Science. 2004.271(2): 321.
    [51] Gupta, V. K.; Sharma, S. Removal of zinc from aqueous solutions using bagasse fly ash-a low cost adsorbent [J]. Industrial Engineering and Chemical Research. 2003.42(25): 6619.
    [52] 陶红,徐国勋,马鸿文.13X分子筛处理重金属废水的试验研究[J].中国给水排水.2000.16(5):53-56
    [53] 潘碌亭,肖锦.废水处理中改性天然高分子絮凝剂的研究和应用[J].安徽师范大学学报(自然科学版).2001.24(1):73-75.
    [54] 朱江龙,朱锦瞻,罗儒显.改性天然高分子的制备及在水处理中的应用[J].广州大学学报(综合版).2000.14(3):41-45.
    [55] 祝巨.天然生物高分子絮凝剂的研究进展[J].浙江科技学院学报.2003.15(2):97-105.
    [56] 罗道成,易平贵,刘俊峰,等.改性壳聚糖对废水中重金属离子的吸附[J].材料保护.2002.35(1):11-12.
    [57] 林静雯,高丹,王小军.壳聚糖及其衍生物在废水处理中的研究进展[J].环境保护科学.2004.30(123):16-19.
    [58] 张利平.天然吸附剂——壳聚糖的最新研究[J].阴山学刊.2001.5:42-44.
    [59] Gupta,V. K. ; Singh P.; Rahman, N. Adsorption behavior of Hg(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution on duolite C-433 : A synthetic resin [J]. Journal of Colliod and Interface Science. 2004. 275(2): 398.
    [60] Murari, P.; Sona, S. Sorption mechanism of some divalent netal ions onto low-cost mineral adsorbent [J]. Industrial Engineering and Chemical Research. 2004.43:1512-1522.
    [61] Du, Y. J.; Hayashi, S. A study on sorption properties of Cd~(2+) on ariake clay for evaluating its potential use as a landfill barrier material [J]. Applied Clay Science. 2006.32 (1-2): 14.
    [62] Adebowale, K. O.; Unuabonah, I. E.; Olu-Owolabi, B. I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay [J]. Journal of Hazard Material. 2006. 134 (1-3): 130.
    [63] 刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报.2001.1(1):9-12.
    [64] 余丽秀,孙亚光,张志湘.蒙脱石离子交换和吸附效应及在水处理中的应用[J].中国非金属矿工业导刊.2004.2:31-36
    [65] 宋和付,夏畅斌,何湘柱,等.天然沸石对Pb(Ⅱ)和Ni(Ⅱ)离子的吸附作用研究[J].矿产与地质.2000.14(4):276-278.
    [66] 杨明平,彭荣华,李国斌.用改性海泡石处理含铬废水[J].2003.36(7):54-55.
    [67] 高发奎,杨晓辉,陈钢,等.用天然矿土处理铅锌选矿废水技术的研究[J].甘肃环境研究与监测.2001.14(3):148-150.
    [68] 万亚珍,等.用复合沉淀剂从废水中除磷的理论计算[J].无机盐工业.2003.32(3):9-11.
    [69] 王九思.水处理化学[M].北京:化学工业出版社.2002:126-127.
    [70] 张林生,鞠宇平,周瑜,等.石灰沉淀结晶法处理高浓度含磷废水[J].给水排水.2002.28(5):42-44.
    [71] 田锋,尹连庆.含磷废水处理的研究现状[J].工业安全与环保.2005.31(7):6-8.
    [72] 丛广治,白羽,陈立学,等.大连开发区污水厂的生物除磷实践[J].中国给水排水.2004.20(1):74-77.
    [73] 徐庆国,吴贵明,满春生.工业含磷废水处理的研究与应用[J].工业水处理.2003.23(12):76-78.
    [74] Dongye Zhao, et al. Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers [J]. Water Research. 1998.32:1613.
    [75] 王萍,牛晓君,赵保卫.海绵铁吸附除磷机理研究[J].中国给水排水.2003.19(3):11.
    [76] 杜冬云,柯丁宁,赵小蓉,等.改性累托石对磷的吸附[J].非金属矿.2003.26(5):51.
    [77] McGechan, M. B. Sorption of Phosphorus by Soil, Part 2: Measurement Methods, Results and Model Parameter Values [J]. Biosystems Engineering. 2002.82 (2): 115-130.
    [78] NeMeth, Z.; GaNcs, L.; GeMes, G.; et al. pH Dependence of Phosphate Sorption on Aluminum [J]. Corrosion Science. 1998.40(12): 2023-2027.
    [79] Wang, S. R.; Jin, X. C.; Pang, Y.; et al. The study of the effect of pH on phosphate sorption by different trophiclake sediments [J]. Journal of Colloid and Interface Science. 2005. 285: 448-457.
    [80] Ensar, O.; Ahmet, G.; Mehmet, Y. Removal of Phosphate from wastewaters by Adsorption [J]. Water, Air, and Soil Pollution. 2003. 148: 279-287.
    [81] Dion, H. M.; Harsh, J. B.; Hill, H. H. Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils [J]. Journal of Radioanalytical and Nuclear Chemistry. 2001. 249(2): 385-390.
    [82] Marco, P. P.; Annalisa, B.; Mauro, M.; Mario, B. Equilibrium modeling of lead adsorption onto a "red soil" as a function of the liquid-phase composition [J]. Industrial Engineering and Chemical Research. 2002.419:1946-1954.
    [83] Nam, Y. D.; Seung, R. L. Effect of temperature on single and competitive adsorptions of Cu(Ⅱ) and Zn(Ⅱ) onto natural clays [J]. Environmental Monitoring and Assessment. 2003. 83: 177-203.
    [84] Isabellel, L.; Mollyk, M.; Bryand, P. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay [J]. Environmental Science and Technology. 2001.35: 984-990.
    [85] 王湖坤,龚文琪.粘土矿物材料在重金属废水处理中的应用[J].工业水处理.2006.26(4):4-7.
    [86] 鲁安怀.矿物环境属性与无机界天然自净化功能[J].矿物岩石地球化学通报.2002.21(3):192-197.
    [87] Dos Santos, C. P. F.; Melo, D. M. A.; Melo, M. A. F.; Sobrinho, E. V. Characterization and uses of bentonite and vermiculite clays for adsorption of copper (Ⅱ) in solution [J]. Ceramica. 2002.48(308): 178-182.
    [88] Low, K. S.; Lee, C. K.; Lee, T. S. Acid-activated spent bleaching earth as a sorbent for chromium(Ⅵ) in aqueous solution [J]. Environmental Technology. 2003.24(2): 197-204.
    [89] Alvarez-Ayuso, E.; Garcia-Sanchez, A. Removal of heavy metals from waste waters by vermiculites [J]. Environmental Technology. 2003.24(5): 615-625.
    [90] Jiang, W.; Gerhard, F.; Stefan, K.; et al. Influence of Clay Minerals on the Hydrolysis of Carbamate Pesticides [J]. Environmental Science and Technology. 2001.35: 2226-2232.
    [9l] Benjamin C. B.; Murthy A . V.; Karthyken, K. G.; et al. Cesium Adsorption on Clay Minerals: An EXAFS Spectroscopic Investigation [J]. Environmental Science and Technology. 2002.36: 2670-2676.
    [92] Camille, D.; Hervea Q.; Siobhan S. Adsorption of Cesium by Synthetic Clay-Organic Matter Complexes: Effect of the Nature of Organic Polymers [J]. Environmental Science and Technology. 2000.34: 2985-2989.
    [93] Marco P. P.; Annalisa B.; Mauro M.; et al. Equilibrium Modeling of Lead Adsorption onto a "Red Soil" as a Function of the Liquid-Phase Composition [J]. Industrial Engineering and Chemical Research. 2002.41 : 1946-1954.
    [94] NAM, Y. D.; SEUNG, R. L. Effect of Temperature on Single and Competitive Adsorptions of Cu(Ⅱ) and Zn(Ⅱ) onto Natural Clays [J]. Environmental Monitoring and Assessment. 2003.83: 177-203.
    [95] Viraraghavan, T.; Rao, A. K. Adsorption of cadmium and chromium from wastewater by fly ash [J]. Journal of Environmental Science Health Part A. 1991. 26 (5): 721.
    [96] Manohar, D. M.; Anoop K. K.; Anirudhan, T.S. Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay [J]. Water Research. 2002.36:1609-1619.
    [97] 袁继祖,陈鹏.层状硅酸盐矿物处理重金属污染废水浅析[J].中国非金属矿工业导刊.2006.5:9-12.
    [98] Liu, Y.; Wu, P. X.; Dang, Z.; et al. Heavy metal removal from water by adsorption using pillared montmorillonite [J]. Acta Geologic Sin-English. 2006.80 (2): 219.
    [99] Gupta, S. S.; Bhattacharyya, K. G. Adsorption of Ni (Ⅱ) on clays [J]. Journal of Colloid and Interface Science. 2006. 295(1): 21.
    [100] 李爱阳,褚宏伟.改性斜发沸石处理电镀废水中的重金属离子[J].材料保护.2004.37(6):37-45.
    [101] 杭瑚,胡博路,马兵等.彭润土吸附——絮凝法处理污水中的重金属离子[J].环境科学研究.1994.7(1):48-52
    [102] 高效江,戎秋涛.麦饭石对重金属离子的吸附作用研究[J].环境污染与防治.1997,19(4):4-7.
    [103] 侯立臣,王继徽.活化海泡石吸附性能研究[J].污染防治技术.1999.12(1):40-42.
    [104] 王晓蓉,吴顺年.有机粘土矿物对污染环境修复的研究进展[J].环境化学.1997.16(1):1-13.
    [105] 张清敏,胡国臣.强化土壤生态系统净化机能的研究进展[J].环境科学进展.1999.7(1):18-24.
    [106] 吴平霄.粘土矿物材料与环境修复[M].北京:化学工业出版社.2004:276-277.
    [107] 彭同江,万朴,潘兆槽,等.新疆尉犁蛭石矿中金云母-蛭石的间层结构研究[J].岩石矿物学杂志.1996.15(3):250-258.
    [108] 殷宝祥.新疆尉犁县且干布拉克蛭石矿床成因及矿床成因模式探讨[J].新疆地质,1992.10(1):6-22
    [109] Shen Diyuan. Equilibrium and kinetic study of ammonium adsorption and fixation in sodium treated vermiculite [J]. Soil Science Society of America Journal. 1997.61 (6): 1611-1618.
    [110] Bors J.; Gorny A.; Dultz S. Caesium and strontium adsorption by organophilic vermiculite [J].Clay Minerals. 1997. 32(1): 21-28.
    [111] 李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学.23(2):65-67.
    [112] 李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用.12(6):661-663.
    [113] 胡大千,朱建喜.辽宁清原膨胀蛭石及其有机改性研究[J].中国非金属矿工业导刊.2002.1:21-23.
    [114] 马小隆,刘心悦,刘晓明.改性蛭石吸附性能初探[J].能源环境保护.2004.18(5):46-48.
    [115] 仲秀娟.浅谈穴盘育苗在花卉生产中的应用[J].上海农业科技.2004.6:93-94.
    [116] 朱富林.马铃薯脱毒种薯工厂化快繁技术[J].中国马铃薯.2005.1:37-38.
    [117] 刘晓莉,伺文杰,丁宏,等.开发优势资源大力发展新疆新型建材工业[J].中国建材.2005.2:35-38.
    [118] 王坚,赵健.水玻璃膨胀蛭石保温绝热制品的研究[J].新型建筑材料.2005.3:56-57.
    [119] AKAO, M. Vermiculite board for novel building material [J]. Journal of Materials Science Letters. 2003.22:1483-1485.
    [120] 刘福生,彭同江,张宝述.河南灵宝—陕西潼关工业蛭石热处理及X—射线衍射研究[J].中国非金属矿工业导刊.2004.42(4):41-43.
    [121] 刘福生,彭同江,张宝述,等.陕西潼关)河南灵宝蛭石定向晶片X射线衍射研究[J].矿物学报.2004.24(3):266-270.
    [122] 彭同江,万朴,潘兆橹,等.新疆尉犁蛭石矿金云母-蛭石间层矿物的热分析谱研究[J].西南工学院学报.1995.10(4):16-22.
    [123] 张宝述,彭同江,刘福生.粒度对金云母-蛭石层间物可改造性的影响研究[J].非金属矿.1999.22:61-64.
    [1] 李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学.2001.23(2):65-67.
    [2] 李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用.2001.12(6):661-663.
    [3] 谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版).2001.33(3):59-61.
    [4] 谭光群,丁利华,李晖.蛭石对镉吸附作用的研究[J].广西化工.2000.中南、西南分析 化学学术会议论文专集:45-48.
    [5] 郭继香,袁存光,郑参军等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报.1998.22(2):60-63.
    [6] 李博文,于淑会,鲁安怀等.铜型蛭石抗菌剂中Cu~(2+)的赋存状态[J].岩石矿物学杂志.2001.20(4):495-499.
    [7] del Rey-Perez-Caballero, F. J.; Poncelet, G. Microporous 18 A Al-pillared veermiculites: preparation and characterization. Microporous and Mesoporous Materials [J], 2000.37: 313-327.
    [8] Martin, R. T.; et al. Report of the clay minerals society nomenclature committee: revised classification of clay minerals [J]. Clays and Clay Minerals. 1991.39: 333-335.
    [9] Gruner, J. W.; The structures of vermiculites and their collapse by dehydration [J]. American mineral. 1934. 19: 557-575.
    [10] 彭同江,万朴,潘兆橹等.新疆尉犁蛭石矿中金云母:蛭石的间层结构研究[J].岩石矿物学杂志.1996.15(3):250-258.
    [11] 刘福生,彭同江,张宝述,等.陕西潼关)河南灵宝蛭石定向晶片X射线衍射研究[J].矿物学报.2004.24(3):266-270.
    [12] 刘福生,彭同江,张宝述.河南灵宝—陕西潼关工业蛭石热处理及X—射线衍射研究[J].中国非金属矿工业导刊.2004.42(4):41-43.
    [13] 彭同江,万朴,潘兆橹,等.新疆尉犁蛭石矿金云母-蛭石间层矿物的热分析谱研究[J].西南工学院学报.1995.10(4):16-22.
    [14] 赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京-海洋出版社.1990.5.
    [15] 刘福生,彭同江.金云母—蛭石间层矿物分晶层晶体化学式的计算及意义[J].岩石学报.2002.18(2):238-246.
    [16] 李树棠编.晶体X射线衍射学基础.冶金工业出版社.1990:131-148.
    [17] 黄胜涛主编.固体X射线学(一).高等教育出版社.1985:197-224.
    [18] Klug, H. P.; Alexander, L. E. X-ray diffraction procedures for polycrystalline and amorphous materials [M]. Wiley-lnterscience publication. 1974: 505-553.
    [19] 丛秋滋.多晶二维X射线衍射.科学出版社.1997:66-120.
    [20] Tertian, R.; Claisse, E Principle of Quantitative X-Ray Florescence Analysis [M]. London: Phliladelphia, Rheine. 1982
    [21] 法默,应育浦等.矿物红外光谱[M].北京:科学出版社.1982:262-288.
    [22] Stubican, V.; Roy, R. lsomorphous substitution and infrared spectra of the layer lattice silicates[J]. American Mineral. 1961.46: 32-51.
    [23] Poyato, J.; Perez-Maqueda, L. A.; de Haro, MCJ.; et al. Effect of Na~+ and NH_4~+ cations on microstructure changes of natural vermiculite during heat treatment [J]. Journal of Thermal Analytical Calorim. 2002.67 (1): 73.
    [24] 林西生,郑乃萱.无序与有序混层I/S共生时的XRD谱图解释[J].理学X射线衍射仪用户协会论文选集.1996.9(2):43—45.
    [25] 张宝述,彭同江,刘福生.粒度对金云母-蛭石层间物可改造性的影响研究[J].非金属矿.1999.22(6):61-64.
    [26] 刘粤惠 刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社.2003.10.
    [1] Marco, P. P.; Annalisa, B.; Mauro, M, et al. Equilibrium modeling of lead adsorption onto a "red soil" as a function of the liquid-phase composition [J]. Industrial Engineering and Chemical Research. 2002. 419: 1946-1954.
    [2] Nam, Y. D.; Seung, R. L. Effect of temperature on single and competitive adsorptions of Cu(Ⅱ) and Zn(Ⅱ) onto natural clays[J]. Environmental Monitoring and Assessment. 2003. 83: 177-203.
    [3] Isabellel, L.; Mollyk, M.; Bryand, P. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay [J]. Environmental Science and Technology. 2001.35: 984-990.
    [4] Das, N. C.; Bandyopadhyay, M. Removal of lead by vermiculite medium [J]. Apply Clay Science. 1991.6: 221-231.
    [5] Mathialagan, T.; Viraraghavan, T. Adsorption of cadmium from aqueous solutions by vermiculite [J]. Separation Science and Technology. 2003.38(1): 57-76.
    [6] Blais, J. F.; Shen, S.; Meunier, N. et al. Comparison of natural adsorbents for metal removal from acidic effluent [J]. Environmental Technology. 2003.24(2): 205-215.
    [7] 谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版).2001.33(3):58-61.
    [8] 李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学.2001.23(2):65-67.
    [9] 李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用.2000.12(6):661-663.
    [10] Ho, Y. S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research. 2000. 34: 735.
    [11] Lyubchik, S. I.; Lyubchik, A. I.; Galushko, O. L.; et al. Kinetics and thermodynamics of the Cr(Ⅲ) adsorption on the activated carbon from co-mingled wastes [J]. Colloids and Surfaces A: Physieochemical Englishi Aspects. 2004. 242:151-158.
    [12] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社.2004:270.
    [13] 刘新锦,朱亚先,高飞.无机元素化学[M].北京.2005.
    [14] 彭同江,万朴,潘兆橹,张建洪.新疆尉犁蛭石矿金云母-蛭石间层矿物的热分析谱研究[J].西南工学院学报.1995.10(4):16-22.
    [15] Poyato, J.; Perez-Maqueda, L. A.; de Haro, MCJ.; et al. Effect of Na~+ and NH_4~+ cations on microstructure changes of natural vermiculite during heat treatment [J]. Journal of Thermal Analytical Calorimetric. 2002.67 (1): 73.
    [16] Sekar, M.; Sakthi, V.; Rengaraj, S. Kinetics and equilibrium adsorption study of Lead(Ⅱ) onto activated carbon prepared from coconut shell [J]. Journal of Colloid and Interface Science. 2004. 279 (2): 307.
    [17] Prasad, M.; Saxena, S.; Amritphale, S. S.; et al. Kinetics and isotherms for aqueous lead adsorption by natural minerals [J]. Industrial Engineering and Chemical Research. 2000. 39: 3034-3037.
    [18] 万朴,彭同江.超镁铁质岩建造中的镁质非金属矿物及成矿系列研究[M].成都:四川科学技术出版社.1996.
    [19] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004.
    [20] 栾兆坤,汤鸿霄.尾矿砂颗粒表面特征与吸附作用的研究,Ⅱ.尾矿砂对重金属的吸附作用[J].环境化学.1993.12(5):356-364.
    [21] 何宏平.粘土矿物与金属离子作用研究[M].北京:石油工业出版社.2001.12:85-88.
    [22] Sverjensky, D. A. Physical surface-complexation models for sorption at the mineral water interface [J]. Nature. 1993. 364: 776-780.
    [23] 何宏平,郭九皋,谢先德.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报.1999.19(2):231-235.
    [24] Sahai, N.; Sverjensky, D. A. Solvation and electrostatic model for specific electrolyted adsorption [J]. Geochim Cosmochim Acta. 1997.61 : 2827-2848.
    [1] Morel, F. M. M.; Hering, J. G. Pringciples and Applications of Aquatic Chemistry [J]. John Wiley & Sons: New York, 1993.
    [2] Reddad, Z.; Gerente, C.; Andres, Y.; et al. Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies [J]. Environmental Science and Technology. 2002. 36: 2067.
    [3] Li, Y. H.; Ding, J.; Luan, Z.; et al. Competitive adsorption of Pb~(2+), Cu~(2+) and Cd~(2+) ions from aqueous solutions by multiwalled carbon nanotubes [J]. Carbon. 2003.41: 2787.
    [4] Kang, S. Y.; Lee, J. U.; Moon, S. H.; et al. Competitive adsorption characteristics of Co~(2+), Ni~(2+), and Cr~(3+) by IRN-77 cation exchange resin in synthesized wastewater [J]. Chemosphere. 2004.56: 141.
    [5] Lv, L.; Hor, M. P.; Su, F.; et al. Competitive adsorption of Pb~(2+), Cu~(2+), and Cd~(2+) ions on microporous titanosilicate ETS-10 [J]. Journal of Colloid and Interface Science. 2005. 287: 178.
    [6] 何宏平,郭九皋,谢先德.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报.1999.19(2):231-235.
    [7] Sahai, N.; Sverjensky, D. A. Solvation and electrostatic model for specific electrolyted adsorption [J]. Geochim Cosmochim Acta. 1997.61: 2827.
    [8] Ho, Y. S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research. 2000.34: 735.
    [1] 余志伟.镁质粘土新型抗菌材料[J].中国非金属矿工业导刊.2005.50(5):24-27.
    [2] Uchi, d. S. Silver-ion antibacterial agent by using zeolite as carrier [J]. Journal of Antibact Antifung Agents. 1996.24: 735-742.
    [3] 汤庆国,王雪峰,沈上越,等.金属离子抗菌剂的抗菌效果及应用研究[J].环境与健康杂志.2005.22(2):158-160.
    [4] 王维清,冯启明,袁昌来.一种新型无机抗菌剂载体——麦饭石[J].中国矿业.2005.14(1):41-44.
    [5] 田春燕,张培萍,李书法.非金属矿物在抗菌材料制备中的应用[J].2004.23(2):201-204.
    [6] 李博文,肖清华.载银膨润土的抗菌性能研究[J].非金属矿.2001.24(5):17-18.
    [7] 冯晋阳,吴建锋,徐晓虹.几种抗菌载体之对比[J].佛山陶瓷.2002.12(2):3-6.
    [8] Oya, A. An antimicrobial and antifungal agent derived from montmorillonite [J]. Applied Clay Science. 1991.6: 135-142.
    [9] Ohashi, F.; Oya, A. Antimicrobial and antifungal agents drived from clayminerals (Ⅵ) [J]. Agents. 1992.20(10): 525.
    [1] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:100-140.
    [2] Pruissen, D. J.; Capkova, P.; Driessen, R. A. J.; et al. Structure analysis of intercalated smectites using molecular simulations [J]. Applied Catalysis A: General. 2000. 193(1-2): 103-112.
    
    [3] Aceman, S.; Lahav, N.; Variv, S. A thermo-XRD study of Al-pillared Smectites differing in source of charge, obtained in dialyzed, non-dialyzed and washed systems [J], Applied Clay Science. 2000. 17(3-4): 99-136.
    
    [4] Del Rey-Perez-Caballero, F. J.; Poncelet, G.. Microporous 18 A Al-pillared vermiculites: preparation and characterization [J]. Microporous Mesoporous Maerials. 2000. 37(3): 313-327.
    
    [5] Maes, E.; Vielvoye, L.; Stone, W.; et al. Fixation of radiocaesium traces in a weathering sequence mica - vermiculite - hydroxy interlayered vermiculite [J]. European Journal of Soil Science. 1999.50(2): 107-115.
    
    [6] Kasama, T.; Watanabe, Y.; Yamada, H.; et al. Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH [J]. Applied Clay Science. 2004. 25(3-4): 167-177.
    [1] 胡智弢,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究[J].农业环境科学学报.2004.23(6):1212.
    [2] Dongye, Zhao. Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers [J]. Water Research. 1998.32: 1613.
    [3] Yoshimi, S. Removal of phosphate by layered double hydroxides containing iron [J]. Water Research. 2002.36: 1306.
    [4] 王萍,牛晓君,赵保卫.海绵铁吸附除磷机理研究[J].中国给水排水.2003.19(3):11.
    [5] 杜冬云,柯丁宁,赵小蓉,等.改性累托石对磷的吸附[J].非金属矿.2003.26(5):51.
    [6] Ho, Y. S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research. 2000.34: 735.
    [7] Lyubchik, S. I.; Lyubchik, A. I.; Galushko, O. L.; et al. Kinetics and thermodynamics of the Cr(Ⅲ) adsorption on the activated carbon from co-mingled wastes [J]. Colloids and Surfaces A: Physicochemical Engineering Aspects. 2004. 242:151-158.
    [8] Prasad, M.; Saxena, S.; Amritphale, S. S.; et al. Kinetics and isotherms for aqueous lead adsorption by natural minerals [J]. Industrial Engineering and Chemical Research. 2000. 39: 3034-3037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700