静磁场对成骨细胞功能活性的影响及其机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场力是正畸中尚待开发的重要力源。随着磁性材料的广泛开发和利用,磁力正畸在国内外得到了广泛开展,但磁力应用的范围、磁力正畸的机理尚不清楚。众所周知,牙—牙槽骨独特的生物学特性是正畸牙得以移动的基础,而成骨细胞是正畸牙移动过程中骨形成的主要效应细胞,并对破骨细胞的分化和成熟具有重要调控作用,成骨细胞在骨改建的过程中处于一个中心调控的地位。目前,关于静磁场作用下成骨细胞功能活性改变及其相应机制的研究,国内外报道甚少。本研究的目的是研究静磁场信号对体外培养成骨细胞形态、功能、信号传导及细胞骨架改建的影响及应答变化,为阐明磁力正畸的应用机理提供实验依据。
     本课题利用静磁场加载装置,对体外培养的成骨细胞进行加载,结合分子生物学检测技术和电子扫描电镜、激光共聚焦显微镜等仪器,观察了不同时间、不同磁场强度的静磁场对成骨细胞细胞形态及细胞表面超微结构、细胞增殖活性、碱性磷酸酶活性、细胞内钙离子浓度及细胞骨架表达及改建的影响,初步探讨了磁力正畸过程中不同强度的静磁场对成骨细胞形态及功能活性的作用及其机制。本研究得出以下结论:
     1.采用组织块法成功培养出大量生长稳定的成骨细胞。
     2.倒置相差显微镜下未能发现静磁场对成骨细胞形态、生长和排列的影响;电子扫描电镜显示本实验所选用的静磁场都引起了成骨细胞细胞表面超微结构的改建:暴露于静磁场后,成骨细胞细胞表面微绒毛增多,并且融合成为囊泡;随着曝磁时间的增加,细胞表面的微绒毛呈层状,囊泡样结构增加,相互融合成较大的囊泡。
     3.不同时间、不同强度的静磁场作用对成骨细胞的增殖活性影响不同。50mT的静磁场从24小时到72小时可以持续促进成骨细胞的增殖;而8mT和160mT的静磁场则分别经历了24小时和48小时的潜伏期后,才开始出现促增殖作用。
     4.静磁场作用可以增加成骨细胞的碱性磷酸酶活性。与8mT、和160mT的静磁场相比,50mT的静磁场促进成骨细胞碱性磷酸酶活性增加更大;随着静磁场加载时间的延长,碱性磷酸酶活性增加的幅度减小。
     5.静磁场可以降低成骨细胞细胞内钙离子的浓度。
     6.本实验所选用的静磁场可以导致成骨细胞细胞骨架的改建和重组。静磁场作用后,成骨细胞细胞骨架蛋白表达上调,细胞骨架蛋白向细胞核集中。
     综上所述,本研究认为,一定强度的静磁场可以促进成骨细胞的增殖,可以增加成骨细胞的碱性磷酸酶活性。其机制可能是:
     1.静磁场作用于成骨细胞的细胞膜,引起细胞膜表面钙泵的活性发生改建,降低了成骨细胞细胞内的钙离子浓度,引起成骨细胞细胞内信号的改变,继而导致成骨细胞生物学活性的改变;
     2.静磁场通过直接或间接的作用于成骨细胞细胞骨架,将磁性信号的传递到细胞内,最终导致成骨细胞生物学活性的改建。
     本研究提示,在正畸临床应用磁力进行矫治的时候,要选择合适的磁场强度,在骨形成和骨改建过程中,成骨细胞对不同的磁场强度有不同程度的表达反应。本研究丰富了我们对磁力正畸骨改建分子机理的认识,为进一步阐明磁力正畸的应用提供了具有一定参考价值的实验依据。
The orthodontist utilizes the force to make orthodontics, the force to the orthodontics is as the medicine to the physician; and the magnetic force is an important force which is still underdeveloped. With the development and utilization of magnetics, the orthodontics with magnetic force was widely carried out. The movement of the teeth is dependent on the bionomics of the alveolar bone; the osteoblast is the major effector cell and at the same time is the regulator of the osteoclast. Therefore, emphasis paid to the effect and mechanism of the magnetic magnetic field on the osteoblast is considered necessary and important to clarify the mechanism of orthodontics with magnetic force.
     There are few reports about the osteoblast's biological effects of the static magnetic field, and we have not seen the mechanism report of it.
     In this study, osteoblast cultures were exposed to static magnetic fields for different times with different density. The effects on the cell shape and the cell surface ultrastructure, cell proliferation, alkaline phosphatase (ALP), intracellular Ca~(2+) concentration, and the cytoskeleton of the static magnetic field were examined with molecular biology technology, electronic scanning microscope(SEM) and Laser Scanning Confocal Microscope(LSCM). The results showed as following:
     1. The pieces methods could culture many stable osteoblasts.
     2. No changes on the cell shape, cell growth and distribution were observed with inverted phase contrast microscope under the static magnetic field; but the scanning electric microscope observation showed that the static magnetic could result in the rebuilding of the cell surface ultrastructure, compared with the control group, experimental group showed more micirovili in the cell surface and some fused into vesicle.
     3. Different static magnetic field makes different proliferation effects on the osteoblast. Compared with the 8mT and 160mT static magnetic fields, which laten 24 hours and 48hours in promoting proliferation, the 50mT could keep on promoting proliferation from 24hours to 72huors.
     4. The static magnetic field could increase the ALP activity of osteoblast. Comared with the 8mT and 160mT static magnetic field, the 50mT static magnetic field make larger effect on increasing the osteoblast's ALP activity. With the lasting of the static magnetic field application, the ALP activity increasing extent decreased.
     5. The static magnetic field decreases the intracellular Ca~(2+) concentration within our experiment SMF density.
     6. The static magnetic field could result in the reorganization and rebuilding of the cytoskeleton of the osteoblast. After the application of the static magnetic field, the cytoskeleton protein upregulated and the
     cytoskeleton concentrated to the cellular nucleus.
     Based on these findings in the study, it was demonstrated that static magnetic fields with intensities of 8mT, 50mT and 160mT could increase the proliferation and ALP activity of the osteoblast. The static magnetic field may effect on the cell membrance, so as to evoke the Ca~(2+) pump in the membrance and drease the the intracellular Ca~(2+) concentration, thus result in the changes of the osteoblast's biological activity. Another mechanism is through the cytoskeleton, the static magnetic field transmitted the magnetic signal to the inner of the cell, thus lead to the changes of the osteoblast's biological activity.
引文
1.司徒镇强,吴军正.细胞培养(修订版).西安:世界图书出版西安公司,2004.
    2.李德华,刘宝林,吴军正,等.人胚成骨细胞体外原代培养和鉴定.牙体牙髓牙周病学杂志,1998,8(2):92.
    3. Wlodarski KH. Properties and origin of osteoblast. Clin Orthop, 1990, 252: 276.
    4. Marie PJ, Lomri A, Sabbagh A, et al. Culture and behavior of osteoblastic cells isolated from normal trabecular bone surface. In Vitro Cell Dev Biol, 1989, 25:373.
    5. Herbert son A, Aubm J E. Cell sorting entices osteogenic populations in rat bone marrow st romal cell cultures. Bone, 1997, 21 (6):491.
    6. Collignon H, Davicco MJ, Bailet J P. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic antivities during in vitro mineralization. Arch Physiol Biochem, 1997, 105 (2): 158.
    7. Alborzi A, Nac KG, Lackin CA, et al. Endochondral and intramenbranous fetal bone development: osteoblastic cell prolifration H4. Cranifae Genet Dev Biol, 1996, 16 (2):94.
    8. Collignon H, Davicco MJ, Bailet J P. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic antivities during in vitro mineralization. Arch Physiol Biochem ,1997,105 (2) :158
    9. Alborzi A, Nac KG, Lackin CA, et al. Endochondral and intramenbranous fetal bone development: osteoblastic cell prolifration H4. Cranifac Genet Dev Biol, 1996, 16 (2):94.
    10. Hamada SH, Witkus R, Griffith J. Cell surface changes during electromagnetic field exposure. Experimental Cell Biology, 1989, 57: 1-10.
    11. Chionna A, Dwikat M, Panzarini E, et al. Cell shape and plasma membrane alterations after static magnetic fields exposure. European Journal of Histochemistry, 2003, 47:299-308
    12. Rieti S, Manni V, Lisi A, et al. SNOM and AFM microscopy techniques to studythe effect-of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). Journal of Microscopy, 2004, 213: 20-28.
    13.胥春,范震,巢永烈,等.磁性附着体静磁场对人牙龈成纤维细胞形态的影响.临床口腔医学杂志,2007,23(2):81-84.
    14. Blechman, Smiley. Magnetic force in orthodontics. AJO-DO, 1978, 74(4): 435-443.
    15. Bondemark L, Kurol J, and Wisten M. Extent and flux density of static magnetic fields generated by orthodontic samarium-cobalt magnets. AM J ORTHOD DENTOFAC ORTHOP 1995; 107:488-96.
    16. Yamamoto Y, Ohsaki T, Goto A, et al. Effects of Static Magnetic Fields on Bone Formation in Rat Osteoblast Cultures. J. Dent. Res., December 1, 2003; 82(12): 962-966.
    17.仇丽鸿,汤旭娜,钟鸣,等.静磁场对成骨细胞增殖及细胞周期的影响.上海口腔医学,2004,13(5):469-470.
    18.廖乾初,蓝芬兰主编.扫描电镜分析技术与应用.1990年3月第一版.
    19.实用生物医学电子显微镜技术.杨勇骥主编 上海:第二军医大学出版社,2003年1月第一版.
    20. Yamaguchi H, Hosokawa K, Soda A, et al. Effects of seven months'exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochim Biophys Acta,1993,1156(3):302-306
    21. Sato K, Yamaguchi H, Miyamoto H, et al. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets, Biochim Biophys Acta, 1992, 1136(3):231-238.
    22. Supino R, Bottone MG, Pellicciari C, et al. Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro, Histol Histopathol,2001,16(3): 719-726
    23. Zhang L, Zhou L, Vega-Gonzalez A, et al. Extremely low frequency magnetic fields promote neurite varicosity formation and cell excitability in cultured rat chromaffin cells. Comp Bichem Physiol C Pharmacol Toxicol Endocrinol, 1997, 118(3): 295-299.
    24. Pacini S, Gulisano M, Peruzzi B, et al. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev, 2003, 27(5):327-332.
    25. Chionna, A., Dwikat, M., Panzarini, E., et al. Cell shape and plasma membrane alterations after static magnetic fields exposure. European Journal of Histochemistry, 2003, 47:299-308.
    26. Chionna A, Tenuzzo B, Panzarini E, et al. Time-dependent modifications of Hep G2 cells during exposure to Static Magnetic Fields. Bioelectrmagnetics, 2003, in press.
    27.赵桂芝,林珠,吴军正,等.恒磁场对牙周膜成纤维细胞表面结构影响的扫描电镜观察.实用口腔医学杂志,1994;10(3):197-198.
    28.林清泉,李鼓,吴珊鹏等.结合磁场对成骨细胞的促增殖作用.中华实验外科杂志,2001,18(6):585-586.
    29.赵桂芝,林珠,柯杰,等。用四唑盐测定恒磁场对人牙周膜成纤维细胞活性的影响。实用口腔医学杂志,1994,10(3):191-193.
    30. Lucia Potenza, Luca Ubaldi, Roberta De Sanctis, et al. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutation Research, 2004, 561: 53-62.
    31. Kotani H, Kawaguchi H, Shimoaka T, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002, 17:1814-1821.
    32.马波,程何祥,周廉,等.不同强度恒磁场对大鼠主动脉内皮细胞增殖的 影响.中国临床康复,2004,8(6):1048-1050.
    33. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracelluar matrix. J Cell Physiol, 143:420-430.
    34. Aubin JE, Liu F, Malaval L, et al. Osteoblast and choncroblast differentiation. Bone, 1995, 17:77-83.
    35.束蓉,邬春兰.釉基质蛋白对成骨细胞碱性磷酸酶和Ⅰ型胶原酶合成的影响.实用口腔医学杂志,2003,19(4):366-368.
    36.季德华,刘宝林,吴军正等.体外培养的成骨细胞中碱性磷酸酶活性的检测方法探讨.实用口腔医学杂志,1997,13(1):21-23.
    37.张宇,肖德明,潘晓华,等.恒定磁场对股骨头坏死致病因子的抑制作用.中国临床康复 2006,10(4):50-53.
    38. Q.C. Yan, N. Tomita, Y. Ikada. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics,1998, 20:397-402
    39.赵桂芝,柯杰,伊哲,等.恒磁场对人牙周膜成纤维细胞碱性磷酸酶代谢的影响.中国现代临床医学,2004,3(5):27.
    40.余从年,胡继鹰主编.医学细胞生物学导论.第1版.北京:科学出版社,2000:174-193.
    41.黄秀榕,祁明信,胡艳红等.榄香烯抑制表皮生长因子诱导的晶状体上皮细胞增殖的信号转导机制.中国临床药理学与治疗学,2007;12(1):43-46.
    42.于君丽,刁尧,郭科军.钙与维生素D3抑制人宫颈癌细胞和组织增殖作用的相关性研究.中国医科大学学报,2005,34(5):403-405.
    43.刘长波,汪华林,谭树芬.尾加压素Ⅱ对乳鼠肾小球系膜细胞增殖及细胞内游离钙的影响.广东医学,2007,28(1):37-39.
    44.陈晓东,吴伯瑜,江琼.芦荟粗多糖对体外培养人表皮细胞增殖作用的研究. 中国药理学通报,2005,21(11):1363-1366.
    45. Liburdy RP. Calcium signaling in lymphocytes and ELF fields: Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett, 1992, 301(1):53-59.
    46.刘秉文主编.医学分子生物学.中国协和医科大学出版社.
    47.王光源.弱恒磁场对白血病细胞内钙离子浓度的影响.湖南工业职业技术学院学报,2005,5(3):22-23.
    48. Flipo D, Fournier M, Benquet C et al. Increased apoptosis, changes in intracellular Ca~(2+), and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A, 1998; 54(1):63-76.
    49.胥春.磁性附着体静磁场对人牙龈成纤维细胞和人牙周膜成纤维细胞生物学效应的基础研究.四川大学2001级口腔医学博士专业学位论文.
    50. G.P. Pessina, C. Aldinucci, M. Palmi,et al. Pulsed electromagnetic fields affect the intraeellular calcium concentrations in human astrocytoma cells. Bioelectromagnetics, 2001, 22:503-510.
    51. R.P. Liburdy, D.E. Callahan, J. Harland, et al. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade-Effects on calcium influx and c-MYC mRNA induction. FEBS 13260, 1993, 334(3):301-308.
    52. M.G. Yost, R.P. Liburdy. Time-varying and static magnetic fieids act in combination to alter calcium signal transduction in the lymphocyte. FEBS 10569, 1992, 296(2):117-122.
    53. Toshitaka Ikehara, Hisao Yamaguchi, Keiko Hosokawa, et al. Effects of a time-varying strong magnetic field on transient increase in Ca~(2+) release induced by cytosolic Ca2+ in cultured pheochromocytoma cells. Biochimiea et Biophysica Acta, 2005, 1724:8-16.
    54.杨巍,徐韬,霍小林等.极低频磁场对HepG2细胞内游离钙离子浓度的影响.中华劳动卫生职业病杂志,2003,21(5):332-334.
    55. Luciana Dini, Luigi Abbro. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron, 2005, 36: 195-217.
    56. Gartzke, J., Lange, K. Celluar target of weak magnetic fields: ionic conduction along actin filaments of microvilli. American Journal of Physiology—Cell Physiology, 2002, 283: 1333-1346.
    57.翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000.
    58. Mathur J, Hulskamp M. Microtubules and microfilaments in cell morphogenesis in higher plants. Current Biology, 2002. 12:8669-8676
    59. Wasteneys GO, Galway ME. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annual Review of Plant Biology. 2003, 54:691-722.
    60. Gachet Y, Tournier S, Millar JBA, et al. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature, 2001, 412:352-355.
    61. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via Ras/Extracellular signal-regulated kinase (ERK) signaling pathway. Journal of Biological Chemistry, 1997, 272:1904-1909.
    62. Kaltschrnidt JA, Lawrence N, Morel V, et al. Planar polarity and actin dynamics in the epidermis of Drosophila. Nature Cell Biology, 2002, 4:937-944
    63. Tsakiridis T, Bergrnan A, Somwar R, Taha C, Aktories K, Cruz TF, Klip A, Downey GR Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression. Journal of Biological Chemist, 1998, 273: 28322-2831.
    64. Leinweber BD, Leavis PC, Grabarek Z, et al. Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins. Biochemical Journal, 1999, 344:117-123.
    65. Khalil RA, Menice CB, Wang CLA, et al. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circulation Research, 1995, 76: 1101-1108.
    66. Parker CA, Takahashi K, Tang JX, et al. Cytoskeletal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret. Journal of Physiology, 1998, 508: 187-198.
    67. Guay J, Lambert H, Gingras-Breton G, et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. Journal of Cell Science, 1997,110: 357-368
    68. Kayyali US, Pennella CM, Trujillo C, et al. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. Journal of Biological Chemistry, 2002, 277:42596-42602.
    69. Pawlak G, Helfman DM.Post-transcriptional down-regulation of ROCKI/Rho-kinase through and MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Molecular Biology of the Cell, 2002, 13: 336-347.
    70. Jozef S, Frantiiiek B, Heribert H. From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. Journal of Experimental Botany, 2004, 395(55): 189-198.
    71. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physio Rev, 2001, 81: 685-740.
    72. Hamill OP, McBride DW. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci USA, 1992, 89: 7462-7466.
    73. Alex J, Head DA, MacKintosh FC. The deformation field in semiflexible networks. J Phys: Condens. Matter. 2004, 16: S2079-S2088.
    74. Silliman CC, Sturgill TW. Phosphorylation of microtubule-associated protein 2 by MAP kinase primarily involves the projection domain. Biophys Res Commun.1989,160:993-998.
    75. Hoshi M, Ohta K, Gotoh Y, et al. Mitogen-activated-protein-kinase- catalyzed phosphorylation of microtubule-associated proteins, microtu- bule-associ-ated proteins 2 and microtubule-associated proteins 4, induces an alteration in their function. Eur J Biochem. 1992. 203:43-52.
    76. Santoro N, Lisi A, Pozzi D, et al. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochemical Biophysical Acta, 1997, 1357: 281-290.
    77. Gartzke J, Lange K. Am J Physiol Cell Physiol. 2002, 283 (5):1333-46.
    1.李国栋.当代磁学.合肥:中国科学技术大学出版社,1999.
    2.王宝明.恒定磁场对生物酶活性的影响.天津医学院学报,1993,17(2):73-75.
    3. Novilcov V V, Shvetsov Yu P, Fesenko E E. Molecular mechanism of biological action of weak magnetic fields. IV. Bioinfornation, 1997, (3) :746-750.
    4. Belyaev, I.Ya., Alipov, Y.D., Harms-Ringdahl, M., 1997. Effects of zero magnetic field on the conformation of chromatin in human cells.Biochemical Biophysical Acta 1336, 465-473.
    5.黄德盈,吴士筠,王宗保,等.磁场对质粒pBR322DNA的影响.生物物理学报,1995;(3):457-462
    6. Sakhnini L, Khuzaie R. Magnetic behavior of human erythrocytes at different hemoglobin states. Eur-Biophys-J, 2001, 30(6): 467-470.
    7. Lino M. Effects of a homogeneous magnetic field on erythrocyte sedimentation and aggregation. Bioelectromagnetics, 1997; 18(3): 215-222.
    8.王益民,安蔚瑾,王津生等.磁场对血沉的影响.中华理疗杂志,1999,22(6):335.
    9. Atef MM, Abd-el-Baset MS, el-Kareem A, et al. Effects of a static magnetic field on haemoglobin structure and function. Int-J-Biol-Macromol, 1995; 17(2): 105-111.
    10.康庆林,蒋祖信.低频电磁场对人胚细胞生长分泌的影响及机制探讨.中华物理医学杂志,1998,(1):11-13.
    11.傅中朝.心肌细胞自律性与磁场、液晶的关系及临床研究.生物磁学,2004;4(1):23-25
    12.杨修益,丁克祥,肖粤,等.旋磁对小鼠心脑组织及血液自由基代谢的影响.中华理疗杂志,1996;(1):6
    13.阎秀英,许志华,张桂莲,等.旋磁场对血清铜蓝蛋白活性的影响.中华理疗杂志,1996;(1):210-211
    14.金银龙,王汉章,程义斌,等。静磁场对人体自由基代谢的影响。卫生研究,1998,27(2):97—99.
    15.郭梅凤,张桂莲,程向晖,等。不同磁场对大鼠血清自由基代谢的影响。包头医学院学报,2006,22(1):8—9.
    16. Wiskirchen J, Groenewaeller EF, Kehlbach R, et al. Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magn Reson Med, 1999, 41 (3) : 464-468.
    17. Wiskirchen J, Gronewaller EF, Heinzelmann F, et al. Human fetal lung fibroblasts, in vitro study of repetitive magnetic field exposure at 0.2, 1.0, and 1.5 T. Radiology, 2000, 215(3): 858-862.
    18. Sato K, Yamaguchi H, Miyamoto H, et al. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sin-Co magnets. Biochim Biophys Acta, 1992, 1136(3):231-238.
    19. G. Bodega, I. Forcad, I. Suarez, et al. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture. Environmental Research 2005, 98:355-362
    20. Lucia Potenza, Luca Ubaldi, Roberta De Sanctis, et al. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutation Research, 2004, 561: 53-62.
    21.仇丽鸿,汤旭娜,钟鸣,等.静磁场对成骨细胞增殖及细胞周期的影响.上海口腔医学,2004,13(5):469-470.
    22.赵桂芝,林珠,柯杰,等。用四唑盐测定恒磁场对人牙周膜成纤维细胞活性的影响。实用口腔医学杂志,1994,10(3):191-193.
    23. Raylman RR, Clavo AC, Wahl RL. Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics, 1996, 17, 358-363.
    24.王益民,张红霞,靳世久,等.磁场对心肌成纤维细胞活性的影响及量效关系研究.中华物理医学与康复杂志,2004,26(11):657-659.
    25. J. Sabo, L. Mirossay, L. Horovcak, M. Sarissky, A. Mirossay, J. Mojzis. Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry. 2002, 56:227-231.
    26. Stefania Pacini, Massimo Gulisano, Benedetta Peruzzi, Eleonora Sgambati, Gherardo Gheri, Silvia Gheri Bryk, Simonetta Vannucchi, Gianni Polli, Marco Ruggiero. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detection and Prevention. 2003, 27:327-332
    27.吕安林,高歌,贾国良,等.恒磁场对离体兔动脉平滑肌细胞的抑制效应.中华理疗杂志,2000,23(5):288-290.
    28.端礼荣,吴全义,刘方平.稳恒磁场对大鼠胚胎中脑神经细胞发育的影响.中华预防 医学杂志,2004,38(3):190-192.
    29. Binhi VN, Alipov YeD, Belyaev IYa. Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics, 2001, 22: 79-86.
    30.张征,刘映峰,程何祥,等.恒磁场对内皮细胞分泌与表达ICAM,VCAM21及与单核细胞黏附率的影响.第四军医大学学报 2005,26(13):1163-1166.
    31.赵大源,付研,李红丽,等.恒磁场对家兔自然杀伤细胞活性的影响.中华理疗杂志,2000,23(3):185-186.
    32.王典瑞,那爱华,高梅,等.恒定磁场对LAK细胞增殖及杀伤活性的影响.空军医高专学报,1995,17(3):173.
    33. Repacholi MH, Greenbaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectronmagnetics, 1999, 20: 133-160.
    34. Teodori L, Grabarek J, Smolewski P, et al. Exposure of cells to static magnetic fields accelerates loss of integrity of plasma membrane during apoptosis. Cytometry, 2002b, 49: 113-118.
    35. Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cellular Biochemistry Biophysics, 2003, 39:163-173.
    36.翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000.
    37. Rosen AD. Membrane response to static magnetic fields: effect of exposure duration. Biochemical BiophysicalActa, 1993, 1148: 317-320.
    38. Hamada SH, Witkus R, Griffith J. Cell surface changes during electromagnetic field exposure. Experimental Cell Biology, 1989, 57: 1-10.
    39. Chionna A, Dwikat M, Panzarini E, et al. Cell shape and plasma membrane alterations after static magnetic fields exposure. European Journal of Histochemistry, 2003, 47:299-308
    40. Rieti S, Manni V, Lisi A, et al. SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). Journal of Microscopy, 2004, 213: 20-28.
    41. Chionna A, Tenuzzo B, Panzarini E,et al. Time-dependent modifications of Hep G2 cells during exposure to Static Magnetic Fields. Bioelectrmagnetics, 2003, in press.
    42. Luciana Dini, Luigi Abbro. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36 (2005) 195-217.
    43. Luciana Dini, Luigi Abbro. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron, 2005, 36:195-217
    44. Fanelli C, Coppola S, Barone R,et al. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of CaCC influx. FASEB Journal, 1999,13: 95-102.
    45. Teodori L, Gohde W, Valente MG, et al. Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry, 2002a, 49: 143-149.
    46. Bras W, Diakun GP, Diaz JF, et al. The susceptibility of pure tubulin to high magnetic fields: a magnetic birefrengence and X-ray fiber diffration study. Biophysical Journal, 1998,74:1509-1521.
    47. Santoro N, Lisi A, Pozzi D, et al. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochemical Biophysical Acta, 1997, 1357: 281-290.
    48. Candace S, Frank W, Jim Y, et.al. American Journal of Obstetrics and Gynecology. 2002, 187 (6): 1581-1587.
    49. Robert R, W. Bradley , Barbara A, et.al. Therapy for Pain in the Abdomen and Genitals. PEDIATRIC NEUROLOGY , 2000, 23 (3): 261-264
    50. J. Langford. Randomised controlled clinical trial of magnet use in chronic low back pain; a pilot study. Clinical Chiropractic (2005) 8, 13—19.
    51. Carlos V, Carlton F, Gabor Jo Archives of Physical Medicine and Rehabilitation. 1997, 78(11):1200-1203.
    52. Segal NA, Toda Y, Huston J, et al. Two configurations of static magnetic fields for treating rheumatoid arthritis of the knee: a double-blind clinical trial. Arch Phys Med Rehabil 2001: 82:1453-60.
    53.陈平,林华洪.转移性癌痛应用磁片贴敷的疗效观察.中国临床康复,2003,7(20):2890-2891.
    54.王旭.磁疗治疗丘脑出血后肩痛.中国临床康复,2003,7(7):1180.
    55.王全美.磁疗对椎管手术后镇痛的临床研究.中国疼痛医学杂志,1999,(3):185.
    56.王兴亭,齐辉明.磁疗治疗足跟骨刺痛120例.生物磁学,2003,(1):29
    57.常汉英,张欣.磁场疗法治疗三叉神经痛68例.生物磁学,2002,(3):28-29.
    58.李金标,李友谊.穴位贴磁治疗颞下颌关节紊乱病66例.中国针灸,2003,(2):70.
    59. Gillings BR, Samant A. Overdentures with magnetic attachments. Dent clin North Am, 1999, 34:683-709.
    60. Rubenstein JE. Attachments used for implant-supported facial prostheses: a survey of United States, Canadian, and Swedish centers. J Prosthet Dent, 1995, 73:262-266.
    61. Gillings BR. Magnetic overdentures. Aust Prosthodont J, 1993, 7:13-21.
    62. Riley MA, Walmsley AD, Harris IR. Magnets in prosthetic dentistry. J Prosthet Dent, 2001, 86:137-142.
    63. Jackson TR. Removable partial overdentures with natural root structure and osseointegrated fixtures. Dent Clin North Am, 1990,34:711-728.
    64. Noar JH, Evans RD. Rare earth magnets in orthodontics: an overview. Br J Orthod, 1999, 26(1):29-37.
    65. Kiliaridis S. Anterior open bite treatment with magnets. Eur J Orthod, 1990, 12:447.
    66.赵碧容.可调式磁装置在正畸中的应用.华西口腔医学杂志,1991,9(1):31.
    67. M.Ali Darendeliler, C. Strahm, J.RJoho. Light maxillary expansion forces with the magnetic expansion device: A preliminary investigation. Eur J Orthod, 1994, 16:479-490.
    68. Kiliaridis S, Egermark I, Thilander B. Anterior open bite treatment with magnets. Eur J Orthod, 1990, 12(4):447-57.
    69. GP Mancini, JH Noar, RD Evans. The physical characteristics of neodymium iron boron magnets for tooth extrusion. Eur J Orthod, 1999, 21(5):541-550.
    70. Lars Bondemark, Jurl Kurol, Anna-Lena Hallonsten and Jens O. Andreasen. Attractive magnets for orthodontic extrusion of crown-root fractured teeth. American Association of Orthodontists, 1997, 112 (2): 187-193.
    71. Hyeon-Shik Hwang, Ki-Heon Lee. Intrusion of overerupted molars by corticotomy and magnets. American Association of Orthodontists, 2001, 120 (2): 209-216.
    72. Mats Bernhold, Lars Bondemark. A magnetic appliance for treatment of snoring patients with and without, obstructive sleep apnea. American Association of Orthodontists, 1998, 113 (2): 144-148.
    73. BONDEMARK L, KUROL J, LARSSON A. Human dental-pulp and gingival tissue after static magnetic field exposure. European Journal of Orthodontics, 1995, 17 (2): 85-91.
    74.谢以岳,曾祥龙,林久祥,等.磁场对人牙髓影响的组织学研究.口腔医学纵横,1992,8(3):158-159.
    75.马育霞,林久祥,谢以岳,等.磁场及磁场力对人牙髓影响的组织学观察.口腔正畸学杂志,1994,1(4):172-173.
    76.吴永生,邓燕.钕铁硼静磁场对人活体牙髓组织自由基氧化代谢功能影响的实验研究.口腔医学,1996,16(4):169-170.
    77.赵桂芝,陈华,徐如生.磁力正牙的组织学研究.华西口腔医学杂志,1992,10(1):15-17.
    78. L Bondemark, J Kurol, A Larsson. Long-term effects of orthodontic magnets on human buccal mucosa - a clinical, histological and immunohistochemical study. European Journal of Orthodontics, 1998, 20 (3): 211-218.
    79. Saygili G, Aydinlik E, Ercan MT, et al. Investigation of the effect of magnetic retention systems used in prosthesis on buccal mucosal blood flow. Int J Prosthodont,1992, 5(4):326-332.
    80. Darendelier MA, Scinclair PM, Kusy RP. The effects of samarium-cobalt magnets and pulsed electro-magnetic fields on tooth movement. Am J Orthod Dentofacial Orthop, 1995, 107 (6): 578-588.
    81.赵桂芝,陈华,徐如生.磁力作用下猴牙周组织改建的扫描电镜观察.口腔医学纵横,1992,8(1):27-28.
    82.秦科,仇丽鸿,钟鸣,等。静磁场对大鼠牙周膜组织中骨形成蛋白—2表达的影响。上海口腔医学,2004,13(4):275—277.
    83.仇丽鸿,秦科,钟鸣,等。静磁场对牙周炎大鼠牙周膜组织中骨形成蛋白-2影响的实验研究。华西口腔医学杂志,2005,23(4):319—321
    84.常新,秦科,吕永利.静磁场作用下大鼠牙槽骨中前列腺素E2变化的研究.解剖科学进展,2000,6(3):244-245.
    85.常新,秦科,吕永利.静磁场作用下大鼠牙周膜中P物质影响的实验研究.解剖科学进展,2001,7(2):97-99.
    86. Tengku BS, Joseph BK, Harbrow D, et al. Effect of a static magnetic field on orthodontic tooth movement in the rat. Eur J Orthod, 2000, 22(5):475-487.
    87. Linder-Aronson A, Lindskog S. A morphometric study of bone surfaces and skin reactions after simulation with static magnetic fields in rats. AJO-DO, 1991, 99(1):44-48.
    88. Linder-Aronson A, Ragh P, Lindskog S. Effects of orthodontic magnets on cutaneous epithelium thickness and tibial bone growth in rats. Acta OdontolScand, 1995, 53(4):259-263.
    89. Linder-Aronson A, Lindskog S, Ragh E Orthodontic magnets: effects on gingival epithelium and alveolar bone in monkeys. Eur J Orthod, 1992, 14(4):255-263.
    90. Linder-Aronson A, Forsberg CM, Ragh P, et al. Tissue response to space closure in monkeys: a comparison of orthodontic magnets and superelastic coil springs. Eur J Orthod, 1996, 18(6):581-588.
    91.阎启昌,富田直秀,王瑜,等.静磁场对骨组织影响的实验研究.中国医科大学学报,2001,30(4):258-260.
    92. Q.C. Yan, N. Tomita, Y. Ikada. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics,1998, 20:397-402
    93. Bruce GK, Howlett CR, Huckstep RL. Effect of a static magnetic field on fracture healing in a rabbit radius. Preliminary results. Clin Orthop Relat Res. 1987 Sep;(222):300-6
    94.葛京化,候宝兴,郑培永,赵光复.静磁场促进Colles骨折愈合的临床研究.上海中医药杂志,2002,9:33-34.
    95.张小云,薛延,苏湘鄂,等.磁场对去卵巢大鼠骨密度、骨强度和骨代谢的影响.基础医学与临床,2002,22(6):550-553.
    96.张宇,肖德明,潘晓华,等.恒定磁场对股骨头坏死致病因子的抑制作用.中国临床康复 2006,10(4):50-53.
    97.崔保义,钟锐球.磁场促进家兔骨折愈合及部分病理学研究.上海大学学报(自然科学版),1995,1(3):285-292.
    98. Camilleri S, McDonald E Static magnetic field effects on the sagittal suturein Rattus norvegicus.AJO-DO, 1993, 103:240-6.
    99. Ichioka S, Iwasaka M, Shibata M,et al. Biological effects of static magnetic fields on the microcirculatory blood flow in vivo: a preliminary report. Med Biol Eng Comput. 1998 Jan; 36(1):91-5.
    100.阮晓声、梁中庆、张月芳,等.恒磁场环境对大鼠血液流变学特性的影响,中华理疗杂志,2000,23(4):231.
    101.韩丽莎、王维、王芳,等.旋磁场对脑缺血再灌注损伤大鼠血液流变学的影响,中华理疗杂志,2000,23(3):155.
    102.关微华,高佩琦,许艳.恒定磁场对大鼠脑缺血再灌注损伤保护作用的研究.中华物理 医学与康复杂志,2003,25:11214.
    103.关微华,陈丽娜,宋晓燕,等.恒定磁场对脑缺血再灌注大鼠血液流变学指标及红细胞膜流动性影响的研究.中国血液流变学杂志1 2002;12(3):169-171.
    104.王益民、靳世文、张伯礼,等.不同强度磁场对人离体血液流变学的影响,中华理疗杂志,2001,24(1):29.
    105.王柳青,杨永辉,武志耀,等.恒磁场对脑血管病患者离体血流变学的影响.中华理疗杂志,1994,17:82283.
    106. Korinevskaia IV, Kholodov IuA, Korinevskii AV. Human EEG2correlates in multisided peripheral exposure to alternating magnetic field. Fiziol Cheloveka, 1993, 19: 71279.
    107. M.J. McLean, S. Engstr6m, R.R. Holcomb, D. Sanchez. A static magnetic field modulates severity of audiogenic seizures and anticonvulsant effects of phenytoin in DBA/2 mice. Epilepsy Research 2003, 55 : 105-116.
    108.李平,杨亚宁,袁杰,等.恒磁有氧循经无创治疗周围性面瘫临床研究.生物磁学,2004,4,(2):27.
    109. Rosen, A.D., 1992. Magnetic field influences on acetylcholine release at the neuromuscular junction. Am. J. Physiol. 262, C 1418-C 1422.
    110. Rosen, A.D., 1993. A proposed mechanism for the action of strong static magnetic fields on biomembrances. Int. J. Neurosci. 73, 115-119.
    111. Rosen, A.D., 1994. Thresholds and limits of magnetic field action at the presynaptic membrane. Biochim. Biophys. Acta 1148, 317-320.
    112. Rosen, A.D., 1996. Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149-155.
    113. Rosen, A.D., 2003a. Effect of a 125mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24, 517-523.
    114. Rosen, A.D., Lubowsky, J., 1987. Magnetic field influence on central nervous system function. Exp. Neurol. 95, 679-687.
    115. Rosen, A,D., Lubowsky, J., 1990. Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp. Neurol. 108, 261-265.
    116. Wieraszko, A., 2000. Dantrolene modulates the activity of steady magnetic fields on hippocampal evoked potentials in vitro. Bioelectromagnetics 21,175-182.
    117. Abigail Coots, Riyi Shi, Arthur D. Rosen. Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord. Journal of the Neurological Sciences 222 (2004) 55- 57
    118. Sonnier H, Kolomytkin OV, Marino AA. Resting potential of excitable neuroblastoma cells in weak magnetic fields. Cell. Mol. Life Sci, 2000, 57 (3): 514-520.
    119. Sonnier H, Kolomytkin O, Marino AA. Action potentials from human neuroblastoma cells in magnetic fields. Neurosci. Lett, 2003,337 (3):163—166.
    120. Lucia Potenza, Luca Ubaldi, Roberta De Sanctis, et al. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutation Research,2004,561:53-62.
    121. Sikov MR, Mahlum DD, Montgomery LD, et al. Development of mice after intrauterine exposure to direct-current magnetic fields. 18th Hanford Life Sciences Symposium, 1978, 462-473.
    122. Tablado L, Perez-Sanchez F, Soler C. Is sperm motility maturation affected by static magnetic fields? Environ. Health Perspect, 1996,104 (11): 1212-1216.
    123.Konermann G, Monig H. Studies on the influence of static magnetic fields on prenatal development of mice. Radiologie, 1986,26:490-497.
    124. Suzuki Y, Ikehata M, Nakamura K, et al. Induction of micronuclei in mice exposed to static magnetic fields. Mutagenesis, 2001,16 (6): 499-501.
    125. Narra VR, Howell RW, Goddu SM, et al. Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice. Invest. Radiol,1996, 31 (9): 586-590.
    126. Denegre JM, Valles JM, Lin K, et al. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci, 1999, 95: 14729-14732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700