核/壳结构纳米铝粉的制备及其活性变化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米铝粉是含能材料的一种新型金属燃烧剂,由于其具有普通铝粉不具备的特性近年来倍受关注。纳米铝粉可显著提高推进剂的燃烧速率、比冲,降低其特征信号等。然而活性丧失的纳米铝粉在含能材料中反而起到相反的作用,因此系统地研究纳米铝粉的活性及其活性保持机制显得尤为重要和迫切。
     本论文基于激光-感应复合加热技术,制备了慢氧化钝化、碳包覆及推进剂有机组分包覆三类不同核/壳结构的纳米铝粉,采用XRD、SEM、TEM、HRTEM、XPS及FTIR等手段对制备的粉末进行表征,采用TG-DSC/DTA及气体容量法测量粉末的热学性能及活性铝含量,研究了纳米铝粉特征因素及环境因素对纳米铝粉活性的影响。
     氧化铝钝化纳米铝粉通过引入小剂量氧气获得,是一个“钝化-自饱和”的过程。碳包覆纳米铝粉是在甲烷气氛中制备的,由于碳在铝中的溶解度较低,甲烷分解的碳原子沉积于铝粒子表面。有机物包覆纳米铝粉的形成则通过有机分子的官能团结合(如粘结剂HTPB)或吸附沉积于铝粒子表面(如增塑剂DOS)。表征结果表明这些纳米铝粉呈球形的核/壳结构,粒径范围10-90nm,平均粒径50nm;粒子的内核均为结晶铝,而外壳分别为非晶氧化铝、类洋葱状石墨及非晶有机物,且外壳厚度约3.5nm左右。
     三种不同包覆核/壳结构纳米铝粉在铝熔点(~660℃)之前均出现早期氧化,但碳包覆及有机物包覆纳米铝粉的早期氧化展现了比氧化铝钝化纳米铝粉较低的氧化开始温度(Ton,约30℃)及氧化峰温(Tpeak,约20℃),较高的氧化热焓(△H)及氧化增重(△m),这是由于石墨碳层及有机物层在加热过程中首先燃烧和热解,从而较早的触发纳米铝粉点火并加速氧化,这表明包覆层类型对纳米铝粉的活性有影响。氧化铝钝化纳米铝粉的DTA结果表明,随着铝粒子粒径从50nm减少到20nm,早期氧化的放热焓变从3.72 kJ/g减少到0.93 kJ/g,小尺寸粒子活性反而降低与其相对低的活性铝含量有关。激光-感应复合加热方法制备的纳米铝粉的氧化放热焓变是高频感应方法制备的3倍,这与不同制备方法的蒸发情况及能量注入方式有关。因此,纳米铝粉特征因素对其活性的影响是多方面的。
     为了评价不同包覆层对纳米铝粉活性的保持能力,研究了环境因素(湿度、温度及时间)对不同包覆纳米铝粉活性的影响。结果表明,氧化铝钝化纳米铝粉对湿度极为敏感,其水解产物是Al(OH)_3;碳包覆纳米铝粉由于包覆不均匀在一定程度上仍受湿度的影响,而有机物包覆则由于有机物的疏水特性使其活性较少受湿度影响。氧化铝钝化纳米铝粉在300℃之前基本可以稳定存在,说明了致密的非晶氧化铝钝化层在低温阶段具有一定的抗氧化能力;在400℃之前,由于石墨碳壳存在燃烧而有机物存在热解,外壳对纳米铝粉活性的保持能力随着温度的升高而下降,表明碳包覆纳米铝粉与有机物包覆纳米铝粉受温度的影响很大。随储存时间的延长,氧化铝钝化纳米铝粉活性下降,开始阶段的氧化尤为明显;时间对碳包覆纳米铝粉活性也有一定影响;而在大气环境下储存2年的HTPB包覆纳米铝粉仍有较高的活性表明随着储存时间的延长有机物能有效的保持纳米铝粉的活性。
     最后讨论了纳米铝粉氧化的机理。纳米铝粉的氧化分为两个阶段:在铝的熔点之前是慢氧化阶段,氧气通过氧化铝壳层扩散;高于铝的熔点是快速氧化阶段,铝和氧同时通过氧化铝壳层扩散。
Aluminum (Al) nanopowders are a new metal fuel for energetic materials and have attracted considerable attention in the last few years because of their unique characteristics that cannot be obtained in the conventional Al powders. Compared with conventional Al powders, Al nanopowders in composite solid propellants have been shown to increase the burning rate, the specific impulse, and decrease the signal characteristic etc. Al nanopowders which lost the reactivity have a negative effect on the performance of energetic materials, so it is necessary and urgent to study the reactivity and the maintaining mechanism of Al nanopowders thoroughly.
     In this work, three kinds of core-shell Al nanopowders with different surface coatings (Al2O3 passivation coating, carbon coating, and propellant organic component coating) were prepared by laser-induction complex heating technology. The characterization of these Al nanopowders was revealed by XRD, SEM, TEM, HRTEM, XPS and FTIR, and the thermal properties and the active Al contents were measured by TG-DSC/DTA and the volumetric method. The influence of nano-Al characteristic factor and environmental factor on the reactivity of Al nanopowders was studied.
     Al2O3-passivated Al nanopowders were obtained by introducing small doses of oxygen before exposure to air, and this process can be explained through the mechanism of“passivation-up-to-selfsaturation”. Carbon-coated Al nanopowders were synthesized in methane atmosphere, and carbon atoms decomposed by methane deposited on the surface of Al particles because the solubility of carbon in Al metal is relatively low. Organic-coated Al nanopowders were obtained by two ways, organic molecules binded to the surface of the Al particle through the functionality (such as hydroxyl terminated polybutadiene, HTPB) and organic molecules directly deposited on the surface of the Al particle through the adsorption effect (such as di-n-octyl sebacate, DOS). These Al nanopowders all show a core-shell structure and spherical morphology with the size ranging from 10 to 90 nm. Microstructure characteristics revealed that the three kinds of core-shell Al nanopowders consist of inner crystalline Al core and outer different material shell (3.5nm thick), which is amorphous Al_2O_3 shell, onion-like graphite shell, and amorphous organic.
     Three kinds of core-shell Al nanopowders with different surface coatings all show an early oxidation below the melting point of Al (~660℃). However, the early oxidation of carbon-coated Al nanopowders and organic-coated Al nanopowders has a lower onset temperature (about 30℃), a lower peak temperature (about 20℃), a higher enthalpy change and a higher mass gain than that of Al_2O_3-passivated Al nanopowders. One possible explanation for this phenomenon is that carbon coating and organic coating are firstly burnt and pyrolyzed in an oxidative environment during particle heat up, which could trigger ignition and accelerate oxidation much eatlier than inert Al_2O_3 coating. The DTA results of Al_2O_3-passivated Al nanopowders show that the enthalpy change for oxidizing reactivity of Al nnaopowders is reduced from 3.72kJ/g to 0.93kJ/g as Al particle size decreases from 50 nm to 20 nm. The small exotherm observed for Al nanopowders of 20 nm may result from its relative lower content of Al. The enthalpy change of Al nanopowders produced by laser-induction complex heating is 3 times higher than that of Al nanopowders produced by high-frequency induction heating, which may be relative to the evaporating condition and the energy input behavior of defferent preparation method. So the reactivity of Al nanopowders in air depends on many factors.
     To further assess the effectiveness of different surface coatings in protecting the reactivity of Al nanopowders, the effects of environmental factors (humidity, temperature and time) on the reactivity of Al nanopowders with different surface coatings were studied. The results show Al_2O_3-passivated Al nanopowders are more sensitive to humidity and Al(OH)_3 (bayerite) is the major product of hydrolysis. Humidity affects the reactivity of carbon-coated Al nanopowders to some extent, which may result from the presence of some incompletely coated powders. Interestingly, the organic coating significantly decreases the aging of Al nanopowders in humid atmospheres, which is due to the hydrophobic nature of organic HTPB and DOS. Al_2O_3-passivated Al nanopowders was thermally stable up to at least 300℃. However, because of the combustion of carbon coating and the pyrolysis of organic coating before 400℃, the reactivity of carbon-coated Al nanopowders and organic-coated Al nanopowders were deeply influenced by the environment temperature. The reactivity of Al_2O_3-passivated Al nanopowders decreases as the stored time is prolonged, and the reactivity of carbon-coated Al nanopowders depends on coating effectiveness. HTPB-coated Al nanopowders stored for two years in ambient environment has still higher reactivity, which indicates that the protective organic coating with hydrophobic groups is essential to protect Al nanopowders from oxidation.
     Finally, the mechanism of Al nanopowders oxidation was discussed. The oxidation of Al nanopowders can proceed in two regimes. At temperatures below the melting point, a slow oxidation regime occurs through the diffusion of oxygen through the oxide shell. Above the melting point of aluminium, a fast oxidation regime with diffusion of both aluminium and oxygen occurs.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [2]郭万东.固体火箭推进剂超级燃速催化剂.飞航导弹,1996,6:21-25.
    [3]刘建勋,李凤生,马振叶等.纳米Fe2O3的制备及其对AP热分解的催化作用.推进技术,2006,27(4):381-384.
    [4]罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究.含能材料,2002,10(4):148-151.
    [5] F. Caruso. Nanoengineering of Particle Surfaces. Advanced materials,2001,13:11-22.
    [6]李葆萱,王克秀.固体推进剂性能.西安:西北工业大学出版社,1990.
    [7] D.C. Sayles. Methods of Increasing the Burning Rate Enhancement by Mechanical Accelerators. U.S.P. 4,812,179.1989.3.1.
    [8]沙恒,李凤生.超细高氯酸铵表面改性及对高燃速推进剂性能的影响.含能材料,1995,3(2):26-30.
    [9]陈沛,赵凤起,杨栋等.纳米级金属粉GAP热分解特性的影响.推进技术,2002, 21(5):73-76.
    [10]杨毅,刘垒力,李凤生等.纳米过渡金属粉对AP热分解的催化作用.含能材料,2005,13(5):273-277.
    [11]李泉,曾广斌,席时权.纳米粒子.化学通报,1995,6:29-34.
    [12] R.V. Gany. A microscopic and analytic study of aluminum particles agglomeration. Combustion Science and Technology,2001,166(1):91-108.
    [13] K.K. Kuo, G.A. Risha, B.J. Evans, E. Boyer. Potential usage of energetic nano-sized powders for combustion and rocket propulsion. Mater. Res. Soc. Symposium Proceedings,2004,800:3-14.
    [14] G.V. Ivanov, F. Tepper.“Activated Aluminum as a Stored Energy Source for Propellants.”Stockholm, Sweden,May,1996,27-28: 636-644.
    [15] M.M. Mench, C.L. Yeh, and K.K. Kuo. Propellant Burning Rate Enhancement and Thermal Behavior of Ultra-Fine Aluminum Powders (Alex), 29th Internal Annual Conference of ICT, Karlsruhe, Germany, June 30-July3, 1998, pp.30/1-15.
    [16] M.M. Mench, K.K. Kuo, C.L. Yeh, Y.C. Lu. Comparison of the thermal behavior of regular and ultra-Fine Aluminum Powders (Alex) made from plsma explosion process. Combustion Science and Technology,1998,135:269-292.
    [17] B. Baschung, D. Grune, H.H. Licht, M. Samirant. Combustion phenomena of a solid propellant based on aluminium powder. Combustion of Energetic Materials. NEW YORK: Begell House Inc, 2002. 219-225.
    [18] Internet WEB Site: Argonide Nanometal Technologies. {www.argonide.com}.
    [19]夏强,李疏芬,金乐骥等.超细铝粉在AP/HTPB推进剂中的燃烧研究.固体火箭技术,1994,17(4):35-42.
    [20]李疏芬,金乐骥.铝粉粒度对含铝推进剂燃烧特性的影响.含能材料,1996, 4(2):68-74.
    [21] Z. Jiang, S.F. Li, F.Q. Zhao. Research on the Combustion Properties of Propellants with Low Content of Nano Metal Powders. Propellants, Explosives, Pyrotechnics, 2006, 31(2):139-147.
    [22] O.G. Ivanov, S.N. Leono. Combustion of Mixtures of Ultradisperse Aluminum and Gel-like Water. Combustion, Explosion and Shock Waves, 1994,30(4):123-134.
    [23] O.G. Ivanov, O.V. Gavrilyuk. Special Features of the Reaction of Ultrafine Aluminum Powder with Water in the Combustion Regime. FIZIKA-GORENIYA-IVZRYNA, 1999, Mar-Apr, 36(2):60-66.
    [24] L. Galfetti, F. Severini, L. Meda, et al. Nanoparticles for solid rocket propulsion. JOURNAL OF PHYSICS: CONDENSED MATTER, 2006,18:1991-2005.
    [25] L. Meda, G. Marra, L. Galfetti, et al. Nano-composites for rocket solid propellants. Composites Science and Technology, 2005,65:769-773.
    [26] A. Dokhan, E.W. Price, R.K. Sigman, J.M. Seitzman. The effects of Al particle size on the burning rate and residual oxide in aluminized propellants. AIAA/ASME/SAE/ASEE Joint Propellant Conference and Exhibit, 37th, Salt Lake City, UT.July 8-112001:1-12.
    [27] M.L. Pantoya and J.J. Granier. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites. Propellants, Explosives, Pyrotechnics, 2005, 30 (1):53-62.
    [28] P. Brousseau, C. John Anderson. Nanometric Aluminum in Explosives. Propellants, Explosives, Pyrotechnics, 2002, 27(5):300-306.
    [29]赵凤起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向.火炸药学报, 2001,4:61-65.
    [30] F. Tepper, G. Ivanov, M. Lerner, et al. Energetic Formulation from nanosize metal powders. Pro. Int . protech. Semin ,1998 , 24th :519-530.
    [31] F. Chong, L. Shufen. Experimental Research of the Effects of Superfine Aluminum Powders on the Combustion Characteristics of NEPE Propellants. Propellants, Explosives, Pyrotechnics, 2002, 27(1):34-38.
    [32] A. Revesz, J. Lendvai. Thermal properties of ball-milled nanocrystalline Fe, Co, Cr powders. Nanostructured Materials, 1998, 10 (1):13-24.
    [33] J.T. Desena, K.K. Kuo. Evaluation of stored energy in ultrafine aluminum powder produced by plasma explosion. Journal of Propulsion and power, 1999,15:795-800.
    [34] H.Gleiter. Nanocrastalline structures-an approach to new materials. Metallkd Z, 1984,75:263-267.
    [35] Y.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, et al. Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions. Propellants, Explosives, Pyrotechnics,2003, 28(6):319-333.
    [36] J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, A. Fernandes. Passivation of nanocrystalline Al prepared by the gas phase condensation method: an x-ray photoelectron spectroscopy study. J. Mater. Res, 1998, 13:703-710.
    [37] Y.S. Kwon, Y.H. Jung, N.A. Yavorovsky, et al. Ultra-fine powder by wire explosion method. Scripta mater, 2001, 44:2247–2251.
    [38]李志杰,曲家惠,左良,王福.金属纳米粉材料的研制.东北大学学报(自然科学版),2004,25(3):243-246.
    [39] J.C. Weigle, C.C. Luhrs, C.K. Chen, et al. Generation of Aluminum Nanoparticles Using an Atmospheric Pressure Plasma Torch. J. Phys. Chem. B, 2004, 108(48):18601-18607.
    [40] V. Haas and R. Birringer. The morphology and size of nanostructured Cu, Pd and W generated by sputtering. Nanostructured Materials,1992,6(1):491-504.
    [41]江治,李疏芬.纳米金属粉的制备及特性.固体火箭技术, 2001, 24(4):41-45.
    [42] R.S. Ruoff, D.C. Lorents, B.Chan, et al. Single crystal metals encapsulated in carbon nanoparticles. Science,1993, 259:346-348.
    [43] Y. Saito, T. Yoshikawa, M. Okuda, et al. Cobalt particles wrapped in graphitic carbon prepared by an arc discharge. Journal of Applied Physics, 1994, 75:134-137.
    [44] V. P. Dravid, J. J. Host, M. H. Teng, et al. Controlled size nanoparticles. Nature, 1995, 374:602-605.
    [45] J. Jiao, S. Seraphin, X. Wang and J.C. Wither. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics,1996, 80:103-108.
    [46] J. Ling, Y. Liu, G.M. Hao, X.G. Zhang. Preparation of carbon-coated Co and Ni nanocrystallites by a modified AC arc discharge method. Materials and Engineering B, 2003,100:186-190.
    [47] X.L. Dong, Z.D. Zhang, Q.F. Xiao, et al. Characterization of ultrafineγ-Fe(C),α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane. Journal of Materials Science, 1998 , 33:1915-1919.
    [48] X.L. Dong, Z.D. Zhang, S.R. Jin and B.K. Kim. Carbon-coated Fe–Co(C) nanocapsules prepared by arc discharge in methane. Journal of Applied Physics, 1999, 86:6701–6706.
    [49] A. Ermoline, M. Schoenitz, E. Dreizin, et al. Production of carbon coated aluminum nanopowders in pulsed microarc discharge. Nanotechnology, 2002, 13(5):638-643.
    [50] K. Park, A. Rai, M.R. Zachariah. Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry. Journal of Nanoparticle Research, 2006, 8(3-4):455-464.
    [51] S. Tomita, M. Hikita, M. Fujii, et al. A new and simple method for thin graphitic coating of magnetic metal nanoparticles. Chem. Phys. Lett.,2000,316(5-6):361-364.
    [52] K.H. Ang, I. Alexandrou, N.D. Mathur, et.al. The effect of car- bon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in deionized water. Nanotechnology,2004,15:520-524.
    [53] E.K. Athanassious, R.N. Grass and W.J. Stark. Large-scale production ofcarbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006,17:1668-1673.
    [54] W.Z. Wu, Z.P. Zhu, Z.Y. Liu, et al. Preparation of carbon encapsulated iron carbide nanoparticles by an explosing method. Carbon, 2003, 41(2):317-321.
    [55] Z.H. Wang , C.J. Choi , B.K. Kim. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor condensation process. Carbon, 2003, 41:1751-1758.
    [56] Z.J. Liu, Z.Y. Yuan, W.Z. Zhou, et al. Controlled Synthesis of Carbon-Encapsulated Co Nanoparticles by CVD. Chem. Vap. Deposition, 2001 ,7 (6) : 248-251.
    [57] T.J. Foley, C.E. Johnson, and K.T. Higa. Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating. Chem. Mater. 2005, 17: 4086-4091.
    [58] Y.S. Kwon, A.A. Gromov, A.P. Ilyin. Reactivity of superfine aluminum powders stabilized by aluminum diboride. Combustion and Flame, 2002,131:349–352.
    [59] T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J. H. Satcher Jr., and J. E. Poco, Nanostructured Energetic Materials Using Sol-Gel Methodologies. Journal of Non-Crystalline Solids, 2001, 285:338-345.
    [60] H. Srikanth, R. Hajndl, C. Chirinos, et al. Magnetic studies of polymer-coated Fe nanoparticles synthesized by microwave plasma polymerization. Applied Physics Letters, 2001, 79(21):3503–3505.
    [61] N.A.D. Burke, H.D.H. St?ver, F.P. Dawson, et al. Preparation and Characterization of Polymer-Coated Magnetic Nanoparticles. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37(4): 2660-2662.
    [62] B. Mary, C. Dubois, P. Brousseau. Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheol Acta, 2006, 45(5):561-573.
    [63] R.J. Jouet, A.D. Warren, D.M. Rosenberg, et al. Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids. Chem. Mater, 2005, 17:2987-2996.
    [64] A.A. Gromov, U. Forter-Barth, U. Teipel. Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterization and reactivity with air and water. Powder Technology, 2006,164:111-115.
    [65] A.A. Gromov, A. Ilyin, U. Forter-Barth, U. Teipel. Characterization of Aluminum Powders:Ⅱ. Aluminum Nanopowders Passivated by Non-Inert Coatings. Propellants, Explosives, Pyrotechnics, 2006, 31(5):401-409.
    [66] J.A. Puszynski, Reactivity of Nanosize Aluminum with Metal Oxides and Water Vapor. Mat. Res. Soc. Symp. Proc. 2004,800:223-232.
    [67] G.P. Dixon, J.A. Martin, D. Thompson, US Patent 5,717,159, 1998.
    [68] M. Cliff, F. Tepper, and V. Lisetsky. Ageing Characteristics of Alex Nanosize Aluminum. 37th AIAA/ASME/SAE/ASEE JPC Conference & Exhibit, Salt Lake City, Utah, 2001,8-11:1-11.
    [69]张凯,傅强,范敬辉,周德惠.纳米铝粉微胶囊的制备及表征.含能材料,2005, 13(1):4-6.
    [70]杨毅,李凤生,刘宏英.金属铝粉表面纳米膜包覆.中国有色金属学报, 2005, 15(5):716-720.
    [71]金寿日,孙维民等.有机物包覆铜超微粒子的研究,粉体技术, 1998, 4(4):1-4
    [72] Q.S.M. Kwok, R.C. Fouchard, A.M. Turcotte, et al. Characterization of Aluminum Nanopowder Compositions. Propellants, Explosives, Pyrotechnics, 2002, 27(4):229-240.
    [73]张现平,张志熴,崔作林.乙炔气氛下制备碳包铁纳米粒子及其表征.青岛科技大学学报,2004,25(1):30-32.
    [74] M. Chen, S. Yamamuro, D. Farrell, et al. Gold-coated iron nanoparticles for biomedical applications. Journal of applied physics, 2003, 93(10): 7551-7553.
    [75] E.E. Carpenter, R.M. Stroud, V.G. Harris, et al. Passivated iron as core-shell nanoparticles. Chemistry of materials, 2003,15:3245-3246.
    [76] S. Peng, C. Wang, J. Xie, et al. Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc., 2006, 128(33):10676-10677.
    [77]范敬辉,张凯,吴菊英等.纳米铝粉的活性分析及寿命预测.含能材料, 2004, 12(4):239-242.
    [78] J.C. Sanchez-Lopez, A. Fernandez. The melting behavior of passivated nanocrystalline aluminum. Nanostructured Materials, 1996,7(8):813-822.
    [79] C.S. Xie, J.H. Hu, R. Wu, et al. Structure transition comparison between theAmorphous Nanosize Particles and Coarse-grained Polycrystalline of Cobalt. NanoStructured Materials, 1999, 11(8):1061-1066.
    [80]谢长生,胡木林,胡军辉,王爱华.激光复合加热制备金属纳米粉体材料.材料热处理学报.2001,22(1): 20-23.
    [81] H.D. Steffens, B. Reznik, V. Kruzhanov, et al. Carbide formation in aluminium-carbon fibre-reinforced composites. Journal of materials science, 1997, 32:5413-5417.
    [82] Y. Champion, J. Bigot. Synthesis and Structural and Analysis of Aluminum Nanocrystalline Powders .NanoStructured Materials, 1998, 10(7):1097-1110.
    [83] X. Phung, J. Groza, E.A. Stach, et al. Surface Characterization of Metal Nanoparticles. Mater. Sci. Eng. A, 2003, 359:261-268.
    [84] Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim. Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Applied Surface Science, 2003, 211:57–67.
    [85] P. Luo, T.G. Nieh, A.J. Schwartz, T.J. Lenk. Surface characterization of nanostructured metal and ceramic particles. Materials science and Engineering A,1995, 204:59-64.
    [86] Z.W. Wang, X.Z. Yi, G. Z. Li, D.R. Guan, A.J. Lou. A functional theoretical approach to the electrical double layer of a spherical colloid particle. Chemical Physics, 2001, 274:57-69.
    [87] Y. Xing, L. Li, C.C. Chusuei, R.V. Hull. Sonochemical Oxidation of Multiwalled Carbon Nanotubes. Langmuir, 2005, 21(9):4185-4190.
    [88] H. Ago, T. Kugler, F. Cacialli, et al. Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. J. Phys. Chem. B., 1999, 103(38):8116.
    [89] J.C. Sanchez-Lopez, A.Caballero and A. Fernandez. Characterisation of passivated aluminum nanopowders:an XPS and TEM/EELS stydy.Journal of the European Ceramic Society, 1998, 18:1195-1200.
    [90]戴永年,赵忠.真空冶金.北京:冶金工业出版社, 1988.
    [91]邱竹贤.铝电解原理与应用.中国矿业大学出版社, 1998.
    [92] J.R. Fincke, R.P. Anderson, T.A. Hyde, B.A. Detering. Plasma Pyrolysis of Methaneto Hydrogen and Carbon Black. Ind. Eng. Chem. Res, 2002, 41:1425-1435.
    [93] Jiao J, Seraphin S. Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti. Journal of Applied Physics, 1998, 83:2442-2448.
    [94] B.S. Xu, S. I. Tanaka. Formation of giant onion-like fullernenes under Al nanoparticles by electron irradiation. Acta mater, 1998, 46(15):5249-5257.
    [95] U. Teipel and U. Forter-Barth. Rheology of Nano-Scale Aluminum Suspensions. Propellants, Explosives, Pyrotechnics, 2001, 26:268-272.
    [96] A. Shalom, H. Aped, M. Kivity, D. Horowitz. The Effect of Nanosized Aluminum on Composite Propellant Properties. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005,10-13 July:1-9.
    [97] Y.J. Liang, and M.W. BeckStead. Numerical Simulation of Unsteady, Single Aluminium Particle Combustion in Air. AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 34th, Cleveland, OH, July 13-15, 1998, 3825:1-9.
    [98] P.S. Santos, H.S. Santos, S.P. Toledo. Standard Transition Aluminas. Electron Microscopy Studies. Materials Research, 2000, 3(4):104-114.
    [99] Y.S. Kwon, A.A. Gromov, J.I. Strokova. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Applied Surface Science, 2007, 253: 5558-5564.
    [100] C.H. Wang, W.J. Weng, W.D. Peng, R. Zhang, Study of thermal stability of Hydroxyl Terminated Polybutadiene. J. Propul. Technol. 1998,2:1-5.
    [101] R.J. Jouet, J.R. Carney, R.H. Granholm, H.W. Sandusky, A.D. Warren. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Mater. Sci. Technol. 2006, 22:422-429.
    [102] A.A. Gromov, A.P. Ilin, U. Foerter-Barth, et al. Effect of the Passivating Coating Type, Particle Size, and Storage Time on Oxidation and Nitridation of Aluminum Powders. Combustion, Explosion, and Shock Waves, 2006,42(2):177–184.
    [103] P. Pranda, K. Prandova, and V. Hlavacek. Particle Size and Reactivity of Aluminum Powders.Comb. Sci. and Tech. 2000,156:81-96.
    [104] B. Rufino, F. Boulch, M.V. Coulet, G. Lacroix, R. Denoyel. Influence of particles size on the thermal properties of aluminum powder. Acta Materialia, 2007, 55:2815-2827.
    [105] D. E. G. Jones, P. Brousseau, R. C. Fouchard, A. M. Turcotte1 and Q. S. M. Kwok. Thermal characterization of passivated nanometer size aluminium powders. Journal of Thermal Analysis and Calorimetry, 2000, 61:805-818.
    [106] D.E.G. Jones, R. Turcotte, R.C. Fouchard, Q.S.M. Kwok. Hazard Characterization of Aluminum Nanopowder Compositions. Propellants, Explosives, Pyrotechnics, 2003,28 (3):120-131.
    [107] D. Suryanarayana. Oxidation Kinetics of Aluminum Nitride. Journal of the American Ceramic Society,1990,73(4):1108-1110.
    [108]严红革,陈振华,黄培云.金属超微粒子生长行为的研究.材料科学与工艺, 1996, 7(2):87-90.
    [109] C. Kaito. Coalescence growth mechanism of smoke particles. Jpn J Appl Phys, 1985,24 (3):261-264.
    [110] B.L. Smith, B.S. Jorgensen, J.R. Busse, M.J. Ferris, W.C. Danen. Determination of Oxide Layer Thickness of Aluminum Nanopartricles; Report LA-UR-01-1665; Los Alamos National Laboratories: Los Alamos, NM, 2001.
    [111] T.Lowe. The Revolution in Nanometals. Advanced Materials & Processes, 2002, 160:63-65.
    [112] Q.S.M. Kwok, C. Badeen, K. Armstrong, R. Turcotte, D.E.G. Jones, V.Y. Gertsman. Hazard Characterization of Uncoated and Coated Aluminium Nanopowder Compositions. Journal of Propulsion and Power, 23 (2007) 659-668.
    [113] Y.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, V.A. Arkhipov, A.B. Vorozhtsov, V. T. Kuznetsov. Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions. Propellants, Explosives, Pyrotechnics, 2003, 28(6):319-333.
    [114] Y.A. Kotov, O.M. Samatov, V.S. Sedoi, L.I. Chemezova, A.A. Chertov. Heating of Conductors by High-Density Current. The Energy Input and the Integral of Action, in V. Titov, G. Shvetzov (Eds), Megagauss Fields and Pulsed Power Systems, Nova Sci. Publ., New York 1990, pp. 497
    [115] H. Vladimir, P. Pavol, P. Katarina. Reactivity, stored energy, and dislocations in solid-solid reacting systems. Chemical Engineering Communications, 2005, 192(7-9):933-940.
    [116] Roland. Characterition of Electro-explode Aluminum (Alex). 29th int. Annu. Conf. Of ICT, 1998.
    [117] S.S. Dong, G.T. Zou and H.B. Yang. Thermal characteristic of ultrafine-grained aluminum produced by wire electrical explosion. Scripta mater, 2001,44:17–23.
    [118]胡军辉,吴润,夏辉,王爱华,谢长生.高频等离子弧对纳米钴粉的组织结构的影响.材料科学与工艺, 2000, 8(1):74-76.
    [119] M. Bystrzejewski, S. Cudzilo, A. Huczko, et al. Carbon encapsulated magnetic nanoparticles for biomedical applications:Thermal stability studies. Biomolecular Engineering, 2007, 24:555–558.
    [120] Y.W. Ma, Z. Hu, L.S. Yu, et al. Chemical Functionalization of Magnetic Carbon Encapsulated Nanoparticles Based on Acid Oxidation. J. Phys. Chem. B 2006, 110: 20118-20122.
    [121] A. Rai, D. Lee, K. Park, M.R. Zachariah. Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles. J. Phys. Chem. B 2004,108:14793-14795.
    [122] M.A. Trunov, S.M. Umbrajkar, M. Schoenitz, J.T. Mang, E.L. Dreizin. Oxidation and Melting of Aluminum Nanopowders. J.Phys.Chem. B 2006, 110:13094-13099.
    [123] C.E. Aumann, G.L. Skofronick, J.A. Martin. Oxidation behavior of aluminum nanopowders. J. Vac.Sci.Technol. B, 1995, 13 (3):1178-1183.
    [124] S. Neeleshwar, Y.Y. Chen, C.R. Wang, M.N. Ou, P.H. Huang. Superconductivity in aluminum nnaoparticles. Physica C, 2004, 408-410:209-210.
    [125] A. Ilyin, A. Gromov, V. An, F. Faubert. Characterization of Aluminum Powders I. Parameters of Reactivity of Aluminum Powders. Propellants, Explosives, Pyrotechnics, 2002, 27:361-364.
    [126]中央气象局.气象常用表(第二号), 2006.
    [127]许国臣.活性计算公式中K值的由来及推导.轻合金加工技术, 1995, 23(5):42-43
    [128] T.D. Fedotova, O.G. Glotov, V.E. Zarko. Chemical Analysis of Aluminum as a Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products. Propellants, Explosives, Pyrotechnics, 2000, 25(16): 325-332.
    [129] J. Sun, M.L. Pantoya, S.L. Simon. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochimica Acta, 2006,444:117-127.
    [130]郝光宗,邢丽缘.饱和盐水溶液湿度固定点(1)—原理及设备.传感器世界, 1999, 5(11):1-4.
    [131] G.A. Risha, S.F. Son, R.A. Yetter, V. Yang, B.C. Tappan. Combustion of nano-aluminum and liquid water. Proceedings of the combustion institute, 2007, 31: 2029–2036.
    [132] Q.S.M. Kwok, N. Emery, D.E.G. Jones. Thermodesorption Studies on Al Nanopowders. Energetic Materials, 2005, 13(5):295-300.
    [133] J.W. Li, M. Nakamura, T. Shirai, et al. Mechanism and Kinetics of Aluminum Nitride Powder Degradation in Moist Air. Journal of the American Ceramic Society, 2006,89(3):937–943.
    [134] B.C. Bunker, G.C. Nelson, K.R. Zavadil, et al. Hydration of Passive Oxide Films on Aluminum. J. Phys. Chem. B, 2002, 106(18):4705-4713.
    [135] M.A. Trunov, M. Schoenitz, X.Y. Zhu, E.L. Dreizin. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combustion and Flame, 2005,140:310–318.
    [136] V.G. Shevchenko, V.I. Kononenko, I.N. Latosh, et al. Effect of the Size Factor and Alloying on Oxidation of Aluminum Powders. Combustion, Explosion and Shock Waves, 1994, 30 (5):635-637.
    [137]姚七妹.规则结构多孔炭的模板法制备与性能研究(硕士学位论文).大连:大连理工大学,2005.
    [138] N.F. Mott, Transactions of the Faraday Society, 1939,35:1175.
    [139] G.A. Niklasson, R. Karmhag. Oxidation kinetics of metallic nanoparticles. Surface Science, 2003,532-535:324–327.
    [140] T.A. Brzustowski, and I. Glassman, 1964. In: H. G. Wolfhard, I. Glassman, and L. Green Jr. (Eds), Heterogeneous Combustion (New York: Academic Press), p. 41.
    [141] K. Park, D. Lee, A. Rai, D. Mukherjee, and M.R. Zachariah. Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle MassSpectrometry. Journal of Physical Chemistry, B 2005,109:7290–7299.
    [142] T. Campbell, R.K. Kalia, A. Nakano, et al. Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers. Phys. Rev. Lett., 1999, 82(24):4866-4869.
    [143] R.K. Kalia, T.J. Campbell, A. Chatterjee, A. Nakano, et al. Multiresolution algorithms for massively parallel molecular dynamics simulations of nanostructured materials. Computer Physics Communications,2000,128:245–259.
    [144] P. Vashishta, M. Bachlechner, A. Nakano, T. Campbell, et al. Multimillion atom simulation of materials on parallel computers– nanopixel, interfacial fracture, nanoindentation, and oxidation. Applied Surface Science, 2001,182:258-264.
    [145] T. Campbell, G. Aral, S. Ogata, R.K. Kalia, A. Nakano, P. Vashishta. Oxidation of aluminum nanoclusters. PHYSICAL REVIEW B 71, 2005, 413:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700