分子束外延Gd_2O_3、Nd_2O_3高介电纳米薄膜的结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着晶体管的进一步小型化,由于存在漏电流,传统的SiO_2已经无法满足下一代金属氧化物半导体场效应管(MOSFET)的栅介质要求。为了继续维持摩尔定律预测的发展速度,人们迫切需要找到一种更加合适的高介电材料(即High-k材料),以取代SiO_2作为晶体管的栅介质。可以说,将来理想的High-k介质的成功研究与应用必将极大地推动半导体技术的快速发展。正因为如此,这些年来有关High-k介质的研究已经成为微电子领域里最关键的热门课题。本课题为德国教育科学研究部(BMBF)的MEGAEPOS科研项目的分支课题,主要目的为寻找合适的、用于下一代晶体管的栅介质材料。
     在本论文的工作中,我们利用先进的超高真空分子束外延技术(UHV-MBE)成功地在Si基底上制备了三种氧化物纳米薄膜材料:Gd_2O_3、Nd_2O_3以及二者的复合体(GdxNd1-x)2O3。通过原位RHEED、同步辐射光源衍射(GIXD掠角衍射倒易图扫描和线扫描、θ-2θ扫描等)、HRXRD(θ-2θ扫描、Φ扫描、摇摆曲线扫描等)、HRTEM (HRTEM观察、EDX分析、电子衍射分析等)、XRR等手段深入地研究了这些薄膜的生长情况,研究结果表明:
     (1)Gd_2O_3可以以高质量的晶体结构外延生长在4o斜切的Si(100)表面上。通过对比分析发现,Gd_2O_3薄膜在Si(100)基底上的生长与基底表面的台阶结构有很大关系。干净的、未处理的Si(100)基底表面上存在单原子层台阶结构,而经过1150K/15min热处理后的Si(100)基底表面则转变为单一的双原子层台阶结构。在这两种台阶结构上,生长的Gd_2O_3薄膜均为立方相的方铁锰矿晶体结构,空间群为Ia-3,且均以[110]为面外方向。但是不同的是,在未处理的Si(100)表面上,Gd_2O_3以互相垂直的双晶畴结构生长,而在热处理后的Si(100)表面上,Gd_2O_3以单晶畴结构生长。前者与基底的匹配关系为:面外[110]Gd_2O_3//[100]Si,面内[001]Gd_2O_3//[011]Si和[_110]Gd_2O_3//[011]Si;后者与基底的匹配关系为:面外[110]Gd_2O_3//[100]Si,面内[001]Gd_2O_3//[011]Si。
     (2)Gd_2O_3可以以高质量的单晶结构外延生长在S(i111)表面上。在S(i111)-(7×7)再构表面上,生长的异质结构的各界面和表面的粗糙度均小于0.6 nm,生长的Gd_2O_3薄膜为立方相的方铁锰矿结构,空间群为Ia-3,且是以[111]为面外方向生长的。非常重要的是,生长的薄膜中未出现多个晶畴,而是显示出高质量的(111)单晶性能。薄膜立方晶格与Si立方晶格在面内方向存在180°旋转,为A/B匹配结构,匹配关系为:面外[111]Gd_2O_3//[111]Si,面内[1_10]Gd_2O_3//[_110]Si。在本课题中还利用同步辐射掠角衍射(GIXD)绘制了Gd_2O_3(111)在面内方向的360o倒易空间图,详细直观地解释了其立方单晶体结构。薄膜和基底匹配非常好,在面内[_110]Si和倾斜[1_13]Si方向的失配率分别为-0.1%和-0.2%(相对于2aSi),这证明了利用MBE外延生长的Gd_2O_3晶格比Si晶格略小的结论。10.89 nm厚的Gd_2O_3薄膜的晶格在面内方向产生了拉伸应变,在面外方向产生了压缩应变,薄膜晶格中发生了部分应变弛豫现象。
     (3)Nd_2O_3可以以高质量的单晶结构外延生长在Si(111)表面上。在同样的Si(111)-(7×7)再构表面上,生长的异质结构的各界面和表面粗糙度均小于0.7 nm。与Gd_2O_3相同,生长的Nd_2O_3薄膜也为立方相的方铁锰矿结构,空间群为Ia-3,以[111]为面外方向,Nd_2O_3薄膜也具有高质量的(111)单晶性能,与基底的匹配关系也与Gd_2O_3/Si(111)完全相同。但是与Gd_2O_3不同的是,在面内和面外方向,外延生长的Nd_2O_3的晶格都明显比Si晶格大(2a_(Si))。8.13 nm厚的薄膜在面内和面外方向的失配率分别为0.66%和3.25%,Nd_2O_3晶格在面内方向产生了压缩应变,应变大小为-1.32%,在面外方向产生了拉伸应变,应变大小为1.22%,薄膜中发生了部分应变弛豫,弛豫度为33%。另外,Nd_2O_3薄膜在面内和面外的晶格常数分别为10.9339?和11.2153A。
     (4)(GdxNd1-x)2O3(简记为GNO)可以以高质量的单晶结构外延生长在Si(111)表面上。由于与Si相比,Gd_2O_3和Nd_2O_3的失配率一负一正,因此利用MBE外延生长GNO复合薄膜,以希望达到晶格互补、减小失配的目的。分析表明,在Si(111)-(7×7)再构表面上,复合生长获得成功,GNO薄膜晶格中约14%的Gd原子成功地被Nd原子所替代。生成的GNO薄膜的晶体结构与Gd_2O_3和Nd_2O_3薄膜完全相同,仍以[111]为面外方向。更重要的是,GNO表现出比Gd_2O_3和Nd_2O_3还要完美的单晶性能。相比Gd_2O_3和Nd_2O_3的负失配和正失配,约14%Nd原子替换Gd原子的GNO薄膜,在面外和面内方向的失配率甚至连强大的同步辐射光源都难以区分,因此认为该薄膜的晶格与Si晶格大小相等(2aSi),失配率为零,晶格中也不存在失配应变!所有这些都证明,晶格互补的思路是可行的!另外,初步RTA快速退火研究发现,a-Si/GNO/Si结构即使经过1000℃/30s的退火,在XRR和面外HRXRDθ-2θ扫描手段下仍呈现出良好的热稳定性。本课题研究的三种纳米薄膜,生长在Si基底上均具有较好的晶体结构特性,因此均有希望成为下一代High-k栅介质的候选材料。GNO晶格互补的思路被证明是可行的,互补得到的完美晶体结构和零失配使得GNO极有可能成为最终的栅介质替代材料。
With the further downscaling of the transistors, conventional SiO_2 can not meet the gate dielectric demands of the metal-oxide-semicoductor-field-effect transistor (MOSFET) of the next generation because of the leakage current problem. To continue to remain the development speed predicted by the Moore’s law, a suitable material with high dielectric constants have to be urgently introduced to replace SiO_2 as the gate dielectric material of the transistors. Doubtlessly, successful development and application of the future high-k materials will remarkably drive the development of the semiconductor technology. Therefore, the works on high-k materials in these years have become the most crucial research focuses in the microelectronics field. This work was supported by the German Federal Ministry of Education and Research (BMBF) under the MEGAEPOS project. The main aim of this work is to search suitable high-k oxides materials as the gate dielectric for the next generation transistors.
     In this work, with the employment of an advanced ultra-high-vacuum molecular beam epitaxy system (UHV-MBE), we successfully grew three types of nano-thick oxide films: Gd_2O_3,Nd_2O_3,and (GdxNd1-x)2O3 which is a mixed material of these two oxides. During and after the layers growth, the growth information was widely investigated, by means of in-situ RHEED, synchrotron radiation diffraction, HRXRD, HRTEM, XRR, etc. Synchrotron radiation diffraction includes the reciprocal space map scans and line scans by grazing incidence x-ray diffraction (GIXD) and theθ-2θscans. Apart from TEM observations, EDX and electron diffraction means mounted in the HRTEM system were also employed to investigate the films in details. Apart fromθ-2θscans, rocking curve scans andΦscans were included in HRXRD. The main results in this work are as follows.
     Gd_2O_3 was found to have high-quality structure after grown on 4o-offcut Si(100) surface by MBE. Through comparing, we find that the Gd_2O_3 growth largely depends on the steps structure of the Si(100) surface. Single-atomic-layer steps exist in clean Si(100) substrate surfaces without thermal annealing, while double-atomic-layer steps exist in Si(100) substrate surfaces with the thermal annealing of 1150K/15min. On the surface of both types, Gd_2O_3 can be grown with the same cubic bixbyite structure with the space group of Ia-3 and with [110] orientation as the surface normal. What is different is that Gd_2O_3 films grown on the substrates without thermal annealing have two crystal domains perpendicular to each other, while Gd_2O_3 films on the substrates with thermal annealing have only single crystal domain. The former has the epitaxial relationship: out-of-plane [110]Gd_2O_3//[100]Si, in-plane [001]Gd_2O_3//[011]Si and [ 1_10]Gd_2O_3//[011]Si. The latter has the epitaxial relationship: out-of-plane [110]Gd_2O_3//[100]Si, in-plane [001]Gd_2O_3//[011]Si.
     Gd_2O_3 was found to have high-quality single-crystalline structure after grown on Si(111) surface by MBE. On Si(111)-(7×7) reconstructed surfaces, all the surface and interface roughnesses of the heterostructure were found to be below 0.6 nm. The Gd_2O_3 films grown on Si(111) have the cubic bixbyite structure with the space group of Ia-3 and with [111] orientation as the surface normal. More important is that there is no domain information in the Gd_2O_3 layer, but a high-quality single crystalline structure. Cubic crystal lattice of the Gd_2O_3 layer was rotated by 180o in the in-plane azimuth away from the Si lattice, revealing an A/B matching structure. The epitaxial relationship is: out-of-plane [111]Gd_2O_3//[111]Si, in-plane [1 1_ 0]Gd_2O_3//[ _1 10]Si. By synchrotron radiation GIXD, 360o in-plane reciprocal space map was successfully made which can clearly interprets the in-plane single-crystalline structure of the cubic Gd_2O_3(111) film in details. Gd_2O_3 and Si were found to have good lattice matching. In the in-plane [_110]Si direction, the Gd_2O_3 layer is only -0.1% mismatched with the Si substrate and in asymmetric [1_13]Si direction -0.2% mismatched (relative to 2aSi). This indicates the lattice parameter of Gd_2O_3 is slightly smaller than the one of the Si substrate. The 10.89 nm layer exhibits compressive strain in the out-of-plane direction and tensile strain in-plane. The small mismatches indicate that the layer is only partially strained.
     Nd_2O_3 was found to have high-quality single-crystalline structure after grown on Si(111) surface by MBE. On the Si(111)-(7×7) reconstructed surfaces, all the surface and interface roughnesses of the heterostructure were found to be below 0.7 nm. The Nd_2O_3 films grown on Si(111) have the cubic bixbyite structure with the space group of Ia-3 and a high-quality single crystalline structure with [111] orientation as the surface normal, which are the same to those of the Gd_2O_3 films. Different from Gd_2O_3 film, the lattice of the epitaxial Nd_2O_3 is obviously larger than the one of the Si substrate (2aSi). In the in-plane [_110]Si direction, the 8.13 nm Nd_2O_3 layer is 0.66% mismatched and out-of-plane 3.25% mismatched with the Si substrate (relative to 2aSi). The layer exhibits compressive strain of -1.32% in the in-plane direction and tensile strain of 1.22% out-of-plane. The degree of strain relaxation of Nd_2O_3 was estimated to be 33%. In addition, the lattice constants of this Nd_2O_3 film are calculated to be 10.9339? in in-plane direction and 11.2153? out-of-plane.
     (GdxNd1-x)2O3 (GNO) was found to have high-quality single-crystalline structure after grown on Si(111) surface by MBE. With respect to Si, cubic Gd_2O_3 and Nd_2O_3 have the negative and positive mismatches, respectively. Therefore, GNO films were grown to expect the lattice complementation and smaller mismatch. All the analysis by different means indicates that on the same type Si(111)-(7×7) reconstructed surfaces, the lattice complementation is successful. 14% Gd atoms in the Gd_2O_3 lattice were replaced with Nd atoms. The as-grown GNO exhibits completely the same crystal structure to those of the Gd_2O_3 and the Nd_2O_3 with the [111] orientation as the surface normal. More important is that GNO film exhibits better structure. Compared to the negative and positive mismatches of Gd_2O_3 and Nd_2O_3, G_(0.86)N_(0.14)O with 13~14% Gd atoms replaced with Nd atoms shows little mismatches both in in-plane and out-of-plane. Even with the synchrotron radiation, it is difficult to determine the mismatches. Therefore, the lattice sizes of G_(0.86)N_(0.14)O and Si could be considered equivalent! The mismatches and mismatch strains in the film could be considered zero! All the analysis indicate that the method of lattice complementation is feasible. In addition, preliminary investigation reveals that a-Si/GNO/Si structures exhibit good thermal stability in XRR and out-of-plane HRXRDθ-2θanalysis even after the rapid thermal annealing of 1000℃/30s.
     All these three nano-thick films studied in this work grown on the Si substrates exhibit good crystal structures. These make them to be the promising candidates for the high-k gate dielectric of the next generation. The method of GNO lattice complementation proves feasible. Perfect lattice structure and zero mismatch makes GNO more promising as the replacement.
引文
[1] G. E. Moore. Cramming more components onto integrated circuits [J]. Electronics, 1965, 38(8): 114-117.
    [2] G. E. Moore. Progress in digital integrated electronics [J]. IEDM Tech. Digest, 1975: 11-13.
    [3] Moore’s law [EB/OL]. http://www.intel.com/technology/mooreslaw/.
    [4] The law’s progress illustrated by Intel [EB/OL]. http://www.ieee.org/portal/cms_docs_sscs/sscs/06Sept/halfhillChrt.jpg.
    [5]国际半导体技术蓝图最新版本[EB/OL]. http://www.itrs.net.
    [6] M. Buchanan. Scaling the gate dielectric: Materials, integration and reliability [J]. IBM journal of research and development, 1999, 43: 245-264.
    [7] C. J. Frosch and L. Derick. Surface protection and selective masking during diffusion in silicon [J]. J. Electrochem. Soc., 1957, 104(9): 547-552.
    [8] M. M. Atalla, E. Tannenbaum, and E. J. Scheibner. Stabilization of silicon surfaces by thermally grown oxides [J]. Bell Syst. Tech., 1959, 38: 749-783.
    [9] J. R. Ligenza and W. G. Spitzer. The Mechanisms for silicon oxidation in steam and oxygen[J]. J. Phys. Chem. Solids. 1960, 14: 131-136.
    [10] G. D. Wilk, R. M. Wallace and J. M. Anthony. High-k gate dielectrics: current status and materials properties considerations [J]. J. Appl. Phys., 2001, 89: 5243-5275.
    [11] S. M. Sze, Physics of Semiconductor Devices (2nd edition) [M]. New York Wiley, 1981.
    [12] H. J. Osten, A. Laha, M. Czernohorsky, E. Bugiel, R. Dargis, A. Fissel. Introducing crystalline rare-earth oxides into Si technologies [J]. Physica status solidi (a), 2008, 205: 695-707.
    [13] H. J. Osten, E. Bugiel, O. Kirfel, M. Czernohorsky, A. Fissel. MBE growth and properties of epitaxial metal oxides for High-k dielectrics [J]. J. Cryst. Growth, 2005, 278: 18-24.
    [14] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp. The Electronic Structure at the atomic scale of ultrathin gate oxides [J]. Nature, 1999, 399: 758-761 .
    [15] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Laya), J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia. Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si [J]. J. Appl. Phys, 2001, 89: 3920.
    [16] J. B. Neaton, D. A. Muller, and N. W. Ashcroft. Electronic properties of the Si/SiO2 interface from first principles [J]. Phys. Rew. Lett., 2000, 85: 1298.
    [17] M. Schulz. The end of the road for Silicon [J]. Nature, 1999, 399: 729–730.
    [18] MEGAEPOS (Metall-Gate-Elektroden und epitaktische Oxide als gate-stacks für zukünftige CMOS-logik- und speichergenerationen) [EB/OL]. http://www.megaepos.de/.
    [19] R. M. Wallace and G. D. Wilk. Materials issues for High-k gate dielectric selection and integration. high dielectric constant materials [J]. Springer Series in Advanced Microelectronics (Springer Berlin Heidelberg), 2005, 16: 253-286.
    [20] H. J. Müssig, H.J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Lui, P. Zaumseil, V. Zavodinski. Can praseodymium oxide be an alternative High-k gate dielectric material for silicon integrated circuits [J]. IEEE International Integrated Relaibility Workshop Final Report, 2001: 1-10.
    [21] B. Lee, J. Oh. H. H. Tseng, R. Jammy, and H. Huff. Gate stack technology for nanoscale devices [J]. Materials today, 2006, 9(6): 32-40.
    [22] H. Y. Yang, H. Niimi, and G. Lucovsky. Tunneling currents through ultrathin oxide/nitride dual layer gate dielectrics for advanced microelectronic devices [J]. J. Appl. Phys., 1998, 83: 2327-2337.
    [23] H. J. Osten, J. Dabrowski, H. J. Müssig, A. Fissel, V. Zavodinsky. High-K dielectrics: the example of Pr2O3 [J]. In Challenges in Process Simulation (Springer Verlag), 2004: 259-293.
    [24] J. Robertson. Band offsets of wide-band-gap oxides and implications for future electronic devices [J]. J. Vac. Sci. Technol. B, 2000, 18: 1785-1791.
    [25] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. Gladfelter, and J. Yan. MOSFET transistors fabricated with high permittivity TiO2 dielectrics [J]. IEEE Trans. Electron Devices, 1997, 44: 104-109.
    [26] A. Fissel, D. Kühne, E. Bugiel, H.J. Osten. Cooperative solid-vapor-phase epitaxy: An approach for fabrication of single-crystalline insulator/Si/insulator nanostructures [J]. Appl. Phys. Lett., 2006, 88: 153105.
    [27] K. J. Hubbard and D. G. Schlom. Thermodynamic stability of binary oxides in contact with silicon [J]. Journal of Materials Research, 1996, 11: 2757-2776.
    [28] H. Kim, A. Marshall, P. C. McIntyre, and K. C. Saraswat. Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies [J]. Appl. Phys. Lett., 2004, 84: 2064-2066.
    [29] S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, K. Yamashita, M. Niwa, K. Usuda, and G. L. Liu. Crystallization in HfO2 gate insulators with in situ annealing studied by valence-band photoemission and x-ray absorption spectroscopy [J]. J. Appl. Phys., 2005, 97: 104507.
    [30] G. Apostolopoulos, G. Vellianitis, A. Dimoulas, M. Alexe, R. Scholz, M. Fanciulli, D. T. Dekadjevi, and C. Wiemer. High epitaxial quality Y2O3 High-k dielectric on vicinal Si(001) surfaces [J]. Appl. Phys. Lett., 2002, 81: 3549-3551.
    [31] D. P. Norton. Synthesis and properties of epitaxial electronic oxide thin-film materials [J]. Mat. Sci. Eng. R., 2004, 43(5-6): 139-245.
    [32] H.J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, A. Fissel. Molecular beam epitaxy of rare-earth oxides [J]. In Topics in Applied Physics: Rare earth oxide thin films (Growth, characterization and application) (Springer-Verlag), 2007, 106: 101-114.
    [33] C. N. R. Rao and J. Gopalkrishnan. New directions in solid state chemistry (2nd edition) [M], Cambridge University Press, 1996.
    [34] A. Laha, E. Bugiel, H.J. Osten, A. Fissel. Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1 nm for high-K application [J]. Appl. Phys. Lett., 2006, 88: 172107.
    [35] A. Fissel, Z. Elassar, O. Kirfel, E. Bugiel, M. Czernohorsky, and H. J. Osten. Interface formation during molecular beam epitaxial growth of neodymium oxide on silicon [J]. J. Appl. Phys., 2006, 99: 074105.
    [36] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland. Fabrication and characterization of Si-MOSFETs with PECVD amorphous Ta2O5 gate insulator [J]. IEEE Electron Device Lett. 1997, 18: 447.
    [37] K. A. Son, A. Y. Mao, Y. M. Sun, B. Y. Kim, F. Liu, A. Kamath, J. M. White, D. L. Kwong, D. A. Roberts, and R. N. Vritis. Chemical vapor deposition of ultrathin Ta2O5 films using Ta[N(CH3)2]5 [J]. Appl. Phys. Lett., 1998, 72: 1187-1189.
    [38] M. B. Lee, M. Kawasaki, and H. Koinuma. Formation and characterization of epitaxial TiO2 and BaTiO3/TiO2 films on Si substrate [J]. Jpn. J. Appl. Phys., 1995, 34: 808-815.
    [39] H. S. Kim, D. C. Gilmer, and D. L. Polla. Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates [J]. Appl. Phys. Lett., 1996, 69: 3860-3862.
    [40] T. Chikyow, S. M. Bedair, and N. A. El-Masry. Reaction and regrowth control of CeO2 on Si(111) surface for the silicon-on-insulator structure [J]. Appl. Phys. Lett., 1994, 65: 1030-1032.
    [41] L. Tye, N. A. El-Masry, and S. M. Bedair. Electrical characteristics of epitaxial CeO2 on Si(111) [J]. Appl. Phys. Lett., 1994, 65: 3081-3083.
    [42] C. S. Hwang and H. J. Kim. Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD [J]. J. Mater. Res., 1993, 8: 1361-1367.
    [43] T. S. Kalkur and Y. C. Lu. Electrical Characteristics of ZrO2-Based metal-insulator- semiconductor structures on p-Si [J]. Thin Solid Films, 1992, 207: 193-196.
    [44] S. M. George, O. Sneh, and J. D. Way. Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB binary reaction sequence chemistry [J]. Appl. Surf. Sci., 1994, 82/83: 460.-467.
    [45] K.Y. Gao, Th. Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley and R.G.C. Leckey. Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001) [J]. Appl. Phys. Lett., 2003, 83: 1830-1832.
    [46] V. V. Afanas’ev, A. Stesmans, F. Chen, S.A. Champbell and R. Smith. HfO2-based insulating stacks on 4H-SiC (0001) [J]. Appl. Phys. Lett., 2003: 82: 922-924.
    [47] T. J. Park, S. K. Kim, J. H. Kim, J. Park, M. Cho, S. W. Lee, S. H. Hong, C. S. Hwang. Electrical properties of High-k HfO2 films on Si1?xGex substrates [J]. Microelectronic Engineering, 2005, 80: 222-225.
    [48] H. J. Osten, J. P. Liu, E. Bugiel, H. J. Müssig, and P. Zaumseil. Growth of crystalline praseodymium oxide on silicon [J]. J. Cryst. Growth, 2002, 235: 229-234.
    [49] C. P. Cheng, M. Hong, J. Kwo, H. M. Cheng, Y. L. Huang, S. Y. Lin, J. Chi, H. Y. Lee, Y. F. Hsieh and J. P. Mannaerts. Thin single-crystal Sc2O3 films epitaxially grown on Si (111)-structure and electrical properties [J]. J. Cryst. Growth, 2005, 278: 638–642.
    [50] A. M. Herrero, B. P. Gila, C. R. Abernathy, S. J. Pearton, V. Craciun, K. Siebein, F. Ren. Epitaxial growth of Sc2O3 films on GaN [J]. Appl. Phys. Lett., 2006, 89: 092117.
    [51] G. Vellianitis, G. Apostolopoulos, K. Argyropoulos, A. Dimoulas and R. Scholz. MBE lanthanum-based High-k gate dielectrics as candidates for SiO2 gate oxide replacement [J]. Mater. Sci. Eng. B, 2004, 109: 39–41.
    [52] T. S. Lay, Y. Y. Liao, W. D. Liu, Y. H. Lai, W. H. Hung, J. Kwo, M. Hong and J. P. Mannaerts. Rapid post-metallization annealing effects on High-k Y2O3/Si capacitor [J]. Solid state Electronics, 2003, 47: 1021–1025.
    [53] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent. Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation [J]. Science, 1999, 283: 1897-1900.
    [54] Apurba Laha, A. Fissel, and H.J. Osten. Influence of interface layer composition on the electrical properties of epitaxial Gd2O3 thin films for high-K application [J]. Appl. Phys. Lett., 2007, 90: 113508.
    [55] M. Czernohorsky, E. Bugiel, H. J. Osten, A. Fissel, O. Kirfel. Impact of oxygen supply during growth on the electrical properties of crystalline Gd2O3 thin films on Si(001) [J]. Appl. Phys. Lett., 2006, 88: 152905.
    [56] T. M. Pan, J. D. Lee, W. H. Shu, and T. T. Chen. Structural and electrical properties of neodymium oxide High-k gate dielectrics [J]. Appl. Phys. Lett., 2006, 89: 232908.
    [57] A. A. Dakhel. Characterisation of Nd_2O_3 thick gate dielectric for silicon [J]. Physica Status Solidi (A), 2004, 201: 745-755.
    [58] H. J. Osten, A. Fissel, O. Kirfel, Z. Elassar, E. Bugiel, M. Czernohorsky. Interface formation during epitaxial growth of binary metal oxides on silicon [J]. NATO Science Series II: Mathematics, Physics and Chemistry (Springer-Verlag), 2006, 220: 361-372.
    [59]杭孟琦.分子束磊晶成長氧化鎵釓薄膜於矽基板之結構與成分分析[D].臺灣:國立清華大學, 2006.
    [60] I. Warshaw, R. Roy. Polymorphism of the rare earth sesquioxides[J]. J. Phys. Chem., 1961, 65 (11): 2048–2051.
    [61] ASTM Powder Diffraction Files, PCPDF card number: 12-0797.
    [62] ASTM Powder Diffraction Files, PCPDF card number: 43-1014.
    [63] National Bureau of Standard (U.S.). Monograph, 1962, 25 (1): 16.
    [64] R. C. Ropp. Luminescence of Eu in ternary system La2o3-Gd203-Y2O3[J]. Electrochem. Soc., 1965, (112): 181-184.
    [65] L. Sun, J. Yao, C. Liu, et al.. Rare earth activated nanosized oxide phosphors [J]. Lumin., 2000, (87 -89): 447-450.
    [66] C. E. Curtis. Properties of Yttrium oxide ceramics [J]. Am. Ceam. Soc., 1957, 40[8]: 274-278.
    [67] C. E. Curtis and J. R. Johnson. Ceramic properties of Samarium oxide and gadolinium oxide [J]. Am. Ceram. Soc., 1957, (40): 15-19.
    [68] P. H. Klein and W. J. Croft. Thermal conductivity diffusivity and expansion of Y203, Y3AI5012 and LaF3 in the range of 77K-300K [J]. Appl. Phys., 1967, 38[4]: 1603-1607.
    [69] H. T. Hintzen, and H. M. van Noort. Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu M ?ssbauer spectroscopy [J]. Journal of Physics and Chemistry of Solids, 1988. 49(8): 873-881.
    [70] G. Schaack and J. A. Koningstein. Phonon and electronic raman spectra of cubic rare-earth oxides and isomorphous yttrium oxide [J]. J. Opt. Soc. Am., 1970, 60: 1110-1115.
    [71] A. Laha, A. Fissel, E. Bugiel, H. J. Osten. Epitaxial multi-component rare earth oxide for high-K application [J]. Thin Solid Films, 2007, 515: 6512–6517.
    [72] R. L. Barns. A survey of precision lattice parameter measurements as a tool for the characterization of singlecrystal materials [J]. Mater. Res. Bull., 1967, 2: 273-282.
    [73] G. Basile, A. Bergamin, G. Cavagnero, and G. Mana, E. Vittone, G. Zosi. Measurement of the silicon (220) lattice spacing [J]. Phys. Rev. Lett., 1994, 72: 3133-3136.
    [74] Gd_2O_3和Nd_2O_3点阵结构图[EB/OL]. http://cst-www.nrl.navy.mil/lattice/struk/d5_3.html.
    [75] T. Goto, H. Yamada-Kaneta, Y. Saito, Y. Nemoto, K. Sato, K. Kakimoto, and S. Nakamura. Observation of low-temperature elastic softening due to vacancy in crystalline silicon [J]. Journal of the Physical Society of Japan, 2006, 75(4): 044602.
    [76] R. D. Shannon. Dielectric polarizabilities of ions in oxides and fluorides [J]. J. Appl. Phys. 1993, 73: 348-366.
    [77] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia. High k gate dielectrics Gd_2O_3 and Y2O3 for silicon [J]. Appl. Phys, lett., 2000, 77: 130-132.
    [78] A. Fissel, D. Kühne, E. Bugiel, H.J. Osten. Fabrication of single-crystalline insulator/ Si/insulator nanostructures [J]. Journal of Vacuum Science and Technology B, 2006, 24: 2041-2046.
    [79] A. Fissel, M. Czernohorsky, H.J. Osten. Growth and characterization of crystalline gadolinium oxide on silicon carbide for high-K application [J]. Superlattices and Microstructures, 2006, 40: 551-556.
    [80] T. B. Massalski. Binary Alloy Phase Diagrams (vol. 2) [M]. Ohio: ASM Materials Park , 1990.
    [81] T. Busani, R. A. Devine and P. Gonon. Structural effects in the dielectric constant rare-earth oxides: Nd_2O_3 [J]. ECS Transactions, 2006, 1: 331-340.
    [82] A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov. Structure of epitaxial Gd_2O_3 films grown on GaAs (100) [J]. Phys. Rev. B, 1999, 60: 10913-10918.
    [83] E. Lipp, M. Eizenberg, M. Czernohorsky, and H. J. Osten. Effect of oxide structure on the Fermi-level pinning at metal/Gd_2O_3 interfaces [J]. Appl. Phys. Lett., 2008, 93(19): 193513.
    [84] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, C. C. Chuo. Gd_2O_3/GaN metal-oxide-semiconductor field-effect transistor [J]. Appl. Phys. Lett., 2000, 77: 3230-3232.
    [85] M. Hong, J. Kwo, S. N. G. Chu, J. P. Mannaerst, A. R. Kortan, H. M. Ng, A. Y. Cho, K. A. Anselm, C. M. Lee, J. I. Chyi. Single-crystal GaN/Gd_2O_3/GaN heterostructure [J]. J. Vac. Sci. Technol. B, 2002, 20(3): 1274-1277.
    [86] H. J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel and A. Fissel. Molecular beam epitaxy of rare-earth oxides [J]. Rare earth oxide thin films, 2007, 106: 101-114.
    [87] Josep Oriol OssóTorné. Growth, structure, and optical properties of highly ordered organic thin films of phthalocyanine and diindenoperylene [D]. Barcelona: Max-Planck-Institut für Metallforschung - Institut de Ciència de Materials de Barcelona, 2004.http://www.tdr.cesca.es/TESIS_UAB/AVAILABLE/TDX-0620105-142335/.
    [88] J. Venables. Nucleation and growth of thin films [J]. Rep. Phys., 1984, 47: 399-459.
    [89] F. C. Frank, J. H. Van der merwe. One-Dimensional Dislocations. I. Static Theory. Proceedings of the Royal Society of London [J], 1949, A198: 216-225.
    [90] M. Volmer and A. Weber. Nuclei formation in supersaturated states [J]. Z. Phys. Chem., 1926, 119: 277-301.
    [91] I. N. Stranski and L. Krastanow, Theory of orientation separation of ionic crystals [J]. Akad. Wiss. Wien Math. Nat., 1938, 146: 797-810.
    [92] J. R. Arthur. Molecular beam epitaxy [J]. Surface Science, 2002, 500: 189–217.
    [93] A. Laha, E. Bugiel, H. J. Osten, A. Fissel. Epitaxial rare earth oxide thin film: Potential candidate for future microelectronic devices [J]. In Rare Earths: Research and Applications (Nova Science Publishers, New York), 2008.
    [94] E.Bauer, Epitaxy of metals on metals [J]. Appl. Surf. Sci., 1982, 11/12: 479-494.
    [95] B. Dodson. Strain-induced surface segregation and ordering in pseudomorphic metal-alloy overlayers [J]. Phys. Rev. B, 1987, 36: 6288-6291.
    [96] B. D. Summ, A. A. Abramzon, N. L. Golovina. Applicability of Antonov's rule to a liquid-solid interface[J]. Colloid Journal of the USSR, 1990, 52(5): 790-793.
    [97] P. J. Berlowitz, J. W. He, and D. W. Goodman. Overlayer growth and chemisorptve properties of ultra-thin Fe films on W(110) and W(100) [J]. Surf. Sci., 1990, 231: 315-324.
    [98] H. J. Elmers and J. Hauschild. Magnetism and growth in pseudomorphic Fe films on W(100) [J]. Surf. Sci., 1994, 320: 134-144.
    [99] J. H. van der Merwe. Crystal interfaces. part I. semi-Infinite crystals [J]. J. Appl. Phys., 1963, 34: 117-122.
    [100] J. H. van der Merwe. Crystal interfaces. part II. finite overgrowths [J]. J. Appl. Phys., 1963, 34: 123-127.
    [101] M. A. Herman, H. Sitter. Molecular beam epitaxy- fundamentals and current status [M], Springer-Verlag, 1989.
    [102] S. M. Sze, Semiconductor devices: physics and technology (Second Edition) [M], New York: Wiley, 2001.
    [103] A. Y. Cho. Film deposition by molecular beam techniques [J]. J. Vac. Sci. Technol., 1971, 8: S31-S38.
    [104] W. Braun. Applied RHEED [M]. Springer-Verlag, 1999.
    [105] C. Kittel. Introduction to Solid State Physics [M], Wiley, 1996.
    [106]林正勛.利用RHEED、LEED、AES研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式[D].臺灣:國立中央大學, 2006.
    [107]麦振洪.薄膜结构X射线表征[M].北京:科学出版社, 2007.
    [108]德国柏林同步辐射中心[EB/OL]. http://www.bessy.de/?idcat=163&changelang=5.
    [109] The definition of the Reciprocal lattice vectors [EB/OL]. http://www.chester.iucr.org/iucr-top/comm/cteach/pamphlets/4/node3.html
    [110] P. P. Ewald. Zur Theorie der Interferferenzen der Rontgenstrahlen in Kristallen [J]. Physikal. Zeit., 1913, 14: 465-472.
    [111] P. P. Ewald. Das "reziproke gitter" in der strukturtheorie [J]. Zeit. F. Krist., 1921, 56: 129-156.
    [112] B. D. Cullity. Elements of X-ray Diffraction [M], Addisom-Wesley, 1978.
    [113] Bruker D8 discover diffractometer [EB/OL]. http://www.bruker.de.
    [114] W. J. Bartels. Characterization of thin layers on perfect crystals with a multipurpose high resolution x-ray diffractometer [J]. J. Vac. Sci. Technol. B, 1983, 1(2): 338-345.
    [115] C. Klein and C. S. Hurlbut. Manual of Mineralogy (22nd edition) [M]. New York: John Wiley and Sons, Inc., 2002.
    [116] I. K. Robinson and D. J. Tweet. Surface X-ray diffraction [J]. Rep. Prog. Phys., 1992, 55: 599-651.
    [117] T. Goryczka, G. Dercz, L. Pajak, E. Lagiewka. Lattice and peak profile parameters in GIXD technique [J]. Solid State Phenomena, 2007, 130: 281-286.
    [118] B. K. Tanner, T. P. A. Hase, T. A. Lafford, and M. S. Goorsky. Grazing incidence in-plane X-ray diffraction in the laboratory [J]. Powder Diffraction, 2004, 19(1): 45-48.
    [119] P. Dutta. Grazing incidence X-ray diffraction [J]. Current science, 2000, 78(12): 1478-1483.
    [120] A. Authier. Dynamical theory of X-ray diffraction [J]. Oxford: Oxford Univ.press, 2001.
    [121] M. v. Laue. Die Absorption der R?ntgenstrahlen in kristallen im interferenzfall [J]. Acta Cryst., 1949, 2: 106-113.
    [122] J. Matsui and J. Mizuki. Studies of semiconductor interfaces by grazing incidence x-ray diffraction [J]. Annual review of materials science, 1993, 23: 295-320.
    [123] J. C. H. Spence. Experimental high-resolution electron microscopy [M]. New York: Oxford U. Press, 1980.
    [124] D. B. Williams, C. B. Carter. Transmission electron microscopy: A textbook for materials science [M]. New York: Plenum Press, 1996.
    [125] H. Lichte. Optimum focus for taking electron holograms [J]. Ultramicroscopy, 1991, 38 (1): 13–22.
    [126] H. H. Rose. Optics of high-performance electron Microscopes [J]. Sci. Technol. Adv. Mater., 2008, 9: 014107.
    [127] L. Reimer, Transmission electron microscopy [M]. Springer-Verlag, 1989.
    [128] P. Buseck, J. Cowley, L. Eyring. High-resolution transmission electron microscopy and associated techniques [M]. Oxford: Oxford University Press, 1988.
    [129] E. Bugiel. XTEM sample preparation for failure analysis in semiconductor devices using high energy ion beam thinning [J]. Proc. MRS Spring Meeting, 1997: 89.
    [130]羅聖全、江正誠、林智仁、陳淑貞、林麗娟、洪健龍.電子顯微鏡試片製備技術總論,工業材料, 1993: 150-156.
    [131] F. Huang. X-ray Reflectivity Studies of Thin Films [R]. Tuscaloosa: University of Alabama, 2005.
    [132] M. Hong, M. A. Marcus, J. Kwo, J. P. Mannaerts, A. M. Sergent, L. J. Chou, K. C. Hsieh, K. Y. Cheng. Structural properties of Ga2O3(Gd_2O_3)-GaAs interfaces. J. Vac. Sci. Technol. B, 1998, 16, 1395.
    [133] V.G. Kohn. On the theory of reflectivity by an x-ray multilayer mirror [J]. Phys. Stat Soi. B, 1995, 187: 61-70.
    [134] XRR [EB/OL]. http://ia.physik.rwth-aachen.de/methods/xray/www-xray-eng.pdf.
    [135] A. Ulyanenkov. LEPTOS: a universal software for x-ray reflectivity and diffraction [J]. Proc. SPIE, 2004, 5536: 1-15.
    [136] A. Ulyanenkov. Novel methods and universal software for HRXRD, XRR and GISAXS data interpretation [J]. Applied Surface Science, 2006, 253: 106-111.
    [137] R. Kaplan. LEED study of the stepped surface of vicinal Si(100) [J]. Surf. Sci., 1980, 93: 145-158.
    [138] O. L. Alerhand, A. Nihat Berker, J. D. Joannopoulos, and D. Vanderbilt. Finite-temperature phase diagram of vicinal Si(100) surfaces [J]. Phys. Rev. Lett., 1990, 64: 2406– 2409.
    [139] P. E. Wierenga, J. A. Kubby, and J. E. Griffith. Tunneling images of biatomic steps on Si(001) [J]. Phys. Rev. Lett., 1987, 59: 2169– 2172.
    [140] S. Stemmer, J. P. Maria, and A. I. Kingon. Structure and stability of La2O3/SiO2 layers on Si(001) [J]. Appl. Phys. Lett., 2001, 79: 102.
    [141] R. M. Tromp, R. J. Hamers, and J. E. Demuth. Si(001) dimer structure observed with scanning tunneling microscopy [J]. Phys. Rev. Lett., 1985, 55: 1303-1306.
    [142] D. J. Chadi. Stabilities of single-layer and bilayer steps on Si(001) surfaces [J]. Phys. Rev. Lett., 1987, 59: 1691-1694.
    [143] A. Laracuente, L. J. Whitman. Step structures and energies on monohydride-terminatedvicinal Si(001) surfaces [J]. Surface Science, 2001, 476(3): L247-L253.
    [144] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia. Highεgate dielectrics Gd_2O_3 and Y2O3 for silicon [J]. Appl. Phys. Lett., 2000, 77: 130
    [145] Claudine Noguera, Polar oxide surfaces [J]. J. Phys. Condens. Matter, 2000, 12: R367- R410.
    [146] P. W. Tasker. The stability of ionic crystal surfaces [J]. J. Phys. C: Solid State Phys., 1979, 12: 4977-4984.
    [147] T. Watahiki, B. Jenichen, R. Shayduk, B.P. Tinkham, W. Braun and H Riechert. Structure analysis of epitaxial Gd_2O_3/Si(001) for High-k gate dielectric applications [J]. J. Cryst. Growth, in press, 2009.
    [148] Q. Q. Sun, A. Laha, S. J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel. Effective passivation of slow interface states at the interface of single crystalline Gd_2O_3 and Si(100) [J]. Appl. Phys. Lett., 2008, 92: 152908.
    [149] NIST (National Institute of Standards and Technology) [EB/OL]. http://www.nist.gov.
    [150] F. J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart. Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy [J]. Science, 2000, 289: 422-425.
    [151] Y. L. Wang, H. M. Guo, Z. H. Qin, H. F. Ma, H. J. Gao. Toward a detailed understanding of Si(111)-7×7 surface and adsorbed ge nanostructures: fabrications, structures, and calculations [J]. Journal of Nanomaterials, 2008, 874213.
    [152] K. Miyake and H. Shigekawa, R. Yoshizaki. Electronic structure of Si(111)-7×7 phase boundary studied by scanning tunneling microscopy [J]. Appl. Phys. Lett., 1995, 66: 3468-3470.
    [153] E. Bengu, R. Plass, and L. D. Marks, T. Ichihashi, P. M. Ajayan, and S. Iijima. Imaging the dimers in Si(111)-(7×7) [J]. Phys. Rev. Lett., 1996, 77: 4226–4228.
    [154] G. X. Qian, D. J. Chadi. Si(111)-7×7 surface: Energy-minimization calculation for the dimer-adatom-stacking-fault model [J]. Physical Review B (Condensed Matter), 1987, 35(3): 1288-1293.
    [155] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. 7×7 Reconstruction on Si(111) resolved in real space [J]. Phys. Rev. Lett., 1983, 50: 120– 123.
    [156] C. H. Shen, H. W. Lin, H. M. Lee, C. L. Wu, J. T. Hsu, and S. Gwo. Self-assembled InN quantum dots grown on AlN/Si(111) and GaN/Al2O3(0001) by plasma-assisted molecular-beam epitaxy under Stranski-Krastanow mode [J]. Thin Solid Films, 2006, 494: 79-83.
    [157] Y. Y. Zhu, R. Xu, S. Chen, Z. B. Fang, F. Xue, Y. L. Fan, X. J. Yang, Z. M. Jiang. Epitaxial growth of Er2O3 films on oxidized Si(111) and Si(001) substrates [J]. 2006, 508(1-2): 86-89.
    [158] A. Fissel, D. Kühne, E. Bugiel and H. J. Osten. Novel approach for fabrication of single-crystalline insulator/si/insulator nanostructures [J]. Mater. Res. Soc. Symp. Proc., 2006, 928: GG03-04.
    [159] K. Kosuke, I. Daisuke, F. Norifumi, M. Toshiyuki, I. Taichiro. Growth process and interfacial structure of epitaxial Y2O3/Si thin films deposited by pulsed laser [J]. J. Cryst. Growth, 2002, 237–239: 487–491.
    [160] S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. C. Lee, and Y. L. Huang. High-quality thin single-crystalγ-Al2O3 films grown on Si (111) [J]. Appl. Phys. Lett., 2005, 87: 091908.
    [161] M. H. Cho, D. H. Ko, Y. K. Choi, I. W. Lyo, C. N. Whang, H. J. Kim, and D. Y. Noh, Thickness dependence of Y2O3 films grown on an oxidized Si surface [J]. J. Vac. Sci. Technol. A, 2001, 19(1): 200-206.
    [162] T. D. Lin, M. C. Hang, C. H. Hsu, J. Kwo and M. Hong. MBE grown high-quality Gd_2O_3/Si(1 1 1) hetero-structure [J]. J. Cryst. Growth, 2007, 301-302: 386–389.
    [163] T. D. Lin, M. C. Hang, P. Chang, W. C. Lee, Z. K. Yang, C. H. Hsu, J. Kwo, and M. Hong. Structure of Epitaxial Ga2O3(Gd_2O_3) Films Grown on Si(111) [R]. Annual Meeting of the Physical Society of Republic of China, 2006: 157. http://www.nsrrc.org.tw/NsrrcWebSystem/UPLOADS%5CCHINESE%5CPUBLISH_YEARLY%5C2005~2006/appendix2/appen2-157.pdf.
    [164] N. Kato. A theoretical study of pendell?sung fringes. I. General considerations [J]. Acta Cryst., 1961, 14: 526-532.
    [165] N. Kato. A theoretical study of pendell?sung fringes. II. Detailed discussion based upon a spherical wave theory [J]. Acta Cryst., 1961, 14: 627-636.
    [166] L. Tapfer and K. Ploog. X-ray interference in ultrathin epitaxial layers: A versatile method for the structural analysis of single quantum wells and heterointerfaces [J]. Phys. Rev. B, 1989, 40: 9802-9810.
    [167] H. J. Osten, M. Czernohorsky, R. Dargis, A. Laha, D. Kühne, E. Bugiel, A. Fissel. Integration of functional epitaxial oxides into silicon: from High-k application to nanostructures [J]. Microelectronic Engineering, 2007, 84: 2222-2225.
    [168] M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, C. M. Lee and J. I. Chyi. Single crystal rare earth oxides epitaxially grown on GaN [J]. Proceedings of IEEE International Symposium on Compound Semiconductors, 2000: 495–500.
    [169] J. C. Ziegler, G. Scherb, O. Bunk, A. Kazimirov, L. X. Cao, D. M. Kolb, R. L. Johnson, J. Zegenhagen. Pb deposition on n-Si(111):H electrodes: an in situ X-ray study [J]. Surface Science, 2000, 452: 150-160.
    [170] G. Grübel, K. G. Huang, D. Gibbs, D. M. Zehner, A. R. Sandy and S. G. J. Movhrie. Reconstruction of the Pt(111) surface: X-ray-scattering measurements [J]. Physical review B, 1993, 48: 18119-18139.
    [171] D. Y. Noh, Y. Hwu, J. H. Je, M. Hong, and J. P. Mannaerts. Strain relaxation in Fe3(Al,Si)/GaAs: An x-ray scattering study [J]. Appl. Phys. Lett., 1996, 68: 1528-1530.
    [172] J. W. Matthews, A. E. Blakeslee. Defects in epitaxial multilayers: I. Misfit Dislocations [J]. J. Cryst. Growth, 1974, 27: 118–125.
    [173] S. Gariglio, N. Stucki, J. M. Triscone and G. Triscone. Strain relaxation and critical temperature in epitaxial ferroelectric Pb(Zr0.20Ti0.80)O3 thin films [J]. Appl. Phys. Lett., 2007, 90: 202905.
    [174] J. S. Speck and W. Pompe. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory [J]. J. Appl. Phys., 1994, 76: 466-476.
    [175] D. J. Chen, K. X. Zhang, Y. Q. Tao, X. S. Wu, J. Xu, R. Zhang, Y. D. Zheng, and B. Shen. Temperature-dependent strain relaxation of the AlGaN barrier in AlGaN/GaN heterostructures with and without Si3N4 surface passivation [J]. Appl. Phys. Lett., 2006, 88: 102106.
    [176] A. R. Denton and N. W. Ashcroft. Vegard’s law [J]. Phys. Rev. A, 1991, 43: 3161- 3164.
    [177] D. Zhou and B. F. Usher. Deviation of the AlGaAs lattice constant from Vegard’s law [J]. J. Phys. D: Appl. Phys., 2001, 34: 1461–1465.
    [178] L. Sun, D. H. Zhang, H. Q. Zheng, S. F. Yoon, C. H. Kam. High-resolution X-ray diffraction study of strained InGaAsP/InP multiple quantum well structures grown using all solid sources [J]. Materials Science in Semiconductor Processing, 2001, 4: 631–636.
    [179] R. Shayduk, and W. Braun. Positioning errors during stepped scans in X-ray crystallography [J]. J. Appl. Cryst., 2008, 41: 768-775.
    [180] M. Czernohorsky, D. Tetzlaff, E. Bugiel, R. Dargis, H. J. Osten, H. D. B. Gottlob, M. Schmidt, M. C. Lemme and H. Kurz. Stability of crystalline Gd_2O_3 thin films on silicon during rapid thermal annealing [J]. Semicond. Sci. Technol., 2008, 23: 035010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700