以牛血清白蛋白为靶五种污染物毒性评价新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染问题依然是目前最重要的全球性问题之一。环境中的各种污染物对生态环境造成破坏的同时,也严重威胁着人类的生存与健康。污染物可以通过呼吸道吸入、食物链经消化道摄入和皮肤接触等渠道进入生命体内,通过与组成生命体的各种生物大分子(蛋白质、核酸等)发生作用造成生命体组织器官的损伤。因此研究环境中污染物对功能性生物大分子的毒性作用机理是非常必要的。关于污染物毒性研究,目前的研究方法多以生物毒性实验为主,但该方法很难从分子水平上解释污染物对机体的毒性作用机理。
     蛋白质是生命体的物质基础,是生命体各种功能的直接执行者,其变性将导致生命体的功能或结构损伤,导致很多疾病的产生。环境中的很多的小分子污染物进入机体后都能够对机体内的蛋白质产生毒性作用从而使其变性和功能的丧失。因此,研究小分子环境污染物对蛋白质的毒性作用一直是环境污染与健康领域的热门课题。
     本论文选择牛血清白蛋白(BSA)为靶分子,利用共振光散射光谱、荧光光谱、紫外.可见吸收光谱、圆二色性光谱、透射电镜等方法或手段研究了五种代表性污染物的毒性作用机理,建立了其对机体毒性作用研究的新方法。文中选择的五种污染物除纳米银外都是离子型污染物,实验制得的纳米银胶体本身也带有电荷,这样有助于污染物毒性的规律性探讨。
     本论文选择的五种污染物除纳米银外都是离子型污染物,实验制得的纳米银胶体本身也带有电荷,这样有助于污染物毒性的规律性探讨。
     本论文共分六章内容,具体如下:
     第一章:介绍了主要的污染物毒性评价方法、靶分子蛋白质的概况、污染物毒性的相关研究进展和主要实验方法。
     第二章:主要利用共振光散射技术研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)在pH条件调控下对BSA的毒性作用,发现pH是控制SDBS使BSA中毒变性与解毒复性的重要条件,并结合其它方法对其机理进行了深入的探讨。
     第三章:通过共振光散射技术在分子水平上研究了偶氮染料酸性嫩黄G与阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)组成的复合污染物对BSA的毒性作用机理,并考查了相关影响因素。研究发现两种污染物在单独与蛋白质作用时的共振光信号很弱,其复合物污染物与蛋白质作用时的共振光信号明显增强,这表明BSA-酸性嫩黄G-CTMAB的复合体系形成了三元离子缔合物。随后用吸收光谱、圆二色性光谱谱、透射电镜等方法对其毒性作用机理进行了深入的研究。
     第四章:通过荧光光谱、同步荧光光谱、紫外吸收光谱、圆二色性光谱等光谱学方法研究了pb~(2+)对牛血清白蛋白(BSA)的毒性作用机理。研究结果表明pb~(2+)首先与BSA的骨架基团发生作用,使BSA骨架结构发生变化,内部疏水区域的色氨酸(Trp)等芳香环氨基酸逐步暴露出来,这在荧光光谱中表现为BSA内源荧光随Pb~(2+)的加入而发生猝灭。直到pb~(2+)浓度超过1.0x10~(-4) mol/L BSA的变性程度达到最大,之后pb~(2+)还与暴露在外面的Trp发生作用,进一步使荧光猝灭。
     第五章:运用光谱学方法从分子水平上研究了纳米银(nanoAg)对BSA的毒性作用模式,结果表明nanoAg对BSA存在明显的损伤作用:nanoAg诱使BSA分子二级结构中α-螺旋比例下降,骨架结构变得松散;同时使得BSA内部疏水区的Trp等芳香环氨基酸的暴露增强,BSA自身的特征荧光明显猝灭。当nanoAg与BSA的配比达到1:96(以质量计)时,nanoAg对体系荧光光谱和共振光散射光谱的影响趋于稳定。共振光散射光谱、TEM、圆二色性光谱和电泳实验的研究结果表明范德华力和静电力的作用使BSA破坏了nanoAg表面的双电层平衡结构并包覆于nanoAg表面,生成新的带负电的BSA-nanoAg复合物。
     第六章:最后对本论文的研究部分进行了总结,并分析了这种新的毒性评价今后的发展方向。
     本论文丰富了污染物毒性作用机理的研究,为污染物对机体危害的防治提供了参考。
Environmental pollution is still one of the most important global problems at present. The environmental contaminants not only create destructions to the world ecology, but also threaten human survival and health seriously. The contaminants can enter organisms through respiratory tract inhalation, digestive tract intake and skin contact, and then damage the organs and tissues by interaction with biological macromolecule (protein, nucleic acid and so on). Thereforem, study on the mechanism of the contaminants toxicity to functional biological macromolecules is very essential. In this field, biological toxicity experiment is primary research technique, but this method is difficult to explain the toxicity mechanism of contaminants to biological macromolecules.
     Protein is an important functional molecule in vivo, and its denaturation may cause functional or structural damage to life body. The main reason of many diseases (such as cataract, mad cow disease and diabetes) is protein denaturation. Recent research shows that contaminants in environment have toxic effect on organism protein and lead to protein denaturation. Therefore, study on toxicity mechanism of environment contaminants to protein has been a hot topic in field of environmental pollution and healthy.
     In the research, we studied the toxicity mechanism of five typical contaminants targeted to bovine serum albumin (BSA) in molecule level by the methods of resonance light scattering (RLS) spectroscopy, fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy and transmission electron microscopy, and a new method for evaluating the toxicity of contaminants is founded.
     The five contaminants choosen in the research are all ionic compounds, except nanoAg. But nanoAg prepared in our study aslo has electric charges. So this paper is helpful to the regularity research of contaminants toxicity.
     This study has six chapters, just as follows:
     Chapter1: The main contaminants toxicity evaluation methods, the survey for target protein molecular, the related research about contaminants toxicity and the experiment techniques are introduced in this part.
     Chapter2: By using the technique of resonance light scattering (RLS), we studied the toxicity mechanism of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) targeted to bovine serum albumin (BSA) and found pH value was an important factor controlling the interaction. Furthermore, we made an in-depth research on the mechanism of the interaction by the techniques of UV absorption spectra, transmission electron microscopy (TEM) and circular dichroism spectra (CD).
     Chapter3: By using the technique of resonance light scattering (RLS), we studied the toxicity of the complex system composed by cetyl trimethyl ammonium bromide (CTMAB) and acid flavine G targeted to bovine serum albumin (BSA).The results show that the blended system increasing transformation of RLS spectrum proves this conclusion which joining cationic surfactant CTMAB and acid flavine G in the BSA solution could form ionic aggregation, while Protein structure has also undergone a marked change. Furthermore, we made an in-depth research on the mechanism of the interaction by the techniques of UV absorption spectra, transmission electron microscopy (TEM) and circular dichroism spectra (CD).
     Chapter4: By using the spectroscopic techniques of fluorescence spectroscopy, synchronous fluorescence spectroscopy, UV absorption spectroscopy, circular dichroism (CD) spectroscopy, we studied the toxicity mechanism of Pb~(2+) targeted to bovine serum albumin (BSA) in vitro condition. Pb~(2+) can cause the fluorescence quenching of BSA, which indicated that lead changed the skeleton group of BSA and caused the stepwise exposure of aromatic amino acid residues (Trp, Tyr, Phe) in the internal hydrophobic region of BSA. When the concentration of Pb~(2+) was up to 1.0×10~(-4)mol/L, the BSA would be completely denatured. The excess lead ion would react to the aromatic amino acid residues of BSA exposed in the impregnant, which leaded to the enhanced fluorescence quenching.
     Chapter5: By spectroscopy techniques, the toxicity mechanism of nanoAg to organism was thoroughly studied from the level of bovine serum albumin (BSA) molecule. Results showed that nanoAg had obvious toxic effects to BSA: nanoAg can increase the helix and decrease the Beta, leading to the skeleton structure of BSA loose;; the exposal of internal hydrophobic amino acids enhanced, the characteristics fluorescence of BSA was obviously quenches. When the ratio of nanoAg and BSA increased to 1:96 (calculate in quality), the impacts of nanoAg to the fluorescence spectroscopy and resonance light scattering spectroscopy went to stabile. The result of resonance light scattering spectrum, TEM, circular dichroism spectra and electrophoresis experiments showed that BSA had destroyed the double-layer structure and covered in the surface, then generated to the BSA-nanoAg complex body because of the force among moleculars and electrostatic force.
     Chapter6: Conclude the research parts and analyze the development direction of this new method for contaminants toxicity evaluation.
     This study has enriched the research of contaminants toxicity mechanism, and provided some reference gists for contaminants toxicity prevention and treatment.
引文
[1]王心如主编.毒理学实验方法与技术.北京:人民卫生出版社,2006
    [2]D.J.Fort,B.L.James,J.A.Bantle.Evaluation of the developmental toxicity of five compounds with the frog embryo teratogenesis assay:Xenopus(FETAX) and a metabolic activation system.J.Appl.Toxicol.,1989,9(6):377-388
    [3]J.V.Brian,C.A.Harris,M.Scholze,T.Backhaus,P Booy,M.Lamoree,G.Pojana,N.Jonkers,T.Runnalls,A.Bonfa,A.Marcomini,J.P.Sumpter.Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals.Environ.Health Perspect.,2005,113(6):721-728
    [4]方占强,陈中豪,胡勇有等.发光细菌法在水质监测中的应用.重庆环境科学,2003,25(2):56-58
    [5]岳舜琳,糜晔新,陆莹等.利用发光细菌检验水中有毒有害物质.净水技术,1992.3:11-12
    [6]S.Deng,R.Bai,X.Hu,Q.Luo.Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment.Appl.Microbiol.Biotech.,2003,60(5):588-593
    [7]M.Kasai,J.H.Komi,A.Takakamo,H.Tsudera,T.Sakurai,T.Machida.A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution,without appreciable loss of viability.Journal of Reproduction and Fertility,1990,89:91-97
    [8]A.S.Faqi,W.D.Johnson,R.L.Morrissey,D.L.McCormick.Reproductive toxicity assessment of chronic dietary exposure to soy isoflavones in male rats.Reprod.Toxicol.,2004,18(4):605-611
    [9]F.M.Frcimosef,C.A.Jakob,M.Aebi.The MTT[3-4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]assay is a fast and reliable method for colorimetric determination of fungal cell densities.Appl.Environ.Microbiol.,1999,65(8):3727-3729
    [10]J.H.Yeon,J.Park.Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip.Anal.Biochem.,2005,341(2):308-315
    [11]N.Plant.Molecular Toxicology.London and New York:BOIS Scientific Publishers,2003
    [12]陶慰孙,李惟,姜涌明主编.蛋白质分子基础.高等教育出版社,1995
    [13]黄诸森,张光毅,生物化学与分子生物学.北京:科学出版社,2003
    [14]A.J.Gow,Q.P.Chen,D.T.Hess,B.J.Day,H.Ischiropoulos,J.S.Stamler.Basal and stimulated protein S-nitrosylation in multiple cell types and tissues.J.Biol.Chem.,2002,277(12):9637-9640
    [15]M.R.Wilkins,K.L.Williams.Cross-species protein identification using amino acid composition,peptide mass fingerprinting,isoelectric point and molecular mass:a theoretical evaluation.J.Theor.Biol.,1997,186(1):7-15
    [16]F.Lu,J.H.Pan.Study on the interaction of Bovine Serum Albumin with Acid Cyanine 5R and its application in analysis.Biochem.Cell Biol.,2006,84:1-8
    [17]F.J.Miller,D.D.Gutterman,C.D.Rios.Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis.Circ.Res.,1998,822(12):1298-1305
    [18]蒋敏.酚酸类化合物和血清白蛋白相互作用机理的光谱学研究.北京师范大学硕士论文,2006
    [19]Y.Lu,X.R.Li.Progress in study of protein denaturationand thermodynamic parameters of denaturation.Progress in Chemistry,2005,17(5):905-910
    [20]Schellman.Fifty years of solvent denaturation.Biophys.Chem.,2002,96(2-3):91-101
    [21]K.S.Huang,H.Bayley,M.J.Liao,E.London,H.G.Khoran.Refolding of an integral membrane protein:denaturation,renaturation,and reconstitution of intact bacteriorhodopsin and two proteolytic fragments.J.Biol.Chem.,1981,256(8):3802-3809
    [22]J.F.Brandts,H.R.Halvorson,M.Brennan.Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues.Biochem.,1975,14(22):4953-4963
    [23]C.Soto.Unfolding the role of protein misfolding in neurodegenerative diseases.Nature Reviews,2003,4:49
    [24]X.Cao,Q.Huang.Crystal protein and senile cataract.Chemistry of Life,1999,19(3):138-140
    [25]C.P.Zamber,J.K.Lamba,K.Yasuda,J.Farnum,K.Thummel,J.D.Schuetz,E.G.Schuetz.Natural allelic variants of breast cancer resistance protein(BCRP) and their relationship to BCRP expression in human intestine.Pharmacogeneties,2003,13(1):19-28
    [26]L.Liotta,V.Espina,A.Mehta,V.Calvert,K.Rosenblatt,D.Geho,P.Munson,L.Young,J.Wulfkuhle,E.Petricoin.Protein microarrays:Meeting analytical challenges for clinical applications.Cancer Cell,3(4):317-325
    [27]王雪,宋长征.蛋白质复性的条件及影响因素.国外医学分子生物学分册,2003,25(6):358-360
    [28]J.Liu,S.Mathias,Z.Yang,R.N.Kolesnick.Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase.J.Biol.Chem.,1994,269(4),3047-3052
    [29]S.Ercelen,A.S.Klymchenko,Y,Mely,A.P.Demchenko.The binding of novel two-color fluoresence probe FA to serum albumins of different species.Int.J.Biol.Macromol,2005,35(2):231-242
    [30]U.Kragh-Hansen.Molecular ascepts of ligand binding to serum albumin.Pharmacol.Rev.,1981,33(1):17-53
    [31]X.M.He,D.C.Carter.Atomic structure and chemistry of human serum albumin.Nature,1992,358(2):209-215
    [32]T.Peters(Ed.).All About Albumin.San Diegio:Acdemic Press,1996
    [33]禾冶宇,冯彩英.阴离子主表面活性剂的生态学及毒性评估.日用化学工业,2000,30(4):22-24
    [34]E Schoeberl.Coupling the OECD confirmatory test with continuous ecotoxicity tests.Tenside Surf.Det.,1991,28:6-14
    [35]S.H.Lina,C.M.Lina,H.G..Leu.Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation.Water Res.,1999,33(7): 1735-1741
    [36]X.Wang,W.Q.Li,A.R.Zheng,et al.The influence of detergent(LAS) on the growth of algae in the sea.Acta Oceanologica Sinica,1996,18(3):128-132
    [37]尹大强,徐大中.合成洗涤剂对水生生物的毒性效应.水产养殖,1992,(6):16-19
    [38]郭伟,李培军.阴离子表面活性剂(LAS)环境行为与环境效应.安全与环境学报,2004,4(6):37-42
    [39]K.Fox,M.Holt,M.Daniel,et al.Removal of linear alkylbenzene sulfonate from a small Yorkshire stream:contribution to GREAT-ER project.Sci.Total Environ.,2000,251:171-185
    [40]陈晓翔,杨培慧,蔡继业.表面活性剂引起的血红蛋白构象变化.环境与健康杂志,2005,22(1):21-22
    [41]Nicholas,J.Turro,X.G.Lei.Spectroscopy PMB analysis of protein-surfactant interactions:the BSA/SDS system.Langmuir,1995,11:2525-2533
    [42]林爱华,孙小梅,李步海.表面活性剂对蛋白质变性作用的研究.中南民族大学学报:自然科学版,2002,21(1):21-24
    [43]郑富源.表面活性剂对环境污染和人类健康的危害.合成洗涤剂工业,1985,2:20-25
    [44]F.Wang,J.H.Yang,X.Wu,X.B.Wang,L.S.Feng,Z.Jia,C.Y.Guo.Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system,J.Colloid Interface Sci.,2006,298:757-764
    [45]R.T.Liu,W.S.Zong,K.K.Jin,X.T Lu,J.H Zhu,L.J.Zhang,C.Z.Gao.The toxicosis and detoxifcation of anionic/cationic surfactants targeted to bovine serum albumin.Spectrochi.Acta Part A,2008,70:198-200
    [46]何瑾馨主编.染料化学.北京:中国纺织出版社,2009
    [47]B.W.Manning,C.E.Cemiglia,T.W.Federle.Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota.Appl.Environ.Microbiol.,1985,50(1):10-15
    [48]K.T.Chung.The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes.Mutat.Res.,1983,114:269-281
    [49]A.R.Beaudoin.Serum proteins and disazo dye teratogenesis.Teratology,1969,2(2):85-89
    [50]李德江,孙碧海,李斌.两种新型杂环偶氮染料的合成研究.染料及中间体,2003,33(4):28-30
    [51]H.W.Gao,Q.Xu,L.Chen,S.L.Wang,Y.Wang,L.L.Wu,Yuan,Y.Potential protein toxicity of synthetic pigments:binding of poncean S to human serum albumin.Biophys.J.,94(3):906-917
    [52]D.L.Morgan,C.W.Jameson,J.H.Mennear,J.D.Prejean.14-day and 90-day toxicity studies of C.I.Pigment Red 3 in Fischer 344 rats and B6C3F1 mice.Food Chem.Toxicol.,1989,27(12):793-800
    [53]B.B.Kim,H.Abdul Kadir,S.Tayyab.Bromophenol blue binding to mammalian albumins and displacement of albumin-bound bilirubin.Pak.J.Biol.Sci.,2008,11(20):2418-2422
    [54]Y.Yu,J.Liao,F.D.Huang.Spectra studies on interaction of bovine serum albumin with acidic chrome blue K in acidic solution.Guang Pu Xue Yu Guang Pu Fen Xi,2002,22(6):1067-1069
    [55]B.S.Liu,H.Y.Zhang,H.L.Zhang,Y.Zhao.The high-sensitivity determination of protein concentration by the enhancement of resonance light scattering of chlorophenol red.Guang Pu Xue Yu Guang Pu Fen Xi,2003,23(2):229-231
    [56]卢臻,宋功武.曙红Y与牛血清蛋白作用的荧光光谱研究及分析.分析测试学报,19(5):45-47
    [57]N.C.Feng,S.P.He,J.Zhang,J.P.Liu.Resonance light scattering study on interaction of solochrome cyanine R with protein and light scattering determination of trace protein,Guang Pu Xue Yu Guang Pu Fen Xi,2003,23(2):229-231
    [58]张延.日本水俣病和水俣湾的环境恢复与保护.水利技术监督,14(5):50-52
    [59]N.Shigemura,A.Akashi,T.Nakagiri.Intrathoracic extramedullary hematopoiesis arising in marble bone disease.Clarifying the genetic disease mechanism.Jpn.J.Thorac.Cardiovasc.Surg.,2002,50(7):311-314
    [60]L.Magos,T.W.Clarkson.Overview of the clinical toxicity of mercury.Ann.Clin. Biochem.,2006,43(Pt4):257-268
    [61]D.Appenroth,K.Winnefeld.Reconsideration of some hypotheses on the mechanism of thallium toxicity in rats with special respect to riboflavin and glutathione.Nephrol.Dial.Transplant.,14:16-18
    [62]M.Costa,C.B.Klein.Toxicity and carcinogenicity of chromium compounds in humans.Crit.Rev.Toxicol.,2006,36(2):155-163
    [63]J.A.Alcedo,K.E.Wetterhahn.Chromium toxicity and carcinogenesis.Int.Rev.Exp.Pathol.,1990,31:85-108
    [64]S.Hirano.Evaluation of pulmonary toxicity of heavy metal compounds.Nippon Eiseigaku Zasshi,1996,50(6):1013-1025
    [65]X.F.Yang,Y.N.Yang.Protective effects of calcium antagonists on cadmium -induced toxicity in rats.Biomed.Environ.Sci.,1997,10(4):402-407
    [66]涂楚桥,张宏志,梁宏.Cd(Ⅱ)与HSA或BSA的结合平衡研究.化学学报,2000,58(2):229-234.
    [67]P.J.Sadler,J.V.Viles.1H and 13C NMR investigation of Cd~(2+) and Zn~(2+) binding sites on serum albumin competition with Ca~(2+),Ni~(2+),Cu~(2+),and Zn~(2+).Inorg.Chem.,1996,35:4490-4496.
    [68]M.Cammarota,M.Lamberti,L.Masella,P.Galletti,M.De Rosa,N.Sannolo,M.Giuliano.Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro.Toxicol.In Vitro,2006,20(7):1125-1132
    [69]王永康,王立.纳米材料科学与技术.杭州:浙江大学出版社,2000
    [70]A.Dowling,R.Clift,N.Grobertl.Nanoscience and Nanotechnologies:Opportunities and Uncertainties.London:The Royal Society & The Royal Academy of Engineering Report,2004
    [71]S.M.Hussaina,K.L.Hessb,J.M.Gearhartc,K.T.Geissd,J.J.Schlagera.In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Toxicol.in Vitro,2005,19(7):975-983
    [72]孙晓宁,孙康宁,朱广楠.纳米颗粒材料的毒性研究与安全性展望.材料导报,2006,20(5):5-7
    [73]陈国永,廖岩,马昱,陶茂萱.纳米颗粒物生物安全性研究进展.国外医学 (卫生学分册),2007,34(4):206-209
    [74]W.J.Waldman,R.Kristovich,D.A.Knight,P.K.Dutta.Inflammatory properties of iron-containing carbon nanoparticles.Chem.Res.Toxicol.,2007,20(8):1149-1154
    [75]C.H.Liu,X.P.Yang,H.Y.Yuan,et al.Preparation of silver nanoparticle and its application to the determination of ct-DNA.Sensors,2007,7:708-718
    [76]S.M.Hussain,A.K.Javorina,A.M.Schrand,H.M.Duhart,S.F.Ali,J.J.Schlager.The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.Toxicological Sciences,2006,92(2):456-463
    [77]L.Sraydich-Stolle,S.M.Hussain,J.J.Schlager,et al.In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.Toxicological Sciences,2005,88(2):412-419
    [78]黄承志等.共振光散射技术的原理及其在生化研究中的应用.分析化学,1998,26(12):1508-1515
    [79]赵择卿等.光散射技术.北京:纺织工业出版社,1989
    [80]Z.Chen,G.Liu,M.Chen,Y.Peng,M.Wu.Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionie gemini surfactant.Anal.Biochem.,2009,384(2):337-342
    [81]P.Galletto,W.Lin,M.I.Mishchenko,M.Borkovee.Light-scattering form factors of asymmetric particle dimers from heteroaggregation experiments.J.Chem.Phys.,2005,123(6):64709
    [82]C.Guo,X.Wu,W.Xu,J.Yang.Resonance light-scattering enhancement effect of the protein-Y~(3+)-TTA-SLS system and its analytical application.Luminesc.,2008,23(6):404-409
    [83]陈国珍主编.荧光分析法.北京:科学出版社,1990
    [84]黄晓峰,张远强,张英起主编.荧光探针技术.北京:人民军医出版社,2004
    [85]A.Nevin,S.Cather,A.Burnstock,D.Anglos.Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis.Appl.Spectrosc.,2008,62(5):481-489
    [86]B.Barbieri,E.Terpetschnig,D.M.Jameson.Frequency-domain fluorescence spectroscopy using 280 nm and 300 nm light-emitting diodes:measurement of proteins and protein-related fluorophores.Anal.Biochem.,2005,344(2):298-300
    [87]A.K.Bordbar,A.Taheri-Kafrani.Binding and fluorescence study on interaction of human serum albumin(HSA) with cetylpyridinium chloride(CPC).Colloids Surf.B Biointerfaces,2007,55(1):84-89
    [88]X.Zhu,J.Sun,Y.Hu.Determination of protein by hydroxypropyl-beta -cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe.Anal.Chim.Acta,2007,596(2):298-302
    [89]X.C.Lin,J.Yan,L.Q.Guo,Z.H.Xie.Determination of protein by synchronous fluorometric method with a new indole homodimeric cyanine as fluorescence probe.Guang Pu Xue Yu Guang Pu Fen Xi,2008,28(11):2615-2618
    [90]张朝红,臧树良,耿兵,等.紫外和圆二色光谱法研究丁基锡化合物与牛血清白蛋白的相互作用.分析科学学报,2005,21(2):179-181
    [91]郭尧君主编.分光光度技术及其在生物化学中的应用.北京:科学出版社,1987
    [92]S.Kreusch,S.Schwedler,B.Tautkus,G.A.Cumme,A.Horn.UV measurements in microplates suitable for high-throughput protein determination.Anal.Biochem.,2003,313(2):208-215
    [93]L.Shang,Y.Wang,J.Jiang,S.Don.pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates:a spectroscopic study.Langmuir,2007,23(5):2714-2721
    [94]鲁子贤等.圆二色性和旋光色散在分子生物学中的应用.北京:科学出版社,1987
    [95]N.Sreerama,S.Y.Venyaminov,R.W.Woody.Estimation of protein secondary structure from circular dichroism spectra:inclusion of denatured proteins with native proteins in the analysis.Anal.Biochem.,2000,287(2):243-251
    [96]B.A.Wallace,J.G.Lees,A.J.Orry,A.Lobley,R.W.Janes.Analyses of circular dichroism spectra of membrane proteins.Protein Sci.,2003,12(4):875-884
    [97]N.C.Price.Conformational issues in the characterization of protein.Biotechnol. Appl.Biochem.,2000,31(1):29-40
    [98]A.Y.Woody,R.W.Woody.Individual tyrosine side-chain contributions to circular dichroism of ribonuclease.Biopolymers,2003,72(6):500-513
    [99]Y.Wang,X.Wang,G.Luo,Y.Dai.Adsorption of bovin serum albumin(BSA)onto the magnetic chitosan nanoparticles prepared by a microemulsion system.Bioresour.Technol.,2008,99(9):3881-3884
    [100]F.Kay,H.Martin,D.Mic,et al.Removal of linear alkylbenzene sulfonate from a small Yorkshire stream:contribution to GREAT-ER project.Sci.Total Environ.,2000,251:171-185
    [101]R.L.Grant,C.Yao,D.Gabaldon,D.Acosta.Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues:Ⅰ.Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies Toxicol.,1992,76(2):153-176
    [102]X.Wang,W.Q.Li,A.R.Zheng,et al.The influence of detergent(LAS) on the growth of algae in the sea.Acta Oceanol.Sinica,1996,18(3):128-132
    [103]H.Polet,J.Steinhardt.Binding-induced alterations in ultraviolet absorption of native serum albumin.Biochemistry,1968,7:1348-1355
    [104]E.Dirkinsion.Adsorbed protein layers at fluid interfaces:interactions,structure and surface rheology.Colloids Surf.B,1999,15:161-176
    [105]朱明华,胡坪.仪器分析.北京:高等教育出版社,2008
    [106]Y.Z.Zhang,X.X.Chen,J.Dai,X.P.Zhang,Y.X.Liu,Y.Liu.Spectroscopic studies on the interaction of lanthanum(Ⅲ) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin.Luminescence,2008,23(3):150-156
    [107]Y.Li,W.He,J.Liu.Binding of the bioactive component jatrorrhizine to human serum albumin.Biochim.Biophys.Acta,2005,1722:15-21
    [108]A.M.Khan,S.Muzammil,J.Musarrat.Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein.Int.J.Biol.Macrcomol.,2002,30(5):243-249
    [109]汪世新主编.有机化学.上海:上海教育出版社,2003
    [110]范以辉,惠焕强.浅谈分光光度法和分光光度计的原理及其应用.计量与测试技术,2006,12(33):11-12
    [111]郁建栓.浅谈重金属对生物毒性效应的分子机理.环境污染与防治,1996,18(4):28-31
    [112]舒为群.铅的遗传毒性及致癌性危害.国外医学:卫生学分册,1996,23(3):133-137
    [113]D.Jachimczak,B.Skotarczak.The Effect of Fluoride and Lead Ions on Chromosomes in Human Leukocytes in Vitro.Fluoride,1980,13(2):87-88
    [114]吴根华,汪春华.荧光法研究Pb~(2+)与牛血清白蛋白的相互作用.光谱学与光谱分析,2005,25(2):246-248
    [115]马贵斌,杨频,刘文静,翟锦.荧光法研究金属离子与蛋白质的作用.山西大学学报(自然科学版),1992,15(2):163-168
    [116]Y.Z.Zhang,B.Zhou,Y.X.Liu,C.X.Zhou,X.L.Ding,Y.Liu.Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene.J.Fluoresc.,2008,18(1):109-118
    [117]A.Papadopoulou,R.J.Green,R.A.Frazier.Interaction of flavonoids with bovine serum albumin:a fluorescence quenching study.J.Agric.Food Chem.,2005,53(1):158-163
    [118]J.N.Miller.Recent advances in molecular luminescence analysis.Anal.Proc.,1979,16(2):203-209
    [119]F.Wang,J.H.Yang,X.Wu,C.X.Sun,S.F.Liu,C.Y.Guo,Z.Jia.The interaction mechanism and fluorescence enhancement in morin-Al~(3+)-sodium codicil benzene sulfonate-protein system.Chem.Phys.Lett.,2005,409:14-22
    [120]L.F.He,D.L.Lin,Y.Q.Li,Micelle-sensitized constant-energy synchronous fluorescence spectrometry for the simultaneous determination of pyrene,benzo[a]pyrene and perylene.Anal.Sci.,21(6):641-645
    [121]D.H.Ran,X.Wu,J.H.Zheng,J.H.Yang,H.P.Zhou,M.F.Zhang,Y.J.Tang.Study on the interaction between florasulam and bovine serum albumin.J.Fluoresc.,2007,17(6):721-726
    [122]M.Nishijima,T.C.Pace,A.Nakamura,T.Mori,T.Wada,C.Bohne,Y.Inoue. Supramolecular photochirogenesis with biomolecules.Mechanistic studies on the enantiodifferentiation for the photocyclodimerization of 2-anthracenecarboxylate mediated by bovine serum albumin.J.Org.Chem.,2007,72(8):2707-2715
    [123]Y.Z.Zhang,B.Zhou,Y.X.Liu,C.X.Zhou,X.L.Ding,Y.Liu.Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene.J.Fluoresc.,2008,18(1):109-118
    [124]J.R.Morones,J.L.Elechiguerra,A.Camacho,et al.The bactericidal effect of silver nanoparticles.J.Nanotechnology,2005,16:2346-2353.
    [125]S.H.Jeong,Y.H.Hwang,S.C.Yi.Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids.J.Mater.Sci,2005,40:5413-5418.
    [126]J.M.White,A.M.Powell,K.Brady.Severe generalized argyria secondary to ingestion of colloidal silver protein.Clinical and Experimental Dermatology,2003,28(3):254-256.
    [127]刘伟,闫兵.几种典型纳米材料毒性与生物活性的探索.山东大学硕士学位论文,2007
    [128]司民真,徐媛,武荣国等.正电性胶态纳米银中加入凝聚剂后的表面增强拉曼光谱.光谱学与光谱分析,2006,26(12):2251-2253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700