基于超分子体系的有机热致凝胶新体系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十几年来,小分子凝胶剂及其物理凝胶的研究引起了人们越来越多的重视。随着研究工作的不断深入,取得了许多引人注目的成就。刺激响应性凝胶作为小分子凝胶(物理凝胶)的一重要分支,由于其在智能材料和药物运输方面存在巨大的潜在应用价值,受到更多的关注。热致有机凝胶不但是刺激响应性凝胶的一个重要凝胶类型,并且由于其明显不同于常规有机凝胶低温下成凝胶而是在高温下形成凝胶,这一特点使得热致有机凝胶受到越来越多地关注和研究。热致凝胶包含两种类型:一种是不可逆的热致凝胶,这种凝胶通常是由聚合物形成的,特别是蛋白质。另一种是可逆的热致凝胶,这种凝胶通常就是由小分子凝胶因子形成的。
     本论文主要介绍了两种新型热致可逆凝胶体系以及对其进行的初步改性研究。首先介绍的是一种基于环糊精超分子作用的、热致可逆的新型有机凝胶体系。该凝胶体系是由p-环糊精(β-CD)、二苯胺(DPA)以及氯化锂(LiCl)在N,N-二甲基甲酰胺(DMF)中形成的,属于典型的小分子凝胶体系。随着温度的升高,DPA可以在DMF中凝胶化而不是溶解性增大,而随着温度降低,DPA又可以溶解到DMF中,这个现象是可逆的、可重复的。这个现象与一般的有机小分子在有机溶剂中,随着温度升高溶解性增大的一般规律相反。例如β-CD、DPA或其他有机小分子在DMF中的溶解性是比较大的,特别是当温度升高的时候,溶解度会更大。
     该凝胶体系是首例基于环糊精超分子作用而形成的热致有机小分子凝胶。针对该凝胶体系,我们做了以下的表征和研究:光学显微镜(Optical microscopy, OM)、扫描电子显微镜(Scanning electron microscopy, SEM)、差示扫描量热法(Differential scanning calorimetry, DSC)、X射线衍射(X-ray diffraction, XRD)和傅里叶红外光谱测试(FTIR measurements, FT-IR)。该新型凝胶体系的特点如下:(1)该体系是多组分凝胶体系,并且每一个组分对凝胶的形成都起到重要的作用。(2)该凝胶体系的凝胶因子是由一些简单的、尺寸较小并且廉价的有机小分子组成的。(3)该有机凝胶体系是一个热响应的有机小分子凝胶体系。他不同于常规的凝胶体系升温溶解的一般特性,反而是升温形成凝胶。凝胶样品在室温下呈澄清的溶液态,而当加热到凝胶化温度(Tgel)附近时,体系变成凝胶态。(4)通过DSC测试比较准确地证明该凝胶体系是对温度可逆的。当温度低于凝胶化温度后,凝胶态会恢复到溶液态。(5)该凝胶体系对氯化锂的量还有响应性。当体系中没有氯化锂的时候,该体系是不能形成凝胶的。(6)该体系对客体分子也有响应性。当加入其他客体分子后,该凝胶体系的凝胶化温度大多是降低的。但是也有一些尺寸与环糊精的空腔匹配性较好的客体分子会破坏凝胶的形成。并且利用分子动力学模拟了该凝胶体系形成的可能性机理。
     其次我们介绍的是首例异于常规凝胶的、新型三重响应性(gel-sol-gel)凝胶体系,它是由一定比例的β-环糊精(p-CD)、二苯胺(DPA)和氯化锂(LiCl)在N,N-二甲基乙酰胺(DMAC)中基于超分子作用形成的多组分、热响应的有机凝胶体系。常规的热可逆凝胶体系是两重响应的(sol-gel),它有两种热可逆方式:一种是先加热体系至澄清状态,然后冷却到凝胶化温度(Tgel)形成凝胶;另一种是体系在室温下呈溶胶态,加热该体系至Tgel后形成凝胶。本文介绍的是一定比例的β-CD,DPA和LiCl在DMAC中,通过室温搅拌即可形成凝胶(gel A),然后将gel A置于油浴中加热,gel A会坍塌融化成澄清溶液态,然后继续加热至一定温度(凝胶化温度,Tgel),该体系转而又形成一种凝胶态(gel B)。该凝胶体系经过了以下表征:光学显微镜(Optical microscopy, OM)、扫描电子显微镜(Scanning electron microscopy, SEM)、傅里叶红外光谱测试(FTIR measurements, FT-IR)和流变学测试(Rheology)。我们发现该体系有很多突出的特点,具体如下:(1)该凝胶体系是
     一个多组分的凝胶体系,体系中的四个凝胶因子组分对凝胶的形成都是不可或缺的;(2)该凝胶体系属于热响应性的小分子有机凝胶,并且它不同于常规两重响应的凝胶体系,属于三重响应体系;(3)通过SEM,得知两个凝胶态的微观结构是不
     一样的。由于该三重响应性凝胶体系具有显著地自组装特点,所以它很有可能有更广阔的应用前景。
     最后,我们针对这两个新型热致有机凝胶体系的进行了简单改性。通过对凝胶因子的改性和更换来探讨凝胶体系的形成机理以及寻找更优异的凝胶体系。
During the last decade, physical gels prepared by small molecular gelators have attracted more and more attention. As an important branch of physical gel, stimuli-responsive gels, which inculde hydrogels and organogels, have been extensively investigated and have potential applications in smart biomaterials and drug-delivery systems. As one of the special gels, the heat-set organogels which are formed at high temperature in organic solvents have received increasing attention for their great potential applications in materials, medicines and other fields. The heat-set organogels inculde two types. One is irreversible gels, which is usually prepared by polymers, particularly proteins. The other is reversible gels, which is usually prepared by small organic molecules.
     This paper mainly introduced two new thermally reversible gel systems and preliminary research on their modification. Firstly, we introduced a new reversible, heat-set organogel based onβ-CD. The gel system is a thermal responsive organogel of small organic molecules formed by a system of DPA withβ-CD and LiCl in DMF. DPA could be gelated in DMF particularly as the temperature increasing, while be dissolved again with the temperature decreasing whenβ-CD and LiCl are introduced into the system. This is very interesting and unusual for that DPA,β-CD and other organic molecules dissolve respectively very well in DMF, particularly as the temperature increases. The gel system as the first heat-set small organic molecules organogel based onβ-CD was characterized by OM, SEM, DSC, XRD, FT-IR. The appealing features of this new kind of gel are described as follows. (1) It is a multicomponent system where each of the four components is required for the organogelation property. (2) The gel system is formed by simple, small, and commercially available chemicals. (3) It is a thermo-responsible organogel of small organic molecules, which is different from the conventional gels dissolved upon heating. The sample is a transparent solution at room temperature, but a gel can be formed when it heated to a Tgel(the temperature of gelation). (4) It could be reversible to temperature, which was confirmed by DSC. When the temperature is lower than the Tgel, the gel could turn to a solution again. (5) It is responsive to the amount of LiCl. There's no gel could be formed without the presence of LiCl. (6) It is responsive to the guest molecules. Generally, the Tgel decreased by adding the guest molecules into the gel system, but some guest molecules, whose structure is exactly fitted to the cavity of CDs, could destroy the gel formation of the gel system.
     Secondly, we introduced a triple-transforming gel system (gel-sol-gel) for the first time, which is a thermo-responsive organogel with multi-components prepared byβ-CD, DPA and LiCl in DMAC in a suitable proportion based on the supramolecular interactions. The conventional thermo-responsive gels is duplicate-transforming (sol-gel), which could be thermo-reversible by one way of heating or cooling around the gelation temperature (Tgel), or the other way of heating upon Tgel and cooling down. The first gel (gel A) could be formed byβ-CD, DPA and LiCl in DMAC at room temperature based on stirring, then the gel could transform into a clear solution based on heating, and then the other gel (gel B) can be formed at a relatively high temperature (Tgel, the gelation temperature by heating). This gel system was characterized by OM, SEM, FT-IR and Rheology. Some significant features of the gel system were found as follows:(1) the system has multi-components, where each of the four components is required for the organogelation; (2) the system is a thermo-responsive organogel of small organic molecules such as DPA and DMAC, which is different from the conventional gels with a duplicate-transforming (sol-gel) process; (3) the two gel states have different micro-structures observed by SEM. The striking self-assembly properties of the thermo-responsive triple-transforming system may bring in much broad prospects for applications.
     Finally, we have modified the two gel systems simply by modifying the gelators or replacing the gelators. Based on the modifications, we could indicate the possible mechanism for gel formation and explore for more excellent gel system.
引文
[1]Jordon Lloyd, D. Colloid Chemistry; Alexander, J., Ed.; The Chemical Catalog Co.:New York,1926; Vol.1, p 767.
    [2]Graham, T. Liquid diffusion applied to analysis, Phil. Trans. Roy. Soc.1861,151, 183-224.
    [3]Hermans, P. H. Colloid Science; Kruyt, H. R., Ed.; Elsevier:Amsterdam,1949; Vol. Ⅱ, p 483.
    [4]Flory, P. J. A Introductory and inorganic oscillations. Thermodynamic aspects and bifurcation analysis of spatio-temporal dissipative structures, Faraday Discuss. Chem. Soc.,1974,57,7-20.
    [5]Terech, P.; Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels, Chem. Rev.,1997,97,3133-3159.
    [6]Derossi, D.; Kajiwara, K.; Osada, Y., et al. Polymer gels:fundamentals and biomedical applications, Plenum Press, New York,1991.
    [7]Guenet, J. M. Thermoreversible gelation of polymers and biopolymers, Academic Press, London,1992.
    [8]Corriu, R. J. P.; Leclercq, D. Recent development of molecular chemistry for sol-gel processes, Angew. Chem. Int. Ed.,1996,35,1420-1436.
    [9]Reetz, M. T. Entrapment of biocatalysts in hydrophobic soi-gel materials for use in organic chemistry, Adv. Mater.,1997,9,943-954.
    [10]杨亚汀,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展,有机化学,2001,21(9),632-639.
    [11]Gu, W. Q.; Lu, L.; Chapman, G. B., et al. Polymerized gels and'reverse aerogels' from methyl methacrylate or styrene and tetraoctadecylammonium bromide as gelator, Chem. Commun.,1997,543-544.
    [12]Sangeetha N. M.; Maitra U. Supramolecular gels:functions and uses, Chem. Soc. Rev.,2005,34,821-822.
    [13]George M.; Weiss R. G. Molecular organogels. softmatter comprised of low-moleular-mass organic gelators and organic liduids, Acc. Chem. Res.,2006, 39(8),489-497.
    [14]Imae, T.; Takahashi, Y.; Muramatsu, H. Formation of fibrous molecular assemblies by amino acid surfactants in water, J. Am. Chem. Soc.,1992,114, 3414-3419.
    [15]Franceschi, S.; de Viguerie, N.; Riviere, M., et al. Synthesis and aggregation of two-headed surfactants bearing amino acid moieties, New J. Chem.,1999,23, 447-452.
    [16]Bhattacharya, S.; Acharya, S. N. G. Pronounced hydrogel formation by the self-assembled aggregates of N-alkyl disaccharide amphiphiles, Chem. Mater.1999, 11,3504-3511.
    [17]Hanabusa, K.; Hirata, T.; Inoue, D., ct al. Formation of physical hydrogels with terpyridine-containing carboxylic acids, Colloid Surf. A,2000,169,307-315.
    [18]Menger, F. M., Caran, K. L. Anatomy of a gel amino acid derivatives that rigidify water at submillimolar concentrations, J. Am. Chem. Soc.,2000,122,11679-11691.
    [19]吴其晔,巫静安编著.高分子材料流变学,北京:高等教育出版社,2002,1.
    [20]Terech, P.; Rossat, C.; Volino, F. On the measurement of phase transition temperatures in physical molecular organogels, J. Colloid Interface Sci.,2000,227, 363-370.
    [21]Jung, J. H.; John, G.; Masuda, M., et al. Self-assembly of a sugar-based gelator in water:its remarkable diversity in gelation ability and aggregate structure, Langmuir 2001,17,7229-7232.
    [22]Makarevic, J.; Jokic, M.; Peric, B., et al. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents:supramolecular gels with temperature dependent assembly/dissolution equilibrium, Chem. Eur. J.2001,7, 3328-3341.
    [23]Jung, J. H.; Shinkai, S.; Shimizu, T. Spectral characterization of self-assemblies of aldopyranoside amphiphilic gelators:what is the essential structural difference between simple amphiphiles and bolaamphiphiles, Chem. Eur. J.2002,8,2684-2690.
    [24]Frkanec, L.; Jokic, M.; Makarevic, J., et al. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces micorsphere-to-gel fiber morphological transition:the photoinduced gelation system, J. Am. Chem. Soc,2002, 124,9716-9717.
    [25]Fuhrhop, J. H.; Svenson, S.; Boettcher, C., et al. Long-lived micellar N-alkyl-aldonamide fiber gels:solid-state NMR and electron microscopic studies, J. Am. Chem. Soc.,1990,112,4307-4312.
    [26]Nakazawa, I.; Masuda, M.; Okada Y., et al. Spontaneous formation of helically twisted fibers form 2-glucosamide bolaamphiphiles:energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge, Langmuir, 1999,15,4757-4764.
    [27]Xing B. G.; Yu C. W.; Chow K, H., et al. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel:a potential candidate for biomaterials, J. Am. Chem. Soc.,2002,124,14846-14847.
    [28]Jokic, M.; Makarevi, J.; Zinic, M. A novel type of small organic gelators: bis(amino acid) oxalyl amides, Chem. Commun.,1995,1723-1724.
    129] Suzuki, M.; Yumoto, M.; Kimura M., et al. Novel family of low molecular weight hydrogelators based on L-lysinc derivatives, Chem. Commun.,2002,884-885.
    [30]Maitra, U.;Mukhopadbyay, S.; Sarkar, A.; Rao, P.;Indi, S. S. Hydrophobic pockets in a nonpolymeric aqueous gel:observation of such a gelaiton process by color change, Angew. Chem., Int. Ed.,2001,40,2281-2283.
    [31]Newkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Russo, P. S.; Theriot, K. J.; Moorefield, C. N.; Rogers, L. E.; Miller, J. E.; Lieux, T. R.; Murray, M. E.; Philips, B.; Pascal, L. Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels, J. Am. Chem. Soc. 1990,112,8458-8465.
    [32]Nakashima, T.; Kimizuka, N. Light-harvesting supramolecular hydrogels assembled from short-legged cationic L-glutamate derivatives and anionic fluorophores, Adv. Mater.,2002,14,1113-1116.
    [33]Iwaura, R.; Yoshida, K.; Masuda, M.; Ohnishi-Kameyama, M.; Yoshida, M.; Shimizu, T. Oligonucleotide-templated self-assembly of nucleotide bolaamphiphiles: DNA-like nanofibers edged by a double-helical arrangement of A-T base pairs, Angew. Chem. Int. Ed. Engl.,2003,42,1009-1012.
    [34]Kobayashi, H.; Friggeri, A.; Koumoto, K.; Amaike, M.; Shinkai, S.; Reinhoudt, D N. Molecular design of "super" hydrogelators:understanding the gelation process of azobenzene-based sugar derivatives in water, Org. Lett.,2002,4,1423-1426.
    [35]Gronwald, O.; Shinkai, S.'Bifunctional'sugar-integrated gelators for organic solvents and water on the role of nitro-substituents in 1-O-methyl-4,6-O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability, J. Chem. Soc., Perkin Trans.2.2001,1933-1937.
    [36]Lwaura, R.; Yoshida, K.; Masuda, M.; Ohnishi-Kameyama, M.; Yoshida, M.; Shimizu, T. Oligonucleotide-templated self-assembly of nucleotide bolaamphiphiles: DNA-like nanofibers edged by a double-helical arrangement of A-T base pairs, Angew. Chem. Int. Ed.,2003,42,1009-1012.
    [37]Shimizu, T.:Masuda, M. Stereochemical effect of even-odd conecting links on supramolecular assembiles made of 1-glucosamide bolaamphiphiles, J. Am. Chem. So c.,1997,119,2812-2818.
    [38]Kogiso, M.; Hanada, T.; Yase, K.; T. Shimizu. Intralayer hydrogen-bond-directed self-assembly of nano-fibers from dicarboxylic valylvaline bolaamphiphiles, Chem. Commun.,1998,1791-1792.
    [39]Kogiso, M.; Ohnishi, S.; Yase, K.; Masuda, M.; Shimizu, T. Dicarboxylic oligopeptide bolaamphiphiles:proton-triggered self-assembly of microtubes with loose soild surfaces, Langmuir,1998,14,4978-4986.
    [40]Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group, Chem. Eur. J.,2003,9,348-354.
    [41]Estroff, L. A.; Hamilton, A. D. Effective gelation of water using a series of bis-urea dicarboxylic acids, Angew. Chem. Int. Ed. Engl.,2000,39,3447-3450.
    [42]Iwaura, R.; Yoshida, K.; Masuda, M.; Yase, K.; Shimizu, T. Spontaneous fiber formation and hydrogelation of nucleotide bolaamphiphiles, Chem. Mater.,2002,14, 3047-3053.
    [43]Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G. Direct observation of sol-gel conversion:the role of the solvent in organogel formation, J. Am. Chem. Soc.,2000,122,2399-2400.
    [44]Song, J.; Cheng, Q.; Kopta, S.; Stevens, R. C. Modulating artificial membrane morphology:pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers, J. Am. Chem. Soc.,2001,123,3205-3213.
    [45]Kolbel, M.; Menger, F. M. Hierarchical structure of a self-assembled xerogel, Chem. Commun.,2001,275-276.
    [46]Adrian, M.; Dubochet, J.; Lepault, J.; McDowall, A. W. Cryo-electron microscopy of viruse, Nature,1984,308,32-36.
    [47]Fuhrhop, J. H.; Schnieder, P.; Rosenberg, J.; Boekema, E. The chiral bilayer effect stabilizes micellar fibers, J. Am. Chem. Soc.,1987,109,3387-3390.
    [48]Lambert, O.; Levy, D.; Ranck, J. L.; Leblanc, G.; Rigaud, J. L. A new "gel-like" phase in dodecyl maltoside-lipid mixtures:implications in solubilization and reconstitution studies, Biophys. J.,1998,74,918-930.
    [49]Boettcher, C.; Schade. B.; Fuhrhop, J. H. Comparative cryo-electron microscopy of noncovalent N-dodecanoyl-(D-and L) serine assemblies in vitreous toluene and water. Langmuir,2001,17,873-877.
    [50]Hartgerink, J. D.;Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide amphiphile nanofibers, Science,2001,294,1684-1688.
    [51]Estroff, L. A.; Leiserowitz, L.; Addadi, L.; Weiner, S.; Hamilton, A. D. Characterization of an organic hydrogel:a cryo-transmission electron microscopy and X-ray diffraction study, Adv. Mater.,2003,15,38-42.
    [52]Koenig, J.; Boettcher, C.; Winkler, H.; Zeider, E. Talmon, Y.; Fuhrhop, J. H. Magic angle (54.7 degree) gradient and minimal surfaces in quadruple micellar helices, J. Am. Chem Soc., 1993,115,693-700.
    [53]Boettcher, C.; Stark, M.; Heel, M. V. Stacked bilayer helices:a new structural organization of amphiphilic molecules, Ultramicroscopy,1996,62,133-139.
    [54]Pochan, D. J.; Pakstis, L.; Ozbas, B.; Nowak, A. P.; Deming, T. J. SANS and cryo-TEM study of self-assembled diblock copolypeptide hydrogels with rich namo-through microscal morphology, Macromolecules,2002,35,5358-5360.
    [55]Berlepsch, H. V.; Boucher, C.; Ouart, A.; Regenbrecht, M.; Akari, S.; Keiderling, U.; Schnablegger, H.; Dahne, S.; Kirstein, S. Surfactant-induced changes of morphology of J-aggregates:superhelix-to-tubule transformation, Langmuir,2000,16, 5908-5916.
    [56]Oda, R.; Hue, I.; Homo, J. C.; Heinrich, B.; Schmutz, M.; Candau, S. Elongated aggregates formed by cationic gemini surfactants, Langmuir,1999,15,2384-2390.
    [57]Imae, T.; Funayama, K.; Krafft, M. P.; Giulieri, F.; Tada, T.; Matsumoto, T. Small-angle scattering and electron microscopy investigation of nanotubules made from a perfluoro-alkylated glucophospholipid, J. Colloid Interface Sci.,1999,212, 330-337.
    [58]Menger, F. M.; Zhang, H.; Caran, K. L.; Seredyuk, V. A.; Apkarian, R. P. Gemini-induced columnar jointing in vitreous ice. Cryo-HRSEM as a tool for discovering new colloidal morphologies, J. Am. Chem. Soc.,2002,124,1140-1141.
    [59]Menger, F. M.; Seredyuk, V. A.; Apkarian, R. P.; Wright, E. R. Colloidal assemblies of branched geminis studied by cryo-etch-HRSEM, J. Am. Chem. Soc.. 2002,124,12408-12409.
    [60]Fukuda, H.; Goto, A.; Imae, T. Structure determination of helical fibers by numerical simulation for small-angle neutron scattering, Langmuir,2002,18, 7107-7114.
    [61]David, W. I. F.; Shankland, K.; McCusker, L. B.; Baerlocher, C. Structure determination from powder diffraction data, Oxford University Press, New York, 2002.
    [62]Azaroff, L. V.; Buerger, M. J. The powder method in X-ray crystallography, McGraw-Hill Book Company Inc., New York,1958.
    [63]Abdallah, D. J.; Sirchio, S. A.; Weiss, R. G. Hexatriacontane organogels:the first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state, Langmuir,2000,16,7558-7561.
    [64]Esch, J. V.; Schoonbeek, F.; Loos, M. D.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L. Cyclic bis-urea compounds as gelators for organic solvents, Chem. Eur. J.,1999,5,937-950.
    [65]Hanabusa, K.; Matsumoto, M.; Kimura, M.; Kakehi, A.; Shirai; H. Low molecular weight gelators for organic fluids:gelation using a family of cyclo(dipeptide)s, J. Colloid Interf. Sci.,2000,224,231-244.
    [66]Carr, A. J.; Melendez, R.; Geib, S. J.; Hamilton, A. D. The design of organic gelators:solution and solid state properties of a family of bis-ureas, Tetrahedron Lett., 1998,39,7447-7450.
    [67]Menger, F. M.; Yamasaki, Y.; Catlin, K. K.; Nishimi, T. X-ray structure of a self-assembled gelating fibers, Angew. Chem. Int. Ed.,1995,34,585-586.
    [68]Ostuni, E.; Kamaras, P.; Weiss, R. G. Novel X-ray method for in situ determination of gelator strand structure:polymorphism of cholesterol anthraquinone-2-carboxylate, Angew. Chem. Int. Ed.,1996,35.1324-1325.
    [69]Mikami, M.; Matsuzaki, T.; Masuda, M.; Shimizu, T.; Tanabe, K. Molecular dynamics simulation for the crystal structure of synthetic sugar-based bolaamphiphiles, Comput. Mate. Sci.,1999,14,267-276.
    [70]Schoonbeek, F. S.; Each, J. H. V.; Hulst. R.; Kellogg, R. M.; Feringa, B. L. Geminal bis-ureas as gelators for organic solvents:gelation properties and structural studies in solution and in the gel state, Chem. Eur. J.,2000,6,2633-2643.
    [71]Esch, J. V.; DeFeyter. S.; Kellogg, R. M.;DeSchryver, F.; Feringa, B. L Self-assembly of bisurea compounds in organic solvents and on solid substrate, Chem. Eur. J.,1997,3,1238-1243.
    [72]Malik, S.; Maji, S. K.; Banerjee, A.; Nandi, A. K. A synthetic tripeptide as organogelator elucidation of gelation mechanism, J. Chem. Soc., Perkin Trans.2, 2002,1177-1186.
    [73]Bhattacharya, S.; Acharya; S. N. G. Impressive gelation in organic solvents by synthetic, low molecular mass, self-organizing urethane amide of L-phenylalanine, Chem. Mater.,1999,11,3121-3132.
    [74]Pitha, J.; Rao, C. T. Distribution of substituents in 2-hydroxypropyl ethers of cyclomaltoheptaose, Carbohydr. Res.,1990,20,429-435.
    [75]Szejtli J. Advances in Inclusion Science, D. Reidel Publishing Company, Dordrecht,1982.
    [76]Szejtli J. Cyclodextrin Technology, Kluwer Academic, Dordrecht,1988.
    [77]James, W. J.; French, D.; Fundle, R. E. Preparation and stability of iodine/cyclodextrin inclusion complex, Acta Ctyst.,1959,12,385-389.
    [78]Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry, Springer-Verlay, Berlin, 1979.
    [79]Gillet, B.; Nicole, D. J.; Delpuech, J. J. The hydroxyl group protonation rates of α, β and γ-cyclodextrins in dimethylsulphoxide, Tetrahedron Lett.,1982,23,65-68.
    [80]Ress, D. A. Schardinger dextrin interaction IV. Inhibition of hydrolysis by means of molecular complex formation, J. Chem. Soc.1970,8,877-882.
    [81]Saenger, W.; Noltemeyer, M.; Manor, P. C. Interaction of pharmaceuticals with schardinger dextrins Ⅲ. Interactions with mon-ohalogenated benzoic acids and aminobenzoic acids, Bioorg.Chem.,1976,5,187-190.
    [82]Suzuki, I.; Chen, Q.; Ueno, A. Acceleration of phenyl ester cleavage by cycloamyloses a model for enzymic specificity, Bull. Chem. Soc.,1993,66, 1472-1476.
    [83]Lach, J. L.; Chin, T. F. Effect of cycloamyloses on apparent dissociaiton by complex formation, J. Pharm. Sci.,1964,53,924-927.
    [84]Lach, J. L.; Chin, T. F. Cyclodextrin in the absorptive phase after single doses of drug, J. Pharm. Sci.,1964,53,69-74.
    [85]Griffiths, D. W.; Bender, M. L. Modification of photochemical reactivity by cyclodextrin complexalion:product selectivity in photo-fries rearrangement, Adv. Catal.,1973,23,209-213.
    [86]Vanetten, R. L.; Sebastian, F.; Clowes, J. G. Acceleration of phenyl ester cleavage by cycloamyloses-a model for enzymic specificity, J. Am. Chem. Soc.,1967,89, 3242-3244.
    [87]Tadanobu, U.; Fumitoshi, H.; Kaneto, U. Stereochemistry and thermal stability of diazodiketones, J. Chem. Soc., Perkin Trans.2,1993,2,1791-1793.
    [88]Connors, K. A.; Lipari, J. M. Effect of cycloamyloses on apparent dissociation constants of carboxylic acids and phenols:equilibrium analytical selectivity induced by complex formation, J. Pharm. Sci.,1976,65,379-381.
    [89]Gelb, R. A.; Schwartz, L. M.; Cardlino, B. Binding mechanisms in cyclohexaamylose complexes, J. Am. Chem. Soc.,1981,103,1750-1757.
    [90]Szejtli, J. Cyclodextrin and their Inclusion Complexes, Akademiai Kiaeo, Budapest,1982.
    [91]Remden, R.; Carlfors, J.; Stilbs, P. Substrate binding to cyclodextrins in aqueous solution:a multicomponent self-diffusion study, J. Incl. Phenom. Macro. Chem.,1983, 1,159-167.
    [92]Osa, T.; Matsue, T.; Fujihira, M.; Cyclodextrin, Hetercycles,1977,6, 1833-1836.
    [93]Mastue, T.; Osa, T.; Evans, D. H. Determination of some physical constants of cyclodextrin complexes by electrochemical methods, J. Incl. Phenom. Macro. Chem., 1984,2,547-554.
    [94]Mantsui, Y.; Sawada, H.; Mochida, K. The adsorption of α-and β-cyclodextrins on the dropping mercury electrode in an aqueous solution, Bull. Chem. Soc.,1975,48, 3446-3449.
    [95]Lagrost, C.; Mochida, K. Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. Bull. Chem. Soc.,1979,52, 2808-2814.
    [96]Lagrost, C.; Lacroix, J. C.; Aeiyach, S. Host-guest complexation:a new strategy for electrodeposition of processable polythiophene composites from aqueous medium, Chem. Commun.,1998,489-490.
    [97]Ruppert, S.; Knittael, D. Fixierung von β-Cyclodextrinderivaten auf Polyesterfasermaterial, Starch/Starke,1997,49,160-164.
    [98]Vikmon, M.; Stadler-Szoke, A.; Szejtli, J. Solubilization of amphotericin B with gamma-cyclodextrin., J. Antibiot.1985,38,1822-1824.
    [99]Couthon, F.; Clottes, E.; Vial, C. Refolding of SDS- and thermally denatured MM-creatine kinase using cyclodextrins, Biochem. Biophyes. Res. Commun.,1996, 227,854-860.
    [100]Sukonen, P.; Javinen, T.; Lehmussaari, K. Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop, Pharm. Res.,1995,12,529-533.
    [101]Martic, P. A.; Skochdopole, T. R. Polyolefin composition containing optical brighteners having reduced migration, US 5340854,1994.
    [102]吴文娟,陈玉珍,谭载友,水溶性高聚物对药物-环糊精包合作用的影响,中国药学杂志,1999,34(2),99.
    [103]Lis, W.; Purdy, C. Cyclodextrins and their applications in analytical chemistry, Chem. Rev.,1992,92(6),1457-1470.
    [104]Paleologou, M.; Purdy, W. C. Characterization of drug transport through tight-junctional pathway in caco-2 monolayer:comparison with isolated rat jejunum and colon, J. Chromatogr. Sci.,1990,28:331-333.
    [105]Takahashi, K.; Hattori, K. Asymmetric reactions with cyclodextrins, J. Incl. Phenom. Mol. Recognit. Chem.,1994,1:1-24.
    [106]Nakanishis, J. K.; Masukawa, T., Nadai, T., Polysaccharide of stragali radix enhances IgM antibody production in aged mice, Biol. Pharm. Bull.,1997,20,60-65.
    [107]Fillet, M.; Becht, I.; Chip, P. A new thin-layer method for phenolic substances and coumarins, J. Chromatogr.,1995,717,203-309.
    [108]Chankvetadze, B.; Endresz, G.; Blaschke, G. Charged cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Chem. Soc. Rev.,1996,25,141-153.
    [109]Moore, E.; Bergamo, R.; Casllo, R. Direct compression tablets containing a series of four β-cyclodextrin complexes formed by neutralizing an acidic drug, Drug Dev. Ind. Pharm.,2000,26(12):1259-1270.
    [110]Varia, P. R.; Adhage, N. A. Freeze-dried inclusion complexes of tolfenamic acid with β-cyclodextrins, Pharm. Dev. Technol.,2000,5(4),571-574.
    [111]Wolbach, J. P.; Lloyd, D. K.; Wainer, I. W. Approaches to quantitative structure-enantioselectivity relationship modeling of chiral separations using capillary electrophoresis, J. Chromatogr. A,2001,914(1-2),299-314.
    [112]Yochida, A.; Yamasaki, T.; Aoyagi, T., et al. Heterocycles,2001,54(2),596-600.
    [113]Miyake K.; Irie T.; Hirayama F. Proc. Int. Stymp. Cyclodextrins 9th,1999, 293-296.
    [114]刘玉雯,余祥彬,李彦萍.酮洛芬羟丙基-p-环糊精凝胶剂的制备及其经皮渗透性,福建医科大学学报,2007,41(5),437-439(443).
    [115]袁宁宁.p-环糊精水凝胶的制备及其在药物控释中的应用,化学工程与装备,2009,6,16-18.
    [116]Sun, S.; Chen, X.; Liu, J., et al. A Novel Two-Component Physical Gel Based on Interaction Between Poly(acrylic acid) and 6-Deoxy-6-amino-β-cyclodextrin, Poly. Eng. Sci.,2009,49,99-103.
    [117]Rizkov, D.; Mizrahi, S.; Gun J., et al. Nonstoichiometric gelation of cycoldextrin and included planar guests, Langmuir,2008,24(20),11902-11910.
    [118]Rees, G. D.; Robinson, B. H. Microemulsions and organogels:properties and novel applications, Adv. Mater.,1993,5,608-619.
    [119]Pozzo, J. L.; Clavier, G. M. Rational design of new acid-sensitive organogelators, J. Mater. Chem.,1998,8:2575-2581.
    [120]Shinkai, S.; Murata, K. Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers, J. Mater. Chem., 1998,8,485-492.
    [121]Li, S.; John, V. T.; Irvin, G. C., et al. Synthesis and magnetic properties of a novel ferrite organogel, J. Appl. Phys.,1999,85,5965-5972.
    [122]Kawano, S. I.; Fujita, N.; Shinkai, S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli, J. Am. Chem. Soc.,2004,126:8592-8593.
    [123]Jung, J. H.; Kobayashi, H.; Masuda, M. Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription, J. Am. Chem. Soc., 2001,123,8785-8789.
    [124]Jung, J. H.; Shinkai, S.; Shimizu, T. Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica, Chem Mater.,2003,15:2141-2145.
    [125]Jung, J. H.; Shinkai, S. Preparation of ultrastable mesoporous silica using a phenanthroline-appended cholesterol organogelator as a template, Nano Lett.,2001,3, 145-148.
    [126]Jung, J. H.; Lee, S. H.; Yoo, J. S. Creation of double silica nanotubes by using crown-appended cholesterol nanotubes, Chem. Eur. J.,2003,9,5307-5313.
    [127]Jung, J. H.; Kobayashi, H. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template, Chem. Mater.,2002,14, 1445-1447.
    [128]Varghese, T. L.; Gaindhar, S. C.; David, J., et al. Def. Sci. J.,1995,45,25-33.
    [129]Sakaguchi, S.; Ueki, H.; Kato, T. Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators:Control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces, Photochem. Photobio. A:Chemistry,2004,164, 117-122.
    [130]Mohmeyer, N.; Wang, P.; Schmidt, H. W., et al. Quasi-solid-state dye sensitized solar cells with 1,3,2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators, J. Mater. Chem.,2004,12:1905-1909.
    [131]Tiller, J. C. Increasing the local concentration of drugs by hydrogel formation, Angew. Chem. Int. Ed.,2003,42:3072-3075.
    [132]Friggeri, A.; Feringa, B. L.; Esch, J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator, J. Control Release, 2004,97,241-248.
    [133]Lehn, J. M. Supramolucular chemistry:concept and perspectives, VCH, Germany,1995.
    [1]Terech, P.; Weiss, R. G. Low molecular mass gelator of organic liquids and the properties of their gels, Chem. Rev.,1997,97,3133-3159.
    [2]Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules, Chem. Rev.,2004,104(3),1202-1217.
    [3]Gronwald, O.; Snlp, E.; Shinkai, S. Gelators for organic liquids based on self-assembly:a new facet of supramolecular and combinatorial chemistry, Curr. Opi. Colloid Interface Sci.,2002,7,148-156.
    [4]Abdallah, D. J.; Weiss, R. G. Organogels and low molecular mass organic gelators, Adv. Mater.,2000,12,1237-1247.
    [5]Choi, H. S.; Huh, K. M.; Ooya, T.; Yui, N. pH-and thermosensitive supramolecular assembling system:rapidly responsive properties of (3-cyclodextrin-conjugated poly(ε-lysine), J. Am. Chem. Soc.,2003,125,6350-6351.
    [6]Bolder, S. G.; Hendrickx, H.; Sagis, L. M. C., et al. Fibril assemblies in aqueous whey protein mixtures, J. Agric. Food. Chem.,2006,54,4229-4234.
    [7]Valstar, A.; Vasilescu, M.; Vigouroux, C.; Stilbs, P.; Almgren, M. Heat-set bovine serum albumin-sodium dodecyl sulfate gels studied by fluorescence probe methods, NMR, and light scattering, Langmuir,2001,17,3208-3215.
    [8]Kuroiwa, K.; Shibata, T.; Takada, A.; Nemoto, N.; Kimizuka, N. Heat-set gel-like networks of lipophilic Co(Ⅱ) triazole complexes in organic media and their thcrmochromic structural transitions, J. Am. Chem. Soc.,2004,126,2016-2021.
    [9]Zhou, J.; Chen, X.; Zheng, Y. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity, Chem. Commun.,2007,48, 5200-5202.
    [10]Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as supramolecular hosts for organometallic complexes, Chem. Rev.,2006,106,767-781.
    [11]Villalonga, R.; Cao, R.; Fragoso, Supramolecular chemistry of cyclodextrins in enzyme technology, A. Chem. Rev.,2007,107,3088-3116.
    [12]De Rango, C.; Charpin, P.; Navaza, J.; Keller, N.; Nicolis, I.; Villain, F.; Coleman, A. W. β-cyclodextrin/pyridine gel systems. The crystal structure of a first β-cyclodextrin-pyridine water compound, J. Am. Chem. Soc.,1992,114,5475-5476.
    [13]Rizkov, D.; Mizrahi, S.; Gun, J.; Hoffman, R.; Melman, A.; Lev, O. Nonstoichiometric gelation of cyclodextrins and included planar guests, Langmuir, 2008,24,11902-11910.
    [14]Sun, S.; Chen, X.; Liu, J.; Yan, J.; Fang, Y. A novel two-component physical gel based on interaction between poly(acrylic acid) and 6-deoxy-6-amino-cyclodextrin, Polym. Eng. Sci.,2009,49,99-103.
    [15]Araki, J.; Ito, K. Strongly thixotropic viscosity behavior of dimethylsulfoxide solution of polyrotaxane comprising a-cyclodextrin and low molecular weight poly(ethylene glycol), Polymer,2007,48,7139-7144.
    [16]Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. Two-component dendritic gels:easily tunable materials, J. Am. Chem. Soc.,2003, 125,9010-9011.
    [17]Wang, Y.; Tang, L.; Yu, J. Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator. Colloid Interface Sci.2008,319,357-364.
    [18]Jiang, H.; Sun, H.; Zhang, S.; Hua, R.; Xu, Y.; Jin, S.:Gong, H.; Li, L. NMR investigations of inclusion complexes between β-cyclodextrin and naphthalene/anthraquinone derivatives, J. Incl. Phenom. Macro. Chem.,2007.58, 133-138.
    [19]Li, G.; Mcgown, L. B. Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhcxatricnes, Science,1994,264:249-251.
    [20]Maurice, R.; Eftink, M. L.; Bystrom, K.; Perlmutter, H. D.; Kristol, D. S. Cyclodextrin inclusion complexes:studies of the variation in the size of alicyclic guests, J. Am. Chem. Soc.,1989,111,6765-6772.
    [21]严军林,刘静,陈希,房喻,基于主客体作用的多重刺激响应型超分子水凝胶的制备及性能,高等学校化学学报,2008,29(1),124-129.
    [22]Pozuelo, J.; Mendicuti, F.; Mattice, W. Inclusion complexes of chain molecules with cycloamyloses Ⅲ. molecular dynamics simulations of polyrotaxanes formed by poly(propylene glycol) and β-cyclodextrins, Polym. J.,1998,30,479-484.
    [23]Xia, K.; Hou, T.; Xu, X.; Shen, X. DPH-环糊精纳米管状聚集体的计算机模拟,Acta Phys.-Chim. Sin.,2004,20,5-8.
    [24]Vishnyakov, A.; Neimark, A. V. Molecular simulation study of nafion membrane solvation in water and methanol, J. Phys. Chem. B,2000,104,4471-4478.
    [25]Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins, Chem. Asian J.,2008,3,687-695.
    [1]Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules, Chem. Rev.,2004,104 (3),1202-1217.
    [2]Neralagatta, M. S.; Uday, M. Supramolecular gels:functions and uses, Chem. Soc. Rev.,2005,34,821-836.
    [3]Weiss, R. G.; Terech, P.; Molecular gels:materials with self-assembled fibrillar network, Springer, Dordrecht,2006.
    [4]Terech, P.; Weiss, R. G. Low molecular mass gelator of organic liquids and the properties of their gels, Chem. Rev.,1997,97,3133-3160.
    [5]Mathew, G.; Weiss, R. G. Molecular organogels. soft matter comprised of low-molecular-mass organic gelators and organic liquids, Acc. Chem. Res.,2006,39, 489-497.
    [6]Kuroiwa, K.; Shibata, T.; Takada, A. Heat-set gel-like Networks of lipophilic Co(Ⅱ) triazole complexes in organic media and their thermochromic structural transitions, J. Am. Chem. Soc.,2004,126,2016-2021.
    [7]Hirst, A. R.; Smith, D. K.; Feiters, M. C. Two-component dendritic gels:easily tunable materials, J. Am. Chem. Soc.,2003,125,9010-9011.
    [8]Wang, Y.; Tang, L.; Yu, J. Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator, Colloid Interf. Sci.,2008,319:357-364.
    [9]Li, G.; Mcgown, L. B. Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes, Science,1994,264:249-251.
    [10]Maurice, R.; Eftink, M. L.; Bystrom, K. Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests, J. Am. Chem. Soc.,1989,111, 6765-6772.
    [11]Pozuelo, J.; Mendicuti, F.; Mattice, W. Inclusion complexes of chain molecules with cycloamyloses Ⅲ. molecular dynamics simulations of polyrotaxanes formed by poly(propylene glycol) and β-cyclodextrins, Polym. J.,1998,30,479-484
    [12]Xia, K.; Hou, T.; Xu, X. DPH-环糊精纳米管状聚集体的计算机模拟,Acta.Phys. Chim. Sin.,2004,20,5-8.
    [13]Vishnyakov, A.; Neimark, A. V. Molecular simulation study of nafion membrane solvation in water and methanol, J. Phys. Chem. B,2000,104,4471-4478.
    [14]Deng, W.; Yamaguchi, H.; Takashima, Y. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins, Chem. Asian J.,2008,3, 687-695
    [1]Terech, P.; Weiss, R. G. Low molecular mass gelator of organic liquids and the properties of their gels, Chem. Rev.,1997,97,3133-3159.
    [2]Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules, Chem. Rev.,2004,104(3),1202-1217.
    [3]Gronwald, O.; Snip, E.; Shinkai, S. Gelators for organic liquids based on self-assembly:a new facet of supramolecular and combinatorial chemistry, Curr. Opi. Colloid Interface Sci.,2002,7,148-156.
    [4]Abdallah, D. J.; Weiss, R. G. Organogels and low molecular mass organic gelators, Adv. Mater.,2000,12,1237-1247.
    [5]Lin, Y. C.; Weiss, R. G. A novel gelator of organic liquids and the properties of its gels, Macromolecules,1987,20,414-417.
    [6]Brady, B.; Lynam, N.; O'Sullivan, T.,6A-O-toluenesulfonyl-β-cyclodextrin, Org. Synth,2004,10,686.
    [7]黄怡,范晓东.新型线性β-环糊精高分子的合成与表征,2004,19(6),19-24.
    [8]徐咏.单-6脯氨酸-p-环糊精的合成,合成化学,2008,16(6),678-660.
    [9]孙宏元.博士论文:功能性环糊精衍生物的设计合成及其分子识别.2009,p34.
    [10]余红霞,郭峰.1-甲氨基蒽醌的合成,燃料与染色,2003,1(40),54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700