手性卟啉酞菁的设计、合成、有机聚集及非线性光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉、酞菁化合物作为新型的功能材料,在分子电子学、分子信息存储、非线性光学及材料科学等领域拥有广阔的应用前景,另一方面该类配合物具有易修饰等特点,因此作为有序超分子聚集体的构筑模块得到了人们的高度关注;同时分子手性和超分子手性的表达、传递、存储及调节与生命现象相关联,因而成为了另一个研究热点。若将手性信息引到卟啉、酞菁分子上后,并使其在卟啉、酞菁分子及超分子水平上顺利表达出来,同时通过分子设计调节分子间作用力,最终获得希望得到的手性有机纳米结构材料,这对研究者而言仍是一个挑战。本论文主要设计、合成了带有手性的具有特定结构和性质的新型卟啉、酞菁化合物,并通过自组装方法得到了高级有序的手性纳米一维及三维结构,探讨了分级组装过程并提出了组装机理,研究了配位键对分子排列方式的影响,进而影响了聚集体的形貌以及超分子手性;还研究了不同类型的手性源所携带的手性信息在分子水平及超分子水平上的传递及表达;为通过调节弱作用力来调节纳米结构形貌以及了解手性信息的传递与表达提供了相关信息。另外还研究了手性卟啉的三阶非线性等光学性质,为手性卟啉在光学领域的应用提供了一定依据。其主要内容包括:
     1.手性联二萘酚取代酞菁配合物组装纳米结构的研究
     有机功能分子自组装或通过添加小分子物质组装得到的高级有序纳米结构在纳米科学及技术中将会获得广泛的应用,近年来通过分子间弱作用力作用进行纳米结构自组装的研究一直是广大科研工作者研究的热点。但对科学家来说,通过分子设计来调节分子间作用进而获得理想的形貌仍是一个不小的挑战。在本章中,我们以相应的配体在催化剂DBU和/或醋酸锌的存在下,合成了(R)-及(S)-构型的自由以及锌手性酞菁,即(R)-/(S)-四[11,12:13,14-二(1’,2’-萘)-1,4,7,10,15,18-(18-冠-6)-2,11,13-三烯]-自由酞菁[(R)-/(S)-H2Pc(1)]及相应的锌酞菁[(R)-/(S)-ZnPc(2)]。使用溶剂扩散法组装得到有机纳米聚集体,并通过紫外(UV)、圆二色(CD)、透射电镜(TEM)、扫描电镜(SEM)、X射线光电子能谱(XPS)等表征手段,研究比较了化合物1和2,以及化合物2在是否添加4,4’-联吡啶的情况下的组装性质,研究表明配位键的存在与否以及不同的配位键(配位能力)对聚集体的形貌存在较大影响。化合物1在手性取代基的影响下,通过π-π键等作用力聚集形成了长约3μm,宽约70nm,螺距约为125 nm的一维的左旋(R型)或右旋(S型)的螺旋纳米纤维结构;引入金属Zn后,在额外的Zn-O配位键作用下得到了微米级的实心球;添加4,4’-联吡啶后,由于锌酞菁的Zn与4,4’-联吡啶的N之间形成了Zn-N配位键(比Zn-O配位力强),聚集体又变成了一维的螺旋结构,但在长度(数十微米)、直径(约30nm)以及螺距(106nm)方面都与自由酞菁有很大不同。值得一提的是,化合物1和2(含4,4’-联吡啶)虽然最终都形成了螺旋纳米结构,但其初级结构表现出的手性方向(CD信号)是不同的;而未添加4,4’-联吡啶的化合物2虽然未形成手性结构,但其初级结构是有手性的。研究结果表明,手性基团的诱导效应和非共价键尤其是π-π堆积、金属配位键的协同作用在调节、控制酞菁分子自组装纳米结构中起着非常重要的作用,尤其是金属配位键对纳米结构的形貌、维度、手性及螺距大小的影响。其结论会为我们了解手性信息在超分子水平上的传递、表达及通过分子设计来制备、调控有机纳米功能材料提供有益的启示。
     2.手性香茅醛取代卟啉光学性质的研究
     手性在分子和超分子水平上的传递和表达一直是科学家们研究的热点之一,手性信息是否可以顺利传递和表达与手性源强度及传递距离有关。从目前的报道中可知在分子水平上,手性碳原子的手性难以传递到卟啉、酞菁等大环配合物上,即无CD响应。在本章中,我们以(+)-香茅醛和吡咯为原料,在催化剂三氟乙酸的存在下,合成了(R)-构型的自由卟啉5,10,15,20-四-(2,6-二甲基-5-庚烯)自由卟啉[(R)-H2T(C9H17)4P (1)],再以自由卟啉与醋酸锌反应得到了锌卟啉[(R)-ZnT(C9H17)4P (2)],使用溶剂扩散法得到了二者的聚集体溶液;并对二者的各种性质进行了相关的表征,包括氢谱、质谱、红外、紫外、荧光、圆二色及三阶非线性光学,着重研究了手性信息的传递与表达。研究表明,由于手性基团并未通过苯环而是直接连到卟啉环上的,既缩短了传递距离又排除了苯环的阻碍作用,在这种情况下,即使手性源较弱(手性碳原子),卟啉在分子水平上仍能显示出正的CD信号;形成聚集体后,出现了分裂的科顿效应,即在超分子水平上手性得到了顺利的表达并且手性信号得到了放大,值得一提的是化合物1和2具有相反的超分子手性是,说明虽然手性信息在化合物1和2的分子和超分子水平上都得到了顺利的传导和表达,但锌卟啉和自由卟啉的激子耦合方式是不同的。另外,当化合物发生聚集后,其紫外-可见吸收峰稍变宽、强度稍减小,同时发生了一定的迁移;荧光光谱发生了淬灭,这与大多数报导一致;三阶非线性光学性质在聚集后消失。其结果将会为我们研究手性在分子水平及超分子水平上的传递与表达提供一些相关信息,同时也为手性卟啉在光学领域的应用提供一定依据。
As novel functional materials, porphyrins and phthalocyanines have been expected to be widely application in materials science, such as molecular electronics, molecular information storage, and nonlinear optics, etc. Recently, to obtain ordered supramolecular aggregates and nano-scale assembly, besides the expression, transmission, storage and regulation of molecular/supramolecular's chirality, have attracted increasing attentions. lit must be pointed out that self-assembly of functional molecules into a prerequisite nanostructure with desirable dimension and morphology via controlling inter-molecular interaction and the introduced chirality informations still remains a great challenge for scientists. In order to investigate the hierarchical assembly, the role of coordination bond in tuning the aggregates's morphology and the expression of chiral information at molecular/supramolecular level, in this thesis several chiral porphyrins and phthalocyanines are designed and synthesized. Our research work has been focused on the following respects:
     1. Helical Nano-structures Self-Assembled from Optically Active Phthalocyanine Derivatives Bearing Four Optically Active Binaphthyl Moieties:Effect of Metal-ligand Coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nano-structures
     (R)-and (S)-Enantiomers of optically active metal free tetrakis [11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-trieno]-ph thalocyanine and their zinc complexes, (R)-and (S)-H2Pc (1) and (R)-and (S)-ZnPc (2), were prepared from the tetramerization of corresponding phthalonitriles, (R)-and (S)-2,3-(4',5'-dicyanobenzo)-11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene, in the absence and presence of Zn(OAc)2·2H2O template, respectively, promoted by organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Their self-assembly behavior in the absence and presence of 4,4'-bipyridine has been comparatively investigated by electronic absorption and circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) technique, and X-ray photoelectron spectroscopy (XPS). The metal free phthalocyanine self-assembles into highly ordered fibrous nano-structures (ca.3um length,70 nm width, and 125 nm helical pitch) with left-handed and right-handed helicity for (R)-1 and (S)-1, respectively, through the hierarchical manner via one-dimensional helices with chirality determined by the optically active binaphthyl side chains. In contrast, self-assembly of the phthalocyaninato zinc analogue leads to the formation of nano-particles. However, in the presence of 4,4'-bipyridine, additionally formed metal-ligand Zn-N(4,4-bipyridine) coordination bonds between the nitrogen atoms of additive 4,4'-bipyridine molecule and the zinc center of (R)-and (S)-2 molecules together withπ-πinteraction and chiral discrimination of chiral side chains induce a right-handed and left-handed helical arrangement in a stack of (R)-and (S)-2 molecules, respectively, which further hierarchically packs into highly ordered fibrous nano-structures of average tens of micrometer length,30 nm width, and 106 nm helical pitch with the same helicity to the stack, revealing the effect of metal-ligand coordination bonding interaction on the morphology, dimension, handedness, and the helical pitch of self-assembled nano-structures.
     2. Synthesis, Circular Dichroism, and Third-Order Nonlinear Optical Properties of Optical Active Porphyrin Derivatives Bearing Four Meso Chiral Citronellal Moieties
     A novel metal free meso-5,10,15,20-tetra-(2,6-dimethyl-5-heptenyl)porphyrin porphyrin [(R)-H2T(C9H17)4P (1)] with four chiral citronellal units attached at the meso positions of porphyrin and its zinc congener (R)-ZnT(C9H17)4P (2) have been designed, synthesized, and characterized. These two porphyrin compounds were characterized by 1HNMR, MS, third-order nonlinear optical (NLO) and various spectroscopic methods including IR, florescence, UV-vis and CD. Their florescence, UV-vis especially CD spectra changed after the formation of aggregates. Different from other porphyrin compounds containing chiral carbons, both metal free porphyrin and its zinc congener display positive CD signal in the Soret absorption region of porphyrin ligand, indicating effective chiral information transfer from the chiral citronellal tails to porphyrin chromophore at the molecular level. That's because the chiral citronellal tails were incorporated directly onto the meso positions instead of via meso-attached benzene ring. When self-assembled to aggregates, they displayed suparmolecular chirality with different directions.
引文
[1]Ficsher, H.; Orth, H. Die Chemie des pyrrols. [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [2]Zelaski, J. Porphyrin. [J] Z. Physiol. Chem.,1902,37,54.
    [3](a) Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe, M. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.,1972,43,5181-5189. (b) Kobayashi, T.; Isoda, S. Lattice Images and Molecular Images of Organic Materials. [J]J. Mater. Chem.1993,3,1-14.
    [4]Moore, T. A.; Gust, D.; Mathis, P.; Mialocq, J-C.; Chachaty, C.; Bensasson, R.V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W. R.; Nemeth, G. A.; Moore, A. L Photodriven change separation in a carotenporphyrin-quinone triad. [J] Nature, 1984,307,630-632.
    [5]Liu, C; Pan, H.; Fox, M. A.; Bard, A. J. High-Density Nanosecond Charge Trapping in Thin Films of the Photoconductor ZnODEP. [J] Science,1993,261, 897-899.
    [6]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展.[J]自然科学进展,2002,12,120-129.
    [7](a) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer, E. W. Sequential Energy and Electron Transfer in Aggregates of Tetrakis[oligo(p-phenylene vinylene)] Porphyrins and C6o in Water. [J] J. Am. Chem. Soc.2005,127,13484-13485;
    (b)Otsuki, J.; Iwasaki, K.; Nakano, Y.; Itou, M.; Araki, Y.; Ito, O. Supramolecular Porphyrin Assemblies through Amidinium-Carboxylate Salt Bridges and Fast Intra-Ensemble Excited Energy Transfer. [J] Chem. Eur. J.2004,10,3461-3466;
    (c)Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substituted by Dialkyl L-Glutamine in Organic Media. [J] Langmuir,2002,18,7223-7228.
    [8](a) Kuramochi, Y.; Satake, A.; Kobuke, Y. Light-Harvesting Macroring Accommodating a Tetrapodal Ligand Based on Complementary and Cooperative Coordinations. [J] J. Am. Chem. Soc.2004,126,8668-8669.
    (b)Shoji, O.; Tanaka, H.; Kawai, T.; Kobuke, Y. Single Molecule Visualization of Coordination-Assembled Porphyrin Macrocycles Reinforced with Covalent Linkings. [J] J. Am. Chem. Soc.2005,127,8598-8599.
    (c)Furutsu, D.; Satake, A.; Kobuke, Y. A Giant Supramolecular Light-Harvesting Antenna-Acceptor Composite. [J] Inorg. Chem.,2005,44,4460-4462.
    [9]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用.[J]中国生化药物杂志,2003,24,162-163.
    [10](a) Armitage, B. Photocleavage of nucleic acids. [J] Chem. Rev.1998,98, 1171-1200. (b) Meunier, B. Metalloporphrins as versatile catalysts for Oxidation reactions and oxidative DNA cleavage. [J] Chem. Rev.1992,92,1411-1456.
    [11]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展.[J]功能材料,2003,34,113-117.
    [12](a)马红,韩士田.卟啉在催化剂方面的应用研究进展.[J]河北工业科技,2009,26,205-209.(b)雷亚春,张勇,刘滇生,潘景浩.卟啉及其配合物在分析化学中应用进展.[J]光谱实验室,2003,20,479-485.
    [13](a)唐晓东,顾冬红,陈启婴.光记录酞菁薄膜.[J]应用激光,1995,15,49-51.
    (b)董长征,沈永嘉,任绳武.氧钒酞菁在激光光盘系统中的应用研究.[J]化学研究与应用,1995,7,222-225.
    (c)彭必先,高德涛,闰天堂.酞菁光盘染料的研究进展.[J]中国科学院研究生院学报,2000,17,43-56.
    [14]陈发普,许德余.酞菁化合物作为新型肿瘤光化学诊治剂的研究进展.[J]国外医药-合成药、生化药.制剂分册,1990,11,78-82.
    [15](a) Anderson, C. Y.;. Freye, K.; Tubesing, K. A.; Li, Y.-S.; Kenney, M. E.; Mukhtar, H.; Elmets, C. A. A Comparative Analysis of Silicon Phthalocyanine Photosensitizers for in vivo Photodynamic Therapy of RIF-1 Tumors in C3H Mice. [J] Photochem. Photobiol.,1998,67,332-336.
    (b)Farrell, T. J.; Wilson, B. C.; Patterson, M. S.; Olivio, M. C. Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono-and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model. [J] Photochem, Photobiol.,1998,68, 394-399.
    (c)Griffiths, M. A., Wren, B. W. and Wilson, M. Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. [J] J. Antimicrobial Chemotherapy,1997,40,873-876.
    [16](a) Hanack, M.; Meng, D.; Beck, A.; Sommerauer, M.; Subramanian, L. R. Separation of structural isomers of tetra-tert-butylphthalocyaninatonickel(II). [J] J. Chem. Soc, Chem. Commun.,1993,58-60.
    (b)Laura, P.; Giuliana, V.; Giulio, J.; Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. [J] The International Journal of Biochemistry & Cell Biology,2002,34,10-23.
    [17]佘远斌,杨锦宗.酞菁类催化剂的研究进展.[J]北京工业大学学报,1998,24.115-120.
    [18]王竹庭,鲁开娟.酞菁高分子及用途.[J]高分子通报,1992,237-244.
    [19]马文涛,唐浩林,潘牧,邬静杰.酞菁类化合物用于DMFC催化剂的研究进展.[J]电池,2007,37,398-400.
    [20]王荣民,郭俊峰,何玉凤,许晓撵,申国瑞.高分子酞菁铜-冠醚钠双金属配合物的制备及催化性能研究.[J]西北师范大学学报(自然科学版),2009.45,66-71.
    [21]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫.[J]化学物理学报,1998,2,15-18.
    [22]Torre, G. de la; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. [J] Chem. Rev.2004,104,3723-3750.
    [23](a) Ng, D. K. P.; Jiang, J. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    (b)Torre, G. de la.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. [J] J. Mater. Chem., 1998,8,1671-1683.
    (c)Liu, Y.; Xu, Y.; Zhu, D.; Zhao, X. Second harmonic generation in Langmuir-Blodgett films of an asymmetrically substituted metallophthalocyanine. [J] Thin Solid Films,1996,289,282-285.
    [24](a) Diaz-Garcia, M. A.; Ledoux, I.; Duro, J. A.; Torres, T.; Agullo-Lopez, F. Zyss, J. Third-Order nonlinear optical properties of soluble octasubstituted metallophthalocyanines. [J] J. Phys. Chem.,1994,98,8761-8764.
    (b)Shirk, J. S.; Lindle, J. R.; Bartoli, F. J.; Hoffman, C. A.; Kafafi, Z. H.; Snow, A.; Off-resonant third-order optical nonlinearities of metal-substituted phthalocyanines. [J] Appl. Phys. Lett.,1989,55,1287-1288.
    (c)Kambara, H.; Maruno, T.; Yamashita, A.; Matsumoto, S.; Hayashi, T.; Konami, H.; Tanaka, N. Third-order nonlinear optical properties of phthalocyanine and fullerere Kanbara. [J] J. Appl. Phys., 1996,80,3674-3682.
    (d)Bella, S. D. Second-order nonlinear optical properties of transition metal complexes. [J] Chem. Soc. Rev.,2001,30,355-366.
    (e)Shirk, J. S.; Pong, R. G. S.; Bartoli, F. J.; Snow, A. W. Optical Limiter Using a Lead Phthalocyanine. [J] Appl. Phys. Lett.,1993,63,1880-1882.
    [25]Shirk J. S., Lindle J. R., Bartoli F. J., Boyle M. E., Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.,1992,96,5847-5852.
    [26]Piechocki, C; Simon, J.; Skoulios, A.; Guillon, D.; Weber; P. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. [J] J. Am. Chem. Soc,1982,104, 5245-5247.
    [27]Cook, M. J.; Daniel, M. F.; Harrison, K. J.; McKeown, N. B.; Thomson, A. J. A novel class of aza-analogues of sesquifulvalene with a betaine character: 1-alkyl-4-(azolylidene)-1,4-dihydropyridines. [J] J. Chem. Soc., Chem. Commun., 1988,1086-1088.
    [28]Mckeown, N. B.; Painter, J. Lyotropic and thermotropic mesophase formation of novel tetra[oligo(ethyleneoxy)]-substituted phthalocyanines. [J] J. Mater. Chem.,1994,4,1153-1156.
    [29]张莹.三明治型酞菁类配合物的液晶性质研究.[M]博士学位论文,山东大学,2009.
    [30]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展.[J]自然科学进展,2004,14,125-132.
    [31](a) Assour, J. M.; Kahn, W. K. Electron Spin Resonance of α-and β-Cobalt
    Phthalocyanine. [J] J. Am. Chem. Soc.,1965,87,207-212.
    (b)Miyoshi, H., Ohyn-Nishiguchi, H., Deguchi, Y. The Magnetic Properties of Manganese(II) Phthalocyanine. [J] Bull. Chem. Soc. Jpn.,1973,46,2724-2728.
    (c)Nath A., Kopelev N., Tyagi S. D.; Chechersky, V.; Wei, Y. A novel class of ferromagnetic materials. [J] Mater. Lett.,1993,16,39-44.
    (d)Paillaud, J. L., Drillon, M.; Cian, A. D.; Fischer, J.; Weiss, R.; Villeneuve, G. Radical-based ferromagnetic chain in yttrium diphthalocyanine [YPc2] CH2Cl2. [J] Phys. Rev. Lett,1991,67,244-247.
    [32]戴霞,刘福生,李康,孙岳明.酞菁类光电导材料研究进展.[J]化工时刊,2004,18,5-8.
    [33]马盼,姜建壮.酞菁在有机场效应晶体管方面的研究进展.[J]大学化学,2008,23,1-7.
    [34]Lehn, J. M. Supramolecular Chemistry, Concept and Perspectives. [M] Germany:VCH,1995,1-9.
    [35]Vogtle, F. Supramolekulare Chemie. [M] Teubner, Stuttgart,1991.
    [36]张希,沈家骢.超分子科学:认识物质世界的新层面.[J]科学通报,2003,14.1477-1478.
    [37](a) Lehn, J. M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. [J] Angew. Chem. Int. Ed.1990,29,1304-1319. (b) Lehn, J. M. Supramolecular chemistry. [J] Science 1993,260,1762-1763.
    [38]钟煜,刘传芳,常文贵.分子自组装及超分子自组装体的研究进展.[J]枣庄学院学报,2005,22,80-84.
    [39]Lehn J. M. Programmed Chemical Systems:Multiple Subprograms and Multiple Processing/Expression of Molecular Information. [J] Chem. Eur. J.,2000,6, 2097-2102.
    [40]Service, R. F. How far can we push chemical self-assembly. [J] Science,2005, 309,95.
    [41]Gero, D. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. [J] Science,1997,277,1232-1237.
    [42](a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial Molecular Machines. [J] Angew. Chem. Int. Ed.,2000,39,3348-3391.
    (b)刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.[M]天津:南开大学出版社,2001.
    [43](a) Whitesides, G. M.; Grzybowski, B. A. Self-Assembly at All Scales. [J] Science,2002,295,2418-2421.
    (b)Jacobs, H.O.; Tao, A. R.; Schwartz, A.; Gracias, D. H.; Whitesideset, G. M. Fabrication of a Cylindrical Display by Patterned Assembly. [J] Science,2002,296,323-325.
    [44](a) Hartgerink, J. D., Beniash, E., Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. [J] Science 2001,294,1684-1688.
    (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Electroactive Supramolecular Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc., 2005,127,14769-14775.
    (c)Schwab, A. D., Smith, D. E., Bond-Watts, B., Johnston, D. E.; Hone, J., Johnson, A. T., de Paula, J. C., Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J] Nano Lett.2004,4, 1261-1265.
    (d)Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am. Chem. Soc.2007,129, 2440-2441.
    (e)Yan, D.; Zhou, Y.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67.
    (f)Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444.
    (g)Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127,12792-12793.
    (h)Hu, J.; Guo, Y.; Liang, H.; Wan, L.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. [J] J. Am. Chem. Soc.2005,127,17090-17095.
    [45]刘海洋,胡希明,应晓,刘义,黄锦汪,计亮年.金属卟啉配合物超分子自组装.[J]无机化学学报,1998,14,371-387.
    [46]Tecilla, P.; Dixon, R. P.; Slobodkin, G; Alavi, D. S.; Waldeck, D. H.; Hamilton, A. D. Hydrogen-bonding self-assembly of multichromophore structures. [J] J. Am. Chem. Soc.,1990,112,9408-9410.
    [47](a) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera, D. G. Photoinduced electron transfer mediated by a hydrogen-bonded interface. [J] J. Am. Chem. Soc.,1992,114,4013-4015.
    (b)Sessler, J. L.; Wang, B.; Harriman, A. Photoinduced energy transfer in associated, but noncovalently-linked photo synthetic model systems. [J] J. Am. Chem. Soc.,1995,117,704-714.
    (c)Shi, X.; Barkigia, K. M.; Fajer, J.; Drain, C. M. Design and Synthesis of Porphyrins Bearing Rigid Hydrogen Bonding Motifs:Highly Versatile Building Blocks for Self-Assembly of Polymers and Discrete Arrays. [J] J. Org. Chem.,2001,66, 6513-6522.
    [48](a) Shirakawa, M.; Fujita, N.; Shinkai, S. A Stable Single Piece of Unimolecularly π-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel:A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. [J] J. Am. Chem. Soc.2005, 127,4164-4165.
    (b)Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Sol-Gel Reaction of Porphyrin-Based Superstructures in the Organogel Phase:Creation of Mechanically Reinforced Porphyrin Hybrids. [J] J. Am. Chem. Soc.2005,127, 7298-7299.
    (c)Shirakawa, M.; Fujita, N.; Shinkai, S. [60]Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites. [J] J. Am. Chem. Soc 2003,125,9902-9903.
    (d)Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. [J] Langmuir,2001,17,5125-5128.
    (e)Tamaru, S. I.; Nakamuira, M.; Takeuchi, M.; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.,2001,3,3631-3634.
    [49](a) Drain, C, M.; Lehn, J. M. Self-assembly of square multiporphyrin arrays by metal ion coordination. [J] J. Chem. Soc. Chem. Commun.,1994,2313-2315.
    (b) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design:Metal-Mediated Self-Assembly of Large Arrays and Tapes. [J] Angew. Chem. Int. Ed.,1998,37,2344-2347.
    [50]Nostrum, C. F. van; Picken, S. J.; Schouten, A-J.; Nolte, R. J. M. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines:Toward Molecular Wires and Molecular Ionoelectronics. [J] J. Am. Chem. Soc. 1995,117,9957-9965.
    [51](a) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc.,2004,126,15954-15955.
    (b)Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes. [J] J. Am. Chem. Soc.,2004,126,16720-16721.
    [52]Escosura, A. de la; Martinez-Diaz, M. V.; Thordarson, P.; Rowan, A. E.; Nolte, R. J. M.; Torres, T. Donor-Acceptor Phthalocyanine Nanoaggregates. [J] J. Am. Chem. Soc.,2003,125,12300-12308.
    [53](a) Nitschke, C.; O'Flaherty, S. M.; Kroll, M.; Blau, W. J. Material Investigations and Optical Properties of Phthalocyanine Nanoparticles. [J] J. Phys. Chem. B.,2004,108,1287-1295.
    (b)Zhang, X.; Wang, Y.; Ma, Y.; Ye, Y.; Wang, Y.; Wu, K. Solvent-Stabilized Oxovanadium Phthalocyanine Nanoparticles and Their Application in Xerographic Photoreceptors. [J] Langmuir,2006,22, 344-348.
    [54](a) Otsuki, J.; Kawaguchi, S.; Yamakawa, T.; Asakawa, M.; Miyake, K. Arrays of Double-Decker Porphyrins on Highly Oriented Pyrolytic Graphite. [J] Langmuir 2006,22,5708-5715.
    (b)Duzhko, V.; Singer, K. D. Self-Assembled Fibers of a Discotic Phthalocyanine Derivative:Internal Structure, Tailoring of Geometry, and Alignment by a Direct Current Electric Field. [J] J. Phys. Chem. C, 2007,111,27-31.
    (c)Jung, J. S.; Lee, J. W.; Kim, K.; Cho, M. Y.; Jo, S. G.; Joo, J. Rectangular Nanotubes of Copper Phthalocyanine:Application to a Single Nanotube Transistor. [J] Chem, Mater.2010,22,2219-2225.
    (d)Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J]J.Am. Chem. Soc.,2008,130,17044-17052.
    (e)Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.,2007,46,11397-11404.
    (f) Lu, G.; Zhang, X.; Cai, X.; Jiang, J. Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal-ligand coordination bonding. [J] J. Mater. Chem.,2009,19, 2417-2424.
    [55](a) Imahori, H.; Yoshizawa, E.; Yamada, K.; Hagiwara, K.; Okada, T.; Sakata, Y Porphyrin-quinone supramolecule with two coordination bonds. [J] J. Chem. Soc., Chem. Commun.,1995,1133-1134.
    (b)Hayashi, T.; Ogoshi, H. Molecular modelling of electron transfer systems by noncovalently linked porphyrin-acceptor pairing. [J] Chem. Soc. Rev.,1997,26,355-364.
    [56](a) Groves, J. T.; Fate, G. D.; Lahiri, J. Directed Multi-Heme Self-Assembly and Electron Transfer in a Model Membrane. [J] J. Am. Chem. Soc.,1994,116, 5477.5478.
    (b)Lahiri, J.; Fate, G. D.; Ungashe, S. B.; Groves, J. T. Multi-Heme Self-Assembly in Phospholipid Vesicles. [J] J. Am. Chem. Soc.,1996,118, 2347-2358.
    [57]Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.; Anderson, H. L. Amplified Optical Nonlinearity in a Self-Assembled Double-Strand Conjugated Porphyrin Polymer Ladder. [J] J. Am. Chem. Soc.,2002,124, 9712-9713.
    [58]李辉,杜渭松,李建.显示液晶用手性添加剂材料进展.[J]液晶与显示,2009,24,26-33.
    [59]辛丽,李俊庆,李淳飞.手性介质的光学物理性质及其研究进展.[J]物理,2000,29,216-219.
    [60]刘文杰,曹德榕.手性分子光开关研究进展.[J]有机化学,2008,28,1336-1347.
    [61]卢定强,李衍亮,凌岫泉,涂清波,陈佳.手性药物拆分技术的研究进展. [J]时珍国医国药,2009,20,1731-1734.
    [62](a) Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C. Absolute. Asymmetric Synthesis under Physical Fields:Facts and Fictions. [J] Chem. Rev., 1998,98,2391-2404.
    (b)Feringa, B. L.; Delden, R. A. v. Absolute Asymmetric Synthesis:The Origin, Control, and Amplification of Chirality. [J] Angew. Chem. Int. Ed.,1999,38,3418-3438.
    [63]Soai, K.; Niwa, S. Enantloselective Addition of Organozinc Reagents to Aldehydes. [J]Chem. Rev.1992,92,833-856.
    [64]Harada, H.; Nakanishi, K. Circular Dichroic Spectroscopy, Exiciton Coupling in Organic Stereochemistry. [M] University Science Books:New York,1983.
    [65]Hoshino, T.; Matsumoto, U.; Harada, N.; Goto, T. Chiral exciton coupled stacking of anthocyanins:interpretation of the origin of anomalous CD induced by anthocyanin association. [J] Tetrahedron Lett.,1981,22,3621-3624.
    [66]Gottarelli, G.; Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G. P. The Use of Circular Dichroism Spectroscopy for Studying the Chiral Molecular Self-Assembly:An Overview. [J] Chirality,2008,20,471-485.
    [67](a) Bouman, M. M.; Meijer, E. W.; Stereomutation in optically active regioregular polythiophenes. [J] Adv. Mater.1995,7,385-387.
    (b) Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Meijer, E. W. Circular Dichroism and Circular Polarization of Photoluminescence of Highly Ordered Poly{3,4-di[(S)-2-methylbutoxy]thiophene}. [J] J. Am. Chem. Soc.1996,118, 4908-4909;
    (c)Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. [J] Nature,2000,407,167-170.
    [68]Xiao, J.; Li, Y.; Song, Y.; Jiang, L.; Li, Y.; Wang, S.; Liu, H.; Xu, W.; Zhu, D. Helical structures architecture of 1-{2-(4-hydroxy-phenyl)-1-[(pyren-1-ylmethyl)-carbamoxyl]-ethyl}-carbamic acid tert-butyl ester. [J] Tetrahedron Lett.,2007,48,7599-7604.
    [69]Ryu, J-H. Tang, L.; Lee, E.; Kim, H-J.; Lee, M. Supramolecular Helical Columns from the Self-Assembly of Chiral Rods. [J] Chem.Eur. J.2008,14, 871-881.
    [70]Ribo, J. M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R. Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions. [J] Science,2001,292,2063-2066.
    [71]Huang, X.; Li, C; Jiang, S.; Wang, X.; Zhang, B.; Liu, M. Self-Assembled Spiral Nanoarchitecture and Supramolecular Chirality in Langmuir-Blodgett Films of an Achiral Amphiphilic Barbituric Acid. [J] J. Am. Chem. Soc.2004, 126,1322-1323.
    [72](a) Smith, J.O.; Olson, D.A.; Armitage, B.A. Molecular Recongnition of PNA-Containing Hybrids:Spontaneous Assembly of Helical Cyanine Dye Aggregates on PNA Templates. [J] J. Am. Chem. Soc.1999,121,2686-2695.
    (b) Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage, A. Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates. [J] J. Am. Chem. Soc.1999,121,2987-2995.
    (c)Wang, M.; Silva, G.L.; Armitage, B.A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000,122,9977-9986.
    (d)Garoff, R.A.; Litzinger, E.A.; Connor, R.E.; Fishman, I.; Armitage, B.A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir 2002,18,6330-6337.
    [73](a) Muranaka, A.; Okuda, M.; Kobayashi, N.; Somers, K.; Ceulemans, A. Recognition of Chiral Catechols Using Oxo-Titanium Phthalocyanine. [J] J. Am. Chem. Soc.2004,126,4596-4604.
    (b)Li, X.; Tanasova, M.; Vasileiou, C.; Borhan, B. Fluorinated Porphyrin Tweezer:A Powerful Reporter of Absolute Configuration for erythro and three Diols, Amino Alcohols, and Diamines. [J] J. Am. Chem. Soc.2008,130,1885-1893.
    (c)Kruppa, M.; Mandl, C.; Miltschitzky, S.; Konig, B. A Luminescent Reportor with Affinity for N-Terminal Histidine in Peptides in Aqueous Solution. [J] J. Am. Chem. Soc.2005,127,3362-3365.
    [74](a) Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O'Leary, D. J.; Willson, G. Macromolecular stereochemistry:the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. [J] J. Am. Chem. Soc. 1989,111,6452-6454.
    (b)Green, M. M.; Peterson, N. C; Sato, T.; Teramoto, A. Cook, R.; Lifson, S. A Helical Polymer with a Cooperative Response to Chiral Information. [J] Science,1995,268,1860-1866.
    [75]Prins, L. J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. [J] Nature,1999,398,498-502.
    [76]Simonyi, M.; Bikadi, Z.; Zsila, F.; Deli, J. Supramolecular Exciton Chirality of Carotenoid Aggregates. [J] Chirality,2003,15,680-698.
    [77](a) Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-Shaped Molecules with C3 Symmetry. [J] Angew. Chem. Int. Ed.1997,36,2648-2651.
    (b) Brunsveld, L.; Lohmeijer, B. G. G.; Vekeman, J. A. J. M.; Meijer, E. W. Chirality amplification in dynamic helical columns in water. [J] Chem. Commun.,2000, 2305-2306.
    (c)Langeveld-Voss, B. M. W.; Waterval, R. J. M.; Janssen, R. A. J.; Meijer, E. W. Principles of "Majority Rules" and "Sergeants and Soldiers" Applied to the Aggregation of Optically Active Polythiophenes:Evidence for a Multichain Phenomenon. [J] Macromolecules 1999,32,227-230.
    (d)Wilson, A. J.; Masuda, M.; Sijbesma, R. P.; Meijer, E. W. Chiral Amplification in the Transcription of Supramolecular Helicity into a Polymer Backbone. [J] Angew. Chem. Int. Ed.2005,44,2275-2279.
    [78]Yashima, E.; Maeda, K.; Okamoto, Y. Memory ofmacromolecular helicity assisted by interaction with achiral smallmolecules. [J] Nature,1999,399, 449-451.
    [79]Ziegler, M.; Davis, A. V.; Johnson, D. W.; Raymond, K. N. Supramolecular Chirality:A Reporter of Structural Memory. [J] Angew. Chem. Int. Ed.2003,42, 665-668.
    [80](a) Asakawa, M.; Brancato, G.; Fanti, M.; Leigh, D. A.; Shimizu, T.; Slawin, A. M. Z.; Wong, J. K. Y.; Zerbetto, F.; Zhang, S. Switching "On" and "Off the Expression of Chirality in Peptide Rotaxanes. [J] J. Am. Chem. Soc.2002,124, 2939-2950.
    (b)Schenning, A. P. H. J.; Kilbinger, A. F. M.; Biscarini, F.; Cavallini, M; Cooper, H. J.; Derrick, P. J.; Feast, W. J.; Lazzaroni, R.; Lecle re, P.; McDonell, L. A.; Meijer, E. W.; Meskers, S. C. J. Supramolecular Organization of a,a'-Disubstituted Sexithiophenes. [J] J. Am. Chem. Soc.2002, 124,1269-1275.
    [81]Goto, H.; Yashima, E. Electron-Induced Switching of the Supramolecular Chirality of Optically Active Polythiophene Aggregates. [J] J. Am. Chem. Soc. 2002,124,7943-7949.
    [82]Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Synthetic Routes to Multiporphyrin Arrays. [J] Chem. Rev.2001,101,2751-2796.
    [83](a) Zhang, L.; Yuan, J.; Liu, M. Supramolecular Chirality of Achiral TPPS Complexed with Chiral Molecular Films. [J] J. Phys. Chem. B 2003,107,12768-12773.
    (b)Zhang, L.; Liu, M. Supramolecular Chirality and Chiral Inversion of Tetraphenylsulfonato Porphyrin Assemblies on Optically Active Polylysine. [J] J. Phys. Chem.52009,113,14015-14020.
    [84](a) Lauceri, R.; Raudino, A.; Scolaro, L. M.; Micali, N.; Purrello, R. From Achiral Porphyrins to Template-Imprinted Chiral Aggregates and Further. Self-Replication of Chiral Memory from Scratch. [J] J. Am. Chem. Soc.2002, 124,894-895.
    (b)Mammana, A.; D'Urso, A.; Lauceri, R.; Purrello, R. Switching Off and On the Supramolecular Chiral Memory in Porphyrin Assemblies. [J] J. Am. Chem. Soc.2007,129,8062-8063.
    [85]Kobayashi, N. Optically active phthalocyanines. [J] Coord. Chem. Rev.2001, 219-221,99-123.
    [86]Kobayashi, N.; Higashi, R.; Titeca, B. C.; Lamote, F.; Ceulemans, A. Substituent-Induced Circular Dichroism in Phthalocyanines. [J] J. Am. Chem. Soc. 1999,121,12018-12028.
    [87]Chen, P.; Ma, X.; Liu, M. Optically Active Phthalocyaninato-Polysiloxane Constructed from Achiral Monomers:From Noncovalent Assembly to Covalent Polymer. [J] Macromolecules 2007,40,4780-4784.
    [88](a) Ayabe, M.; Yamashita, K.; Shinkai, S.; Ikeda, A.; Sakamoto, S.; Yamaguchi, K. Construction of Monomeric and Polymeric Porphyrin Compartments by a Pd(II)-Pyridine Interaction and Their Chiral Twisting by a BINAP Ligand. [J] J. Org. Chem.,2003,68,1059-1066.
    (b)Shirakawa, M.; Kawano, S.; Fujita, N.; Sada, K.; Shinkai, S. Hydrogen-Bond-Assisted Control of H versus J Aggregation Mode of Porphyrins Stacks in an Organogel System. [J] J. Org. Chem.2003,68, 5037-5044.
    [89]Guo, X.; Jiang, C.; Shi, T. Prepared Chiral Nanorods of a Cobalt(II) Porphyrin Dimer and Studied Changes of UV-Vis and CD Spectra with Aggregate Morphologies under Different Temperatures. [J] Inorg. Chem.,2007,46, 4766-4768.
    [90]Koepf, M.; Wytko, J. A.; Bucher, J-P.; Weiss, J. Surface-Tuned Assembly of Porphyrin Coordination Oligomers. [J] J. Am. Chem. Soc.2008,130, 9994-10001.
    [91](a) Hameren, R. van; Buul, A. M. van; Castriciano, M. A.; Villari, V.; Micali, N.; Schon, P.; Speller, S.; Scolaro, L. M.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Supramolecular Porphyrin Polymers in Solution and at the Solid-Liquid Interface. [J] Nano Lett.,2008,8,253-259.
    (b)Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science,1999,284,785-788.
    (c)Sly, J.; Kasak, P.; Gomar-Nadal, E.; Rovira, C.; Gorriz, L.; Thordarson, P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. [J] Chem. Commun.,2005,1255-1257.
    (d)Jeukens, C. R. L. P. N.; Lensen, M. C.; Wijnen, F. J. P.; Elemans, J. A. A. W.; Christianen, P. C. M.; Rowan, A. E.; Gerritsen, J. W.; Nolte, R. J. M.; Maan, J. C. Polarized Absorption and Emission of Ordered Self-Assembled Porphyrin Rings. [J] Nano Lett,2004,4,1401-1406.
    (e)Lensen, M. C; Dingenen, S. J. T. Van; Elemans, J. A. A. W.; Dijkstra, H. P.; Klink, G. P. M. Van; Koten, G. Van; Gerritsen, J. W.; Speller, S.; Nolte, R. J. M.; Rowan, A. E. Synthesis and self-assembly of giant porphyrin discs. [J] Chem. Commun.,2004,762-763.
    [92](a) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    (b)Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K,; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir 2003,19,4825-4830.
    [1](a) Garoff, R. A.; Litzinger, E. A.; Connor, R. E.; Fishman, I.; Armitage, B. A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir 2002,18, 6330-6337.
    (b)Wang, M; Silva, G. L.; Armitage, B. A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000, 122,9977-9986.
    (c)Pasternack, R. F.; Giannetto, A.; Pagano, P.; Gibbs, E. J. Self-assembly of porphyrins on nucleic acids and polypeptides. [J] J. Am. Chem. Soc.1991,113,7799-7780.
    (d)Hannah, K. C.; Armitage, B. A. DNA-Templated Assembly of Helical Cyanine Dye Aggregates:A Supramolecular Chain Polymerization. [J] Acc. Chem. Res.2004,37,845-853.
    (e)Chen, X.; Liu, M. Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. [J] J. Inorg. Biochem.2003,94,106-113.
    [2](a) Schmuck, C. Molecules with Helical Structure:How To Build a Molecular Spiral Staircase. [J] Angew. Chem. Int. Ed 2003,42,2448-2452.
    (b)Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Solvophobically Driven Folding of Nonbiological Oligomers. [J] Science 1997,277,1793-1796.
    (c)Cornelissen, J. J. L. M.; Fisher, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers. [J] Science 1998,280,1427-1430.
    (d)Oda, R.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Tuning bilayer twist using chiral counterions. [J] Nature 1999,399,566-569.
    (e)Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. [J] Nature 2000, 407,167-170.
    (f)Berl, V.; Huc, I.; Khoury, R. G.; Krische, Lehn, M. J.; J.-M. Interconversion of single and double helices formed from synthetic molecular strands. [J] Nature 2000,407,720-723.
    (g)Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Self-Assembly of Dendron Rodcoil Molecules into Nanoribbons. [J] J. Am. Chem. Soc.2001,123,4105-4106.
    (h)Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Semiconductor Nanohelices Templated by Supramolecular Ribbons. [J] Angew. Chem. Int. Ed.2002,41,1706-1709.
    (i)Fenniri, H.; Deng, B.-L. Ribbe, A. E. Helical Rosette Nanotubes with Tunable Chiroptical Properties. [J] J. Am. Chem. Soc.2002,124,11064-11072.
    (j)Giorgi, T.; Lena, S.; Mariani, P.; Cremonini, M. A.; Masiero, S.; Pieraccini, S.; Rabe, J. P.; Samori, P.; Spada, G. P.; Gottarelli, G. Supramolecular Helices via Self-Assembly of 8-Oxoguanosines. [J] J. Am. Chem. Soc.2003,125,14741-14749.
    (k)Xiao, J.; Xu, J.; Cui, S.; Liu, H.; Wang, S.; Li, Y. Supramolecular Helix of an Amphiphilic Pyrene Derivative Induced by Chiral Tryptophan through Electrostatic Interactions. [J] Org. Lett. 2008,10,645-648.
    [3](a) Ishi-I, T.; Kuwahara, R.; Takata, A.; Jeong, Y.; Sakurai, K.; Mataka, S. An Enantiomeric Nanoscale Architecture Obtained from a Pseudoenantiomeric Aggregate:Covalent Fixation of Helical Chirality Formed in Self-Assembled Discotic Triazine Triamides by Chiral Amplification. [J] Chem. Eur. J.2006,12, 763-776.
    (b)Roman, A. E.; Nolte, R. J. M. Helical Molecular Programming. [J] Angew. Chem. Int. Ed.1998,37,63-68.
    (c)Yashima, E.; Maeda, K.; Okamoto, Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. [J] Nature 1999,399,449-451.
    (d)Pantos, G. D.; Wietor, J. L Sanders, J. K. M. Filling Helical Nanotubes with C60.[J] Angew. Chem. Int. Ed. 2007,46,2238-2240.
    (e)Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chiral Architectures from Macromolecular Building Blocks. [J] Chem. Rev.2001,101,4039-4070.
    (f)Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-Shaped Molecules with C3 Symmetry. [J] Angew. Chem. Int. Ed.1997,36,2648-2651.
    (g)Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular Materials: Self-Organized Nanostructures. [J] Science 1997,276,384-389.
    (h)Prins, L. J.; Huskens, J.; F. Jong, D.; Timmerman, P. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. [J] Nature 1999,398, 498-502.
    [4](a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996, Vols.1-4.
    (b)McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998.
    (c)Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003, Vols. 1-20.
    [5](a) Kimura, M.; Narikawa, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Star-Shaped Stilbenoid Phthalocyanines. [J] Chem. Mater.2002,14,2711-2717.
    (b)Huang, X.; Zhao, R; Li, Z.; Tang, Y.; Zhang, F.; Tung, C. Self-Assembled Nanowire Networks of Aryloxy Zinc Phthalocyanines Based on Zn-O Coordination. [J] Langmuir 2007,23,5167-5172.
    (c)de la Escosura, A.; Diaz, M. V. M.; Thordarson, P.; Rowan, A. E.; Nolte, R. J. M.; Torres, T. Donor-Acceptor Phthalocyanine Nanoaggregates. [J] J. Am. Chem. Soc.2003,125,12300-12308.
    (d)Chen, P.; Ma, X.; Liu, M. Optically Active Phthalocyaninato-Polysiloxane Constructed from Achiral Monomers:From Noncovalent Assembly to Covalent Polymer. [J] Macromolecules 2007,40,4780-4784.
    [6](a) Kobayashi, N. Coord. Optically active phthalocyanines. [J] Chem. Rev.2001, 219-221,99-123.
    (b)Liu, H.; Liu, Y; Liu, M.; Chen, C.; Xi, F. Synthesis and properties of optically active 6,6'-didodecyl-1,1'-binaphthyl-phthalocyanine linked through crown ether units. [J] Tetrahedron Letters.2001,42,7083-7086.
    (c)Liu, H.; Chen, C.; Ai, M.; Gong, A.; Jiang, J.; Xi, F. Synthesis of optically active 1,1'-binaphthyl-phthalocyanines linked via a crown ether unit. [J] Tetrahedron Asymmetry.2000,11,4915-4922.
    (d)Kobayashi, N. Optically active 'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,487-488.
    (e)Kobayashi, N.; Kobayashi, Y.; Osa, T. Optically active phthalocyanines and their circular dichroism. [J] J. Am. Chem. Soc.1993, 115,10994-10995.
    (f)Kimura, M.; Ueki, H.; Ohta, K.; Shirai, H.; Kobayashi, N. Self-Organization of Low-Symmetry Adjacent-type Metallophthalocyanines Having Branched Alkyl Chains. [J] Langmuir 2006,22,5051-5056.
    (g)Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir 2003,19,4825-4830.
    [7](a) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science 1999,284,785-788.
    (b)Lv, W.; Wu, X.;Wu, Bian, Y.; Jiang, J.; Zhang, X. Helical Fibrous Nanostructures Self-Assembled from Metal-Free Phthalocyanine with Peripheral Chiral Menthol Units. [J] ChemPhysChem.2009,10,2725-2732.
    (c)Rai, R.; Saxena, A.; Ohira, A.; Fujiki, M. Programmed Hyperhelical Supramolecular Assembly of Nickel Phthalocyanine Bearing Enantiopure 1-(p-Tolyl)ethylaminocarbonyl Groups. [J] Langmuir 2005,21,3957-3962.
    [8](a) John, G; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Morphological Control of Helical Solid Bilayers in High-Axial-Ratio Nanostructures through Binary Self-assembly. [J] Chem. Eur. J.2002,8, 5494-5500.
    (b)Thomas, B. N.; Lindemann, C. M.; Corcoran, R. C; Cotant, C. L. Kirshch, J. E.; Persichini, P. J. Phosphonate Lipid Tubules II. [J] J. Am. Chem. Soc.2002,124,1227-1233.
    (c)Svenson, S.; Messersmith, P. B. Formation of Polymerizable Phospholipid Nanotubules and Their Transformation into a Network Gel. [J] Langmuir 1999,15,4464-4471.
    [9]Adachi, K.; Chayama, K.; Watarai, H. Formation of Helical J-Aggregate of Chiral Thioether-Derivatized Phthalocyanine Bound by Palladium (II) at the Toluene/Water Interface. [J] Langmuir 2006,22,1630-1639.
    [10]Adachi, K.; Chayama, K.; Watarai, H. Control of optically active structure of thioether-phthalocyanine aggregates by chiral Pd(II)-BINAP complexes in toluene and at the toluene/water interface. [J] Chirality 2006,18,599-608.
    [11](a) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt Self-Assembly from an Organic n-Type Semiconductor:Propoxyethyl-PTCDI. [J] J. Am. Chem. Soc.2005,127,10496-10497.
    (b)Su, W.; Zhang, Y.; Zhao, C.; Li, X.; Jiang, J. Self-Assembled Organic Nanostructures:Effect of Substituents on the Morphology. [J] ChemPhysChem 2007,8,1857-1862.
    (c)Lu, G.; Zhang,
    X.; Cai, X.; Jiang, J. Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal-ligand coordination bonding. [J] J. Mater. Chem.2009,2417-2424.
    (d) Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and Characterization of Porphyrin Nanoparticles. [J] J. Am. Chem. Soc.2002,124, 14290-14291.
    (e)Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008, 130,11623-11630.
    (f)Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5, 15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J.Am. Chem. Soc.2008,130,17044-17052.
    [12](a) Li, R.; Zhang, X.; Zhu, P.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Electron-Donating or-Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. [J] Inorg. Chem.2006,45, 2327-2334.
    (b)Bian, Y.; Li, L.; Dou, J.; Cheng, D. Y. Y.; Li, R.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted phthalocyaninato) lead Complexes. [J] Inorg. Chem.2004,43,7539-7544.
    [13](a) Zhang, Y.; Zhang, X.; Liu, Z.; Bian, Y.; Jiang, J. Structures and Properties of 1, 8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:The Substitutional Effect Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A 2005,109,6363-6370.
    (b)Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem.2006,45,3794-3802.
    [14]为了更好地显示ZnPc(2)单体和聚集体(包括添加和未添加4,4’-联吡啶)的紫外-可见吸收光谱和圆二色光谱的区别,图2-4B和2-4E中的ZnPc单体UV-vis吸收是一样的,图2-4A和2-4B均是ZnPc单体的CD光谱。
    [15](a) Harada, H.; Nakanishi, K. Circular Dichroic Spectroscopy, Exiciton Coupling in Organic Stereochemistry. [M] University Science Books:New York,1983.
    (b) Kobayashi, N. Optically active'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,487-488.
    [16]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The exciton model in molecular spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [17]Gao, Y.; Chen, Y.; Li, R.; Bian, Y.; Li, X.; Jiang, J. Nonperipherally Octa(butyloxy)-Substituted Phthalocyanine Derivatives with Good Crystallinity: Effects of Metal-Ligand Coordination on the Molecular Structure, Internal Structure, and Dimensions of Self-Assembled Nanostructures. [J] Chem. Eur. J. 2009,15,13241-13252.
    [18](a) Berova, N.; Nakanishi, K.; Woody, R. CircularDichroism:Princples and Applications,2nd ed. [M] Wiley-VCH:New York,2000,337-382.
    (b)Hofacker, A. L.; Parquette, J. R. Dendrimer Folding in Aqueous Media:An Example of Solvent-Mediated Chirality Switching. [J] Angew. Chem. Int. Ed.2005,44, 1053-1057.
    (c)Balaz, M.; Holmes, A. E.; Benedetti, M.; Rodriguez, P. C.; Berova, N.; Nakanishi, K.; Proni, G. Synthesis and Circular Dichroism of Tetraarylporphyrin-Oligonucleotide Conjugates. [J] J. Am. Chem. Soc.2005,127, 4172-4173.
    (d)Borovkov, V. V.; Lintuluoto, J. M.; Fujiki, M.; Inoue, Y. Temperature Effect on Supramolecular Chirality Induction in Bis(zinc porphyrin). [J] J. Am. Chem. Soc.2000,122,4403-4407.
    [19]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
    Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas,O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc., Pittsburgh, PA,2003.
    [20](a) Janczak, J.; Idemori, Y. M. One-Dimensional Assembling of Diiodo [phthalocyaninato (1-)] Chromate (Ⅲ) Molecules through Neutral I2 Molecules. Alternating Ferro-and Antiferromagnetic Interactions in the Metal-Radical System. [J] Inorg Chem.2002,41,5059-5065.
    (b)Gardberg, A. S.; Yang, S.; Hoffman, B. M.; Ibers, J. A. Synthesis and Structural Characterization of Integrally Oxidized, Metal-Free Phthalocyanine Compounds:[H2 (pc)][IBr2] and [H2(pc)]2[IBr2]Br·C10H7Br. [J] Inorg. Chem.2002,41,1778-1781.
    [21](a) Soldatov, D. V.; Tinnemans, P.; Enright, G. D.; Ratcliffe, C. I.; Diamente, P. R.; Ripmeester, J. A. Modified Metal Dibenzoylmethanates for Soft Supramolecular Materials:Extension to Oligomeric and Polymeric Host Receptors with Nanosized Void Spaces. [J] Chem. Mater.2003,15,3826-3840.
    (b)Litvinov, A. L.; Konarev, D. V.; Kovalevsky, A. Yu.; Neretin, I. S.; Coppens, P.; Lyubovskaya, R. N. [60]Fullerene Complexes with Supramolecular Zinc Tetraphenylporphyrin Assemblies:Synthesis, Crystal Structures, and Optical Properties. [J] Crystal Growth & Design,2005,5,1807-1819.
    (c)Shukla, A. D.; Dave, P. C; Suresh, E.; Das, A.; Dastidar, P. Multicomponent Zn-tetraphenylporphyrins:syntheses, characterization and their self assembly in the solid state. [J] J. Chem. Soc. Dalton Trans.2000,4459-4463.
    (d)Haas, M.; Liu, S.-X.; Neels, A.; Decurtins, S. A Synthetic Approach to Asymmetric Phthalocyanines with Peripheral Metal-Binding Sites. [J] Eur. J. Org. Chem.2006,5467-5478.
    (e)Zeng, Q.; Wu, D.; Wang, C.; Lu, J.; Ma, B.; Shu, C.; Ma, H.; Li, Y.; Bai, C. Bipyridine conformations control the solid-state supramolecular chemistry of zinc(II) phthalocyanine with bipyridines Bipyridine conformations control the solid-state supramolecular chemistry of zinc(II) phthalocyanine with bipyridines. [J] CrystEngComm,2005,7,243-248.
    (f)Geiss, A.; Vahrenkamp, H. M(μ-CN)Fe(μ-CN)M'Chains with Phthalocyanine Iron Centers:Preparation, Structures, and Isomerization. [J] Inorg. Chem.2000,39,4029-4036.
    [22](a) Hunsicker, R. A.; Klier, K. Framework Zinc-Substituted Zeolites:Synthesis, and Core-Level and Valence-Band XPS. [J] Chem. Mater.2002,14,4807-4811.
    (b)Gaskell, K. J.; Starace, A.; Langell, M. A. ZnxNil-xO Rocksalt Oxide Surfaces:Novel Environment for Zn2+ and Its Effect on the NiO Band Structure. [J] J. Phys. Chem. C 2007,111,13912-13921.
    (c)Mielczarski, J. A.; Cases, J. M.; Alnot, M.; Ehrhardt, J. J. XPS Characterization of Chalcopyrite, Tetrahedrite, and Tennantite Surface Products after Different Conditioning.2. Amyl Xanthate Solution at pH 10. [J] Langmuir 1996,12,2531-2543.
    [23]Pokroy, B.; Kang, S.H.; Mahadevan, L.; Aizenberg, J. Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies. [J] Science 2009,323,237-240.
    [1](a) Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C. Absolute Asymmetric Synthesis under Physical Fields:Facts and Fictions. [J] Chem. Rev. 1998,98,2391-2404;
    (b)Perez-Garciaa, L.; Amabilino, D. B. Spontaneous resolution under supramolecular control. [J] Chem. Soc. Rev.2002,31,342-356.
    [2](a) Guo, P.; Tang, R.; Cheng, C.; Xi, F.; Liu, M. Interfacial Organization-Induced Supramolecular Chirality of the Langmuir-Schaefer Films of a Series of PPV Derivatives. [J] Macromolecules 2005,38,4874-4879;
    (b)Rosaria, L.; D'urso, A.; Mammana, A.; Purrello, R. Chiral memory:Induction, amplification, and switching in porphyrin assemblies. [J] Chirality 2008,20,411-419.
    [3](a) Macdonald, J. C.; Whitesides, G. M. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. [J] Chem. Rev. 1994,94,2383-2420;
    (b)Lehn, J.-M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. [J] Angew. Chem., Int. Ed.1990,29,1304-1319;
    (c)Hosseini, M. W. Molecular tectonics:from molecular recognition of anions to molecular networks. [J] Coord. Chem. Rev.2003,240,157-166.
    (d)Faul, C. F. J.; Antonietti, M. Ionic Self-Assembly:Facile Synthesis of Supramolecular Materials. [J] Adv. Mater.2003,15,673-683.
    (e)Yashima, E.; Maeda, K. Chirality-Responsive Helical Polymers. [J] Macromolecules 2008,41,3-12.
    [4](a) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000; Vols.1-10,2003; Vols.11-20.
    (b)Hamza, I.; Intracellular Trafficking of Porphyrins. [J] ACS Chem. Biol.2006,1,627-629.
    (c) Lo, P.-C.; Chan, C. M. H.; Liu, J.-Y.; Fong, W.-P.; Ng, D. K. P. Highly Photocytotoxic Glucosylated Silicon(IV) Phthalocyanines. Effects of Peripheral Chloro Substitution on the Photophysical and Photodynamic Properties. [J] J. Med. Chem.2007,50,2100-2107.
    (d)Vanyur, R.; Heberger, K.; Jakus, J. Prediction of Anti-HIV-1 Activity of a Series of Tetrapyrrole Molecules. [J] J. Chem. Inf. Comput. Sci.2003,43,1829-1836.
    [5]Zeng, L.; He, Y.; Dai, Z.; Wang, J.; Cao, Q.; Zhang, Y. Chiral Induction, Memory, and Amplification in Porphyrin Homoaggregates Based on Electrostatic Interactions. [J] ChemPhysChem 2009,10,954-962.
    [6](a) Goto, H.; Zhang, H.; Yashima, E. Chiral Stimuli-Responsive Gels:Helicity Induction in Poly(phenylacetylene) Gels Bearing a Carboxyl Group with Chiral Amines. [J] J. Am. Chem. Soc.2003,125,2516-2523;
    (b)Nonokawa, R.; Yashima, E. Detection and Amplification of a Small Enantiomeric Imbalance in a-Amino Acids by a Helical Poly(phenylacetylene) with Crown Ether Pendants. [J] J. Am. Chem. Soc.2003,125,1278-1283;
    (c)Morino,K.; Oobo, M.; Yashima, E. Helicity Induction in a Poly(phenylacetylene) Bearing Aza-18-crown-6 Ether Pendants with Optically Active Bis(amino acid)s and Its Chiral Stimuli-Responsive Gelation. [J] Macromolecules 2005,38,3461-3468.
    [7](a) Tamaru, S. I.; Nakamura, M.; Takeuchi, M; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.2001,3,3631-3634;
    (b)Tamaru, S.; Uchino, S.; Takeychi, M; Ikeda, M; Hatano, T.; Shinkai, S. A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. [J] Tetrahedron Lett.2002,43,3751-3755.
    [8](a) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006,128, 7390-7398;
    (b)Li, Y; Li, X.; Li, Y; Liu, H.; Wang, S.; Gan, H.; Li, X.; Wang, N.; He, X.; Zhu, D. Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex:From Multibilayer Vesicles to Hollow Capsules. [J] Angew. Chem. Int. Ed.2006,45,3639-3643;
    (c)Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008, 130,11623-11630;
    (d)Gao, Y; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052.
    [9]Lv, W.; Zhang, X.; Lu, J.; Zhang, Y.; Li, X.; Jiang, J. Synthesis and Hollow-Sphere Nanostructures of Optically Active Metal-Free Phthalocyanine. [J] Eur. J. Inorg. Chem.2008,4255-4261.
    [10](a) Fox, M. A.; Grant, J. V.; Melamed, D.; Torimoto, T.; Liu, C; Bard, A. J. Effect of Structural Variation on Photocurrent Efficiency in Alkyl-Substituted Porphyrin Solid-State Thin Layer Photocells. [J] Chem. Mater.1998,10,1771-1776;
    (b) Balakumar, A.; Lysenko, A. B.; Carcel, C; Malinovskii, V. L.; Gryko, D. T.; Schweikart, K-H.; Loewe, R. S.; Yasseri, A. A.; Liu, Z.; Bocian, D. F.; Lindsey, J. S. Diverse Redox-Active Molecules Bearing O-, S-, or Se-Terminated Tethers for Attachment to Silicon in Studies of Molecular Information Storage. [J] J. Org. Chem.2004,69,1435-1443.
    [11]Ulman, A.; Manassen, J. Synthesis of new tetraphenylporphyrin molecules containing heteroatoms other than nitrogen. I. Tetraphenyl-21,23-dithiaporphyrin. [J] J. Am. Chem. Soc.,1975,97,6540-6544.
    [12]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The exciton model in molecular spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [13](a) Harada, H.; Nakanishi, K. Circular Dichroic Spectroscopy, Exiciton Coupling in Organic Stereochemistry. [M] University Science Books:New York,1983. (b) Kobayashi, N. Optically active'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,487-488.
    [14](a) Wang, Y; Chen, Y; Li, R.; Wang, S.; Su, W.; Ma, P.; Wasielewski, M.R.; Li, X.; Jiang, J. Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor. [J] Langmuir 2007,23,5836-5842;
    (b)李新国,裴松皓,王芙香,彭慰先,石莹岩,王杏乔,宋瑛林.系列羟基苯基卟啉化合物
    三阶非线性光学特性.[J]吉林大学学报(理学版),2005,6,813-817;
    (c)王树军,彭玉苓,傅丽.新型手性金属卟啉的合成及非线性光学性质研究.[J]无机化学学报,2009,1,54-59.
    [15](a) Kandasamy, K.; Shetty, S. J.; Puntambekar, P. N.; Srivastava, T. S.; Kundu, T.; Singh, B. P. Effects of metal substitution on third-order optical non-linearity of porphyrin macrocycle. [J] J. Porphyrins Phthalocyanines 1999,3,81-86;
    (b) Torre, G. de la; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. [J] Chem. Rev.2004,104,3723-3750.
    [16](a) Ikeda, H.; Sakai, T.; Kawasaki, K. Third-order Optical Nonlinearities of Asymmetric Carbocyanine Dyes. [J] Chem. Lett.,1991,20,1075-1076.
    (b)Li, Z.; Jin, Z.; Kasatani, K.; Okamoto, H.; Takenaka, S. Resonant enhancement of third-order nonlinear optical property in J-like aggregates of a cyanine dye. [J] phys. stat. sol. (b),2005,242,2107-2112.
    [17](a) Zhang, X.; Zhang, Y.; Jiang, J. Infrared spectra of metal-free, N', N-dideuterio, and magnesium porphyrins:density functional calculations. [J] Spectrochimi. Acta Part A.2005,61,2576-2583;
    (b)Boucher, L. J.; Katz, J. J. The Infared Spectra of Metalloporphyrins (4000-160 Cm-1). [J] J. Am. Chem. Soc.1967,89, 1340-1345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700