新型磁致伸缩合金Fe-Ga深过冷与定向生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-Ga合金是近年来出现的新型磁致伸缩材料,主要应用于声纳、主动减振等领域。Fe-Ga合金具有价格低廉,温度适应性好,较好的延展性,且饱和磁化场很小的优势。但是Ga的熔点低,普通的制备方法会造成Ga元素的损失。因此开发制备Fe-Ga合金的新方法成为该领域的一个研究热点。本文采用熔融玻璃净化法及循环过热技术,研究Fe_(83)Ga_(17)合金深过冷行为,以及过冷度对合金组织性能及择优取向的影响,并采用超高温度梯度定向凝固技术制备具有择优取向的Fe_(83)Ga_(17)合金,和深过冷技术制备有所比较。
     采用熔融玻璃净化和循环过热相结合的方法,使得Fe-Ga合金获得287K的大过冷度。从小过冷到141K过冷度,平均晶粒尺寸随过冷度的增加而逐步减小,并且具有相对比较均匀的粒度分布。在过冷度为176K时,枝晶被拉长,且具有一定方向性。当过冷度达到216K时,定向枝晶被细化。当过冷度大于252K,出现了大的等轴晶,试样内部大等轴晶与小等轴晶共存。随着过冷度的增加,大等轴晶晶粒的面积分数逐步增加。当过冷度达到287K时,就只有大等轴晶晶粒存在。该合金的组织演化过程经历了两次细化和一次粗化,在过冷度小于252K时,形核率随着过冷度的增大而增大,这就导致Fe_(83)Ga_(17)合金晶粒尺度随过冷度增加而下降,并且相对比较均匀。随着过冷度增大,合金内部发生再结晶,导致大晶粒吞并小晶粒生长,最终发生完全粗化现象。在过冷度达到176K时,Fe-Ga合金熔体中生成了短程应变有序相,沿着[100]方向上的Ga原子团簇将会加强此方向上的磁致伸缩性能。
     研究了淬火和退火对Fe-Ga合金组织的影响。,因为有序DO3相降低材料的磁致伸缩性能,而淬火可以抑制DO3相的生成,并且淬火过程中部分b.c.c基相转变成了Modified-DO3相,该相结构中,沿[100]方向存在Ga原子对,很大程度上增强了磁致伸缩效应,因此,淬火可以明显提高合金的磁致伸缩性能。退火工艺的缓慢冷却过程有利于DO3相的形成,并消除了能增强磁致伸缩性能的Ga原子团簇,所以退火降低合金的磁致伸缩性能。
     本文采用超高温度梯度定向生长制备Fe_(83)Ga_(17)合金,实验温度梯度控制在800K/cm,生长速度为6μm/s和10μm/s。在生长速率为6μm/s的超高温梯度Fe_(83)Ga_(17)合金定向凝固试样出现两个区域,分别为定向生长过渡区和生长稳定区。在定向生长稳定区中,形成了平行于轴向方向的几个粗大定向排列的柱状晶,横向晶界几乎完全消失,其择优取向为[110]方向。生长速率为10μm/s的超高温梯度Fe_(83)Ga_(17)合金定向凝固试样的择优取向受到阻碍。采用晶体生长速率与固液界面形态关系解释了这一现象。为了获得高取向度晶体,在制备过程中要协调好温度梯度和生长速度,保证固液界面为上凸形。
     两种制备方法分别得到具有[100]和[110]择优取向的结构,其中深过冷技术为制备[100]择优取向大磁致伸缩材料提供了一条可行的途径。
Giant magnetostrictive materials have been widely applied in spaceflight and military field as the element of acoustic sensors, actuators, and other magnetomechanical devices. Recently, Fe-Ga system which is virtue of low-filed magnetostriction and good mechanical properties such as good ductility and high strength, has attracted increasing attentions as magnetostrictive materials. In this study, by way of molten glass denucleating and superheating-cooling cycles, the undercooling behavior of the Fe_(83)Ga_(17) alloys was studied. The Fe_(83)Ga_(17) bars with preferred orientation were obtained using super-high temperature gradient directional solidification method.
     The Fe_(83)Ga_(17) alloys were undercooled up to 287K through molten glass denucleating and superheating-cooling cycles. When the undercooling was less than 54K, the structures were composed of coarse dendrites. With increasing the undercooling up to 216K, the grains were refined. More particularly, the dendrites tended to possess a preferred orientation when the undercooling was in the range of 141-176K. When the undercooling exceeded 252K, abnormal large grains coexisting with fine equiaxed grains appeared. With a further increase of the undercooling up to 287K, only big equiaxed grains existed. The grain refinement with the increasing undercooling is due to the increased nucleation rate as the undercooling was less than 252K. When undercooling exceeded 252K, recrystallization occurred in the melt, giving rise to the formation of big grains. Local shot-range ordering of Ga atoms was formed in the Fe_(83)Ga_(17) alloy when the undercooling exceeded 176K, and the presence of clusters of near-neighbor pairs of Ga atoms contributed to the large magnetostriction.
     The quenching process can improve the magnetostriction of Fe_(83)Ga_(17) alloy by restricting the formation of DO3 phase. In the quenching process, small volume fraction of the b.c.c matrix turned to the Modified-DO3 phase which has pairs of Ga along [100]. On the other hand, in the annealing process, the development of long-rang DO3 structure was formed and the clusters of Ga atoms was disappeared, leading to a decrease in magnetostriction.
     Using super-high temperature gradient directional solidification method, the Fe_(83)Ga_(17) alloy bars with [110] orientation were prepared. The experimental temperature gradient was 800K/cm. When the growth velocity was 6μm/s, several coarse columnar crystals along the longitudinal direction and even without transverse interfaces were formed in the growth stability area. The preferred orientation of directional solidified sample was interrupted as the growth velocity was 10μm/s. The phenomena were explained by the relationship between growth velocity and the solid-liquid interface shape. In order to prepare samples with preferred orientation, it is necessary to make the growth velocity consistent with the temperature gradient, and to make sure the solid-liquid interface convex.
     Both bulk undercooling and directional growth can obtain structures with preferred orientation, and most importantly, the undercooling experiment improves the texture of [100] orientation, and provides a possibility to prepare magnetostriction alloys with [100] preferred orientation.
引文
[1] 钟文定著, 铁磁学(中册), 北京: 科学出版社, 1987, p21
    [2] F.V. Hunt, Electroacoustics, New York: American Institute of Physics Acoustical Society of America.1954
    [3] 近角聪信等编,韩俊德等译,磁性体手册(下),冶金工业出版社,1985,P106
    [4] Legvold. S, Alstad. J, Giant magnetostriction in dysprosium and holmium single crystals, Phys. Rev. Lett, 1963,10(12):509
    [5] Clark. A. E, Bozorth. R, DeSavage. B, Anomalous thermal expansion and magnetostriction of single crystals of dystrosium, Phys. Lett, 1963,5(2):100
    [6] Rhyne. J, Legvold. S, Magnetostriction of Tb single crystal, Phys. Rev. A,1965,138:507
    [7] Clark. A.E, Belson. H. S, Magnetostrictive of Tb-Fe and Tb-Co compounds, AIP Conf. Proc, 1972,5:1498
    [8] Clark. A.E, Magnetostrictive rare earth-Fe2 compounds, in ferromagnetic materials, vol.1, Wohlfarth,ed), North Holland, Amsterdam, 1980,531
    [9] Clark. A.E, Belson. H. S, Magnetostrictive anisotropy in cubic rare earth-Fe2 compounds, AIP Conf. Proc, 1973,10:749
    [10] Clark. A.E, Magnetetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase compounds, AIP Conf. Proc, 1974,18:1015
    [11] Hall. R. C., Single crystal magnetic anisotropy and magnetostriction studies of iron-base alloys, J. Appl. Phys., 1960, 31: 1037
    [12] Tremolet de Lacheisserie, Etienne du., Magnetostriction: Theory and Applications of Magnetoelasticity. Boca Raton, CRC Press, 1993
    [13] Ibarra. M. R., Algarabel. P. A., Marquina. C., Otani. Y., Yuasa. S., Miyajima. H., Giant room temperature volume magnetostriction in an Fe-Rh alloys., J. Magn. Magn. Mater., 1995, 140
    [14] Williams. G. M., Paclovic. A .S., The magnetostriction behaviour of iron singlecrystals,J. Appl. Phys. , 1968, 39(2): 571
    [15] Hall. R. C., Magnetic anisotropy and magnetostriction of ordered and disordered Cobalt-iron alloys, Trans. Met. Soc. AIME, 1960, 218: 268
    [16] Hall. R. C., Magnetostriction of aluminium-iron single crystals in the region of 6 to 30 percent aluminum, J. Appl. Phys., 1957, 28(6): 707
    [17] Clark. A.E, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, IEEE Trans. Magn. 2000,36: 3238
    [18] Clark. A.E, Wun-Fogle, T. A. Lograsso, Mater. Trans. 2002,43: 881
    [19] S. Guruswamy, N. Srisukhumbowornchai, A. E. Clark, Scripta mater. 2000,43: 239
    [20] Clark. A.E, M. Wun-Fogle, T. A. Lograsso, IEEE Trans. Magn. 2001,37: 2678
    [21] M. Wutigg, L. Dai, and J. Cullen, App. Phys, Lett. 2002,80: 1135
    [22] T. A. Lograsso, A. R. Ross, D.L.Schlagel, J. Alloy and Compounds. 2003,350: 95
    [23] Jones. D. W, Abell. J. S, Fort. D and Huibert. J. K, Preparation of rare earth materials, crystals and specimens, J. Magn. Magn. Mater., 1982, 29: 20
    [24] Lord. D. G, Savage. H. T and Rosemeier. R. G, X-Ray Topography Observation of a Dy0.73Tb0.27Fe1.95 Crystal, J. Magn. Magn. Mater. , 1982, 29: 137
    [25] Teter. J. P, Clark.A.E and McMasters. O. D, Anisotropic magnetostriction in Tb0.27Dy 0.73Fe 1.95, J. Appl. Phys., 1987, 61(8): 3787
    [26] Olivier. Bonino, Patricia. De Rango, Robert.Tournier, <110>Directional growth of polycrystalline magnetostrictive TbxDy1?xFey compounds by casting in a strong unidirectional gradient, J. Magn. Magn. Mater., 2000, 212: 225
    [27] Won Je Park, Jong Chul Kim, Byoung June Ye and Zin Hyoung Lee, Macrosegregation in Bridgman growth of Terfenol-D and effects of annealing, J. Cryst. Growth., 2000, 212: 283
    [28] Won Je Park, Jong Chul Kim, Byoung June Ye and Zin Hyoung Lee, Macrosegregation in Bridgman growth of Terfenol-D and effects of annealing, J. Cryst. Growth., 2000, 212: 283
    [29] McMasters. O. D., Verhoeven. J. D., Gibson. E. D., Preparation of Terfenol-D by float zone solidification, J. Magn. Magn. Mater., 1985, 54-57: 849
    [30] Jenner. A.G., Lord. D. G. and Faunce. C. A., Magnetoelastic properties of terbium-dysprosium-iron compounds, J. Appl. Phys., 1991, 69(8): 5780
    [31] Mei. Wu, Okane. Toshimitsu, Umeda. Takateru and Zhou. Shouzheng, Directional solidification of Tb-Dy-Fe magnetostrictive alloy, J. Alloys Comp., 1997, 248(1-2): 151
    [32] Jiang. Chengbao, Zhou. Shouzeng, Xu. Huibin and Wang. Run, Investigation on the formation of the preferred orientations in a TbDyFe alloy with directional solidification, Mat. Sci. Eng. B, 1999, 58(3): 191
    [33] Williams. C. M, Koon. N. C and Das. B. N, J. Magn. Magn. Mater., 1980, 15-18: 553
    [34] Clark. A. E, Verhoeven. J. D, McMasters. O. D and Gibson. J. D, Magnetostriction in twinned (112) crystals of Tb0.27Dy0.73Fe2, IEEE. Trans. Magn., 1986, Mag-22(5): 973
    [35] D Tumbull, J Chem Phys, 1952, 20: 411
    [36] Perepezko J H, , Rasmussen D H, Metall Trans, 1978, 9A: 1490
    [37] B A Muller, J H Perepezko, Metall Trans, 1987, 18A: 1143
    [38] S Ebakard, F Spaepen, R F Cochrane, A L Greer, Mater Sci Eng, 1991, 133A: 569
    [39] B Wei, G C Yang , Y H Zhou, Acta mater, 1991, 39: 1249
    [40] M C FlemingS , Y Shiohara, Mater Sci Eng, 1984, 65: 157
    [41] D M Herlach, Mater Sci Eng, 1994, 12A(4-5): 180
    [42] R Trivedi, P G Magnin, W Kurz, Acta mater, 1987, 35: 971
    [43] W Kurz, D J Fisher, in Fundamental of Solidification(Third Edition), Tech Publications, Netherlands, 1989
    [44] A L.Greer,Mater.Sci, Eng,A178(1994),113
    [45] H U 瓦尔特, 空间流体科学与空间材料科学, 葛培文, 王景涛等译, 中国科学技术出版社, 1991
    [46] Mullins W W, Sekerka R F, J Appl Phys, 1964, 35: 444
    [47] Boettinger W J, Mater Sci Eng, 1988, A98: 123
    [48] Boettinger W J, Metall, A, 1984, 15A : 55
    [49] R Trivedi, J Cryst Growth, 1980, 49: 219
    [50] Kurz W, Fiaher D J, Acta Metall, 1981, 29: 11
    [51] S C Huang, M E Glicksman, Acta Metall, 1981, 29: 717
    [52] Trivedi R and Kurz W, Acta Metall, 1986, 34: 1663
    [53] Langer J S, Muller-Krumbhaar H, Acta Metall, 1978, 26: 1681
    [54] Eckler K, Herlach D M, Mater. Sci. Eng., 1994, 178A: 159
    [55] Coiell S R and Parker R L, in HS Peiser(eds.), Crystal Growth, Pergamon,Oxford, 1967, 703
    [56] Willnecker R, Herlanch D M, Feuerbacher B, Mater. Sci. Eng, 1988, 98: 85
    [57] Aziz M J, J Appl. Phys., 1982, 53: 1158
    [58] Boettinger W J, Coriell S R, Trivedi R, in R Mehrabian P A Parrish (eds), Rapid Solidification Processing: Principles and Technologies IV, Claitor’s, Baton Rouge, LA, 1988: 13
    [1] Okamoto. H in Phase diagrams of binary iron alloys, Monograph Series on alloy phase diagrams No.9, H. Okamoto , Ed. ASM International, Materials Park, OH, 1993: 147
    [2] O. keda, R. Kainuma, I. Ohnuma, et al[J]. J. Alloys Comp.347(2002):198.
    [3] Arthur E. Clark, M Wun-Fogle, J B. Restorff, T A. Lograsso, IEEE Trans on Mang, 37(2001):2678
    [4] Guruswamy S, Srisukhumbowornchai N, Clark A E, M. Scr Mater, 43(2000):239
    [5] Han Z Y, Zhou S Z, Zhang M C, J Magn Mater Devices,35(1)(2004):5
    [6] Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL, IEEE Trans. Magn.,2000, 22, 36(5): 3238
    [7] Arthur E. Clark, Marilyn Wun-Fogle, James B. Restorff, Thomas A. Lograsso, and James R. Cullen, IEEE Trans. Magn., 2001, 37(4): 2678
    [8] Kellogg RA, Flatau AB, Clark AE, Wun-Fogle M, Lograsso TA , J. Appl. Phys., 2003, 93(10): 8495
    [9] Kawamiya N, Adachi K, Nakamura Y, J Pphys Lett,84(2004):2124
    [10] Clark A E, Wun-Forgle M, Restorff J B, Lograssio T A, Proc 8th Joint Intermag Conf, San Antonio TX,2001
    [11] 徐翔,蒋成保,徐惠彬. 金属学报,41(2005):483
    [12] T. A. Lograsso,A.R. Ross, et al, J. Alloys Comp.350(2003):95
    [1] Wang W H, Wu G H, Chen J L, Yu C H, Gao S X, Zhan W S, Wang Z, Gao Z Y, Zheng YF, Zhao L C, Appl. Phys. Lett. 77(20)(2000): 3245
    [2] Liang T, Jiang C B, Xu H B, Liu Z H, Zhang M, Cui Y T, Wu G H, J. Magn. Magn. Mater. 268(2004): 29
    [3] 蒋成保, 刘敬华, 张涛, 徐惠彬, 金属学报, 40(9) (2004): 975
    [4] Dasarathy. C and Hume-Rothery. W., The system Iron-Gallium, Proc. Roy. Soc.London, 1965,286:141
    [5] Luo. H. L., Lattice parameters of iron rich iron-gallium alloys, Trans. Metal.Soc. AIME., 1967,239: 119
    [6] Aldred. A. T., Magnetization of iron-gallium and iron-arsenic alloys., J. Appl. Phys., 1966,37(3): 1344
    [7] Werner Koster, Tilo G?decke, On the constitution of the system Fe-Ga between 10 and 50 at.%Ga and it dependence on heat treatment I. The diagram of the bodered centered phases, Z. Metallkde, 1977, 68(9): 582
    [8] Werner K?ster, Tilo G?decke, On the constitution of the system Fe-Ga between 10 and 50 at.%Ga and it dependence on heat treatment II The equilibrium phase diagram, Z. Metallkde, 1977, 68(10): 661
    [9] Newkirk. L. R., Tsuei. C. C. Mossbauer study of hyperfine magnetic interactions in Fe-Ga Solid solutions, Phys. Rev. B,1971, 4(11): 4046
    [10] Kawamiya. N., Adachi. K., Nakamura.Y., Magnetic properties and Mossbauer investigations of Fe-Ga alloys, J . Phys. Soc. Jap., 1972, 33(5): 1318
    [11] Clark. Arthur. E., Wun-Fogle. Marilyn., Restorff. James. B., Lograsso. Thomas. A., Magnetostrictive properties of galfenol alloys under compressive stress, Materials Transactions, 2002, 43(5): 881
    [12] Arthur E. Clark, Marilyn Wun-Fogle, James B. Restorff, Thomas A. Lograsso, and James R. Cullen, Effect of quenching on the magnetostriction of Fe1-xGax(0.13    [13] Manfred Wuttig, Liyang Dai, James Cullen, Elasticity and magnetoelasticity of Fe-Ga solid solutions, Applied Physics Letters, 2002, 80(7): 1135
    [14] Ruqian Wu, Origin of large magnetostriction in Fe-Ga alloys, Journal of applied physics, 2002, 91(10): 7358
    [15] Lograsso. T. A, Ross. A. R., Schlagel. D. L ., Clark. A. E., Wun-Fogle. W., Structural transformations in quenched Fe-Ga alloys, Journal of alloy and compounds, 2003, 350: 95
    [16] Weston JL, Butera A, Lograsso T, Shamsuzzoha M, Zana I, Zangari G, Barnard J Fabrication and characterization of Fe81Ga19 thin films,IEEE Trans. Magn., 2002, 38 (5): 2832
    [17] Cheng. S. F., Das. N. B., Wun-Fogle. W., Lubitz. P, Clark. A. E., Structure of melt-spun Fe-Ga-based magnetostrictive alloys, IEEE Transactions on Magnetics, 2002, 38(5): 2838
    [18] 李金富, 杨根仓, 吕衣礼, 周尧和,材料研究学报, 11(2)( 1997): 137
    [19] Gartner F, Norman A F, Greer A L, Zambon A, Ramous E, Eckler K, Acta Mater, 45(1) (1997): 51
    [20] 刘峰, 蔡瑜, 郭学锋, 杨根仓, 金属学报, 36(6)(2000): 567
    [21] 郭学峰,杨根仓,中国有色金属学报,10(2001):77
    [22] 张振忠,宋广生,杨根仓,周尧和,铸造技术,3(1999):40
    [23] A.E. Clark, M. Wun-Fogle, J.B. Restorff, IEEE Trans, Magn. 37 (2001):2678
    [24] Z.H.Liu, G.D.Liu, M,Zhang, et,al.[J]. J.Appl, Phys, Lett,85(2004):1751
    [25] Herlach DM, Eckies K, A,et al.Grain refinement through fragmentation of dendrite in undercooled melts[J]. Mater Sci Eng, 2001,A304-306:20
    [23] Walker. J. L, in St Pierre G R ed, The Physical Chemistry of Process Metallurgy Part 2, interscience, New York, 1959, P485
    [24] Kattamis.T.Z., Flemings.M.C.,Dendrite structure and and grain size of undercooled melts, Trans Metall. Soc. AIME, 1966, 236: 1523
    [25] Cochrane. R.F. Greer. A.L., Eckler. K., Herlach.D.M., Dendrite growth velocities in undercooled Ni-Si alloys, Mater. Sci. Eng., 1991, 133(1): 698
    [26] Li.D., Eckler. K., Herlach. D. M., Nonequilibrium crystal growth and kinetic roughening in greatly undercooled Ge and Ge-2at%Sn, Mater. Sci. Forum, 1996, 215-216: 489
    [27] Battersby S.E, Cochrane R.F, Mullis A.M., Growth velocity-undercooling relationships and microstructural evolution in undercooled Ge and dilute Ge-Fe alloys, J. Mater. Sci., 1999, 34 (9): 2049
    [28] J.F.Li, Y.C.Liu, Y.L.Lu, Y.H.Zhou, G.C.Yang, Structural evolution of undercooled Ni-Cu alloys, J .Cryst Growth, 1998, 192: 462
    [29] Schwarz. M, Karma. A, Eckler. K, Herlach .D.M, Physical mechanism of grain refinement in solidification of undercooled melts, Phys. Rev. Lett., 73(10), 1994: 1380
    [30] Mullis. A. M, Cochrane .R.F, Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys, in Solidification 98,Edited by Marsh .S.P, Dantzig .J.A, Trivedi .R, Hofmeister .W, Chu . M. G, Lavernia. E. J, Chun. J. -H.,The Minerals,Metals&Materials Society, 1998: 203-
    [31] Liu .F, Yang G.C., Guo X.F.Research of grain refinement in undercooled DD3 single crystal superalloy, Mater. Sci. Eng. A, 2001, 311 (1-2): 54
    [32] Christian. J. W.: The Theory of Transformation in Metals and Alloys, Oxford, Pergamon Press,1975,418
    [33] Herlach.D. M., Gillessen. F, Volkmann. T , Wollgarten. M , Urban. K. , Phase selection in undercooled quasicrystal-forming Al-Mn alloy melts, Phys. Rev. B., 1992, 46: 5203
    [34] Herman R, Loser W, Lindenkreuz G, et al. Material Sci Eng, A(375)2004:807
    [35] Herlach D M, Eckler K, Karma A. Material Sci Eng, A(304)2001:20
    [36] Kattamis T Z, Fleming M C. AFS Trans, 12(4),1967:191
    [37] Flemings M C, Shichara Y. Material Sci Eng,65(1)1984:157
    [38] Eckler K, Garter F, Assadi H. Material Sci Eng,A(226)1997:410
    [39] A E. Clark, M Wun-forgle, J B. Restorff, T A. Lograsso, IEEE Trans on magn, 37(2001): 2678
    [40] T.A.Lograsso, A.R.Ross, D.L.Schlagel,et al[J]. J.Alloys Comp.350(2003):95
    [41] O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, J.Alloys Comp.347 (2002): 198
    [1] 周振平,李荣德,定向凝固试验研究现状,特种铸造及有色合金,2003,2:35
    [2] Jiang C B, Liu J H, Wang J M, Xu L H, Xu H B, Solid-liquid interface morphology andcrystal growth of NiMnGa magnetic shape memory alloys, Acta Mater., 2005, 53(4):1111
    [3] 郑红星,Ni-Fe-Ga 磁性形状记忆合金马氏体相变及其定向生长,学位论文,上海,上海交通大学,2005
    [4] 何国,李建国,毛协民,傅恒志,单晶高温合金固液界面形状及对凝固组织的影响,1995,1:9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700