Aermet100钢热挤压变形过程晶粒演化相场模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综合分析现有相场模型的基础上,研究了多晶体塑性变形和动态再结晶过程中的组织形貌演变规律。基于金兹堡-朗道(Ginzburg-Landau)相变理论,以形变动态再结晶机制理论为依据,并考虑双势阱函数和场变量之间存在交互作用,用变异常数法构建了表征形变储能与动态再结晶形核长大的自由能泛函表达式,并给出了求解该方程的数值方法。
     结合热力学与动力学理论,建立了热挤压变形模拟过程中相场唯象参数与变形温度、变形量和应变速率的半经验定量表达式。在此关系和再结晶相场自由能方程的基础上建立了适用于Aermet100钢热挤压变形动态再结晶的相场模型。
     基于该模型,用面向对象的程序开发工具编制了相场模拟软件,实现了宏观参数输入和微观结果输出、存储、显示、统计的自动运行,为Aermet100钢动态再结晶过程的多尺度间接同步耦合模拟创造了条件。
     对热挤压变形过程中工件上不同点的晶粒演变进行了模拟预报。模拟结果表明,塑性变形引起的晶界拉长和扭折是促进再结晶形核的主要因素。在变形过程中,工件平均晶粒尺寸随着再结晶体积分数的增加急剧减小,在再结晶完成后又有缓慢增加。模拟结果与试验结果基本吻合。在此基础上,进行了实际件模锻过程晶粒演变的相场模拟预报。
This paper deals with plastic deformation and dynamic recrystallization of polycrystal material based on the resultant analysis of present phase field models. The phase-field models to describe plastic deformation and dynamic recrystallization have been deduced on basis of Ginzburg-Landau (G-L) theory and dynamic recrystallization theory by means of coefficient variation considering double well potential and interaction of orientation field variable. The numerical method to solve the models mentioned above is also given.
     The dependency of phenomenological phase field parameter of temperature, strain and strain rate during hot extruding is measured with semiempirical method resultantly considering related thermodynamic and kinetic theory. Phase field model appropriate for dynamic recrystallization during hot extrude of steel Aermet100 is established on basis of recrystallization phase field free energy equation and the dependency mentioned above.
     According to this model, software for phase field simulation is designed and compiled with object oriented programming system, which input the macroscopic data and output,store,display and analysis the caculated result.multi-scaled indirect synchro coupling simulation of recrystallization of steel Aermet100 is based on this software.
     Numerical simulation and forecast of grain evolution during hot extruding is applied on different position of work piece. the caculated result indicates that the grain boundery has been elongated and kinked consequently during plastic deformaton,which mainly caused nucleation of recrystallization. it also shows that the average grain size decreases rapidly with the increase of the fraction of recrystallized grain and increases gradually after complete recrystallization. The predicted results agree basically with the experimental ones. grain evolution during hot die forging of actual part is also forecasted with the above phase field model.
引文
1冯端.金属物理学第二卷相变.科学出版社, 1998: 31~250
    2孙多春,姜恩永,刘晖.材料科学的发展趋势-材料设计.金属功能材料. 1994,1(2): 1~6
    3 W. Oldfield. A Quatitative Approach to Casting Solidification. ASM Trans. 1966, 59(2): 945~960
    4 J. D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Mater. Sci. Eng. 1984, 65(1): 75~83
    5 P. H. Thevoz, J. L. Desbilles, M. Rappaz. Modeling of Equiaxed Micro-structure Formation in Casting. Metall. Trans. 1989, 20A(2): 311~322
    6 J. Lipton, M. E. Glicksman, W. Kurz. Equiaxed Dendrite Growth in Alloys at Small Supercooling. Metall. Trans. 1989, 18A (2): 341~345
    7 C. Y. WANG, C. Beckermann. Equiaxed Dendritic Solidification with Convection (part I) Multiscale/Multiphase Modeling. Metall. Trans. 1996, 27A (9): 2754~2764
    8 I. Steinbach, C. Beckermann. Three-dimensional Modeling of Equiaxed Dendritic Growth on a Mesoscopic Scale. Acta Mater. 1999, 47(3): 971~982
    9 J. A. Spittle, S. G. R. Brown. Computer Simulation of the Influence of Processing Conditions on as-cast Grain Structures. J. Mater. 1989, 24(5): 1777~1781
    10 P. P. Zhu, R. W. Smith. Dynamic Simulation of Crystal Growth by Monte-carlo Method. Acta Metall. 1992, 40(12): 3369~3379
    11 F.Y.Wu.The Potts Model.Reviews of Mordem Physics.1982,54(1):235~268
    12 S.A Safran, P.S Sahni, G.S.Grest. Kinetics of Ordering in two Dimensio -ns.Pysical Review Letters. 1983,28(5):2693~2716
    13 Sahni P.S.,Grest G.S.,Anderson M.P.,Srolovitz D.J.,Kinetics of Q~state Potts Model in two Dimension.Physical Review Letters.1983,50(4):263~266
    14 Grest G.S.,Safran S.A., Sahni P.S..Tempperature Dependence of Modain Growth. Jounal of Applied Physics.1983,55(6):2432~2434
    15 Srolovitz D.J., Anderson M.P., Sahni P.S., Grest G.S..Computer Simulation of Grain Growth-II.Grain Size Distribution,Topology,and Local Dynamics. ActaMetallurgica.1984,32(5):793~802.
    16 Holm E.A., Srolovitz D.J., Cahn J.W.. Microstructrual Evolution in two Dimensional two-phase Polycrystals. Acta Metallurgica Materialia. 1993,41(4): 1119~1136
    17 Rollett A.D., Luton M.J., Srolovitz D.J.. Microstructrual Simulation of DYnamic Recystallization. Acta Metallurgica Materialia. 1992,40(1): 43~55
    18 H. W. Hesselbarth, I. R. Goebel. Simulation of Recrystallization by Cellular Automata. Acta Metall. Mater. 1991, 39(9): 2135~2143
    19 N. Packard. Theory and Applications of Cellular Automata. Word Scientific. 1986, 30(5): 135~143
    20 S. G. R. Brown. A 3-dimensional Cellular Automaton Model of’free Dendritic Growth. Scrip. Metall. Mater. 1995, 32(2): 241~246
    21 M. Rappaz, C. A. Gandin, R. Tintillier. Three-Dimensional Simulation of the Grain Formation in Investment Casting. Metall. Trans. 1994, 25(3): 629~635
    22 C. A. Gandin, M. Rappaz. A Coupled Finite Element-cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes. Acta Metall. Mater. 1994, 42 (7): 2233~2246
    23张林,王元明. Ni基耐热合金凝固过程的元胞自动机方法模拟.金属学报. 2001, 37(8): 882~888
    24 D.Y.Li, L.Q.Chen.Computer Simulation of Stress Oriented Nucleation and Growth ofθ` Precipitates in Al-Cu alloys. Acta mater. 1997 , 46(8): 2573~2585
    25 Yoshihiro Suwa,Yoshiyuki Saito, Hidehiro Onodera. Phase Field Simulation of Stored Energy Driven Interface Migration at a Recrystallization Front. Materials Science and Engineering A. 2007, 457:132~138
    26 A. Artemev, Y. Wang, A. G. Khachaturyan. Three-dimensional Phase Field Model and Simulation of Martensitic Transformation in Multilayer Systems under Applied Stresses. Acta Mater. 2000, 48(10): 2503~2518
    27李智超,刘鹅砚,王明里.Ms点的碳当量计算法.辽宁工程技术大学学报(自然科学版).1998,17(3):294
    28董大伟.有无成分梯度下相析出和晶粒演化过程相场模拟.哈尔滨工业大学硕士论文. 2005: 24~39
    29戴璐. AerMet100钢热压缩过程晶粒演变研究与计算机模拟.哈尔滨工业大学硕士论文. 2005: 18~50
    30吴奕初.应用正电子湮没技术定量估算高纯铁形变的位错密度和空位浓度.核技术. 1994,10(17): 599
    31陈俊峰. AerMet100钢热变形过程数值模拟及晶粒尺寸演变研究.哈尔滨工业大学硕士论文. 2008: 36~55
    32 J. W. Cahn, J.E. Hilliard. Free Energy of a Nouniform System I. Interface Free energy. J. Chem. Phys. 1958, 28(2): 58
    33 J. W. Cahn, J.E.Hilliard Free Energy of a no Uniform System III. Nucleation in a two component Incompressible fluid. J. Chem. Phys. 1958, 28(2): 58
    34 P. F. Stratton. High-temperature Carbonitriding. Heat Treatment of Metals. 2001, 28(4): 82~84
    35 Y. Xu, Y. Zhang, L. C. Zhao. Effect of Rare-earths Carburizing on Friction Behavior of GCr15 Steel Laser Melting Layer. Material Science and Technology. 2004, 12(2): 153~155
    36马燕合.我国稀土应用与开发现状及其展望.材料导报. 2000, 14(1): 3~5
    37闫牧夫,刘志儒,朱法义.稀土化学热处理进展.金属热处理. 2003, 8(3): 1~6
    38 L. Nastac. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta mater. 1999, 47(17): 4253~4262
    39金俊泽,王宗延.金属凝固组织形成的仿真研究.金属学报. 1998, 34(9): 928~932
    40郭靖原,洪泽恺.金属凝固与晶体生长过程的蒙特卡罗模拟.工程热物理学报. 2001, 22(6): 725~728
    41余亮,顾斌.枝晶生长的元胞自动机模拟.安徽工业大学学报. 2002, 19(1): 10~13
    42 G. Caginalp, P. Fife. Phase-field Methods for Interfacial Boundaries. Pysical Review Letters. 1986, 4 (11): 7792~7794
    43 R. Kobayashi. Modeling and Numerical Simulation of Dendritic Crystal Growth. Pysical Review Letters. 1993, 63(1): 410~423
    44 S. L. Wang, R. F. Sekerka, A. A. Wheeler. Thermodynamically Consistent Phase-Field Models for Solidification. Pysical Review Letters. 1993, 69(1):189~200
    45 A. A. Wheeler, W. J. Boettinger, G. B. McFadden. Phase-field Model for Isothermal Phase Transition in Binary Alloys. Pysical Review Letters. 1992, 45(10): 7424~7439
    46 A. A. Wheeler, B. T. Murrary, R. J. Schaefer. Computation of Dendrites Using a Phase Field Model. Pysical Review Letters 1993, 66: 243~262
    47 J. A. Warren, W. J. Boettinger. Prediction of Dendritic Growth and Micro segregation Patterns in a Binary Alloy Using the Phase-field Method. Acta metall. Mater. 1995, 43(2): 689~703
    48 A. Karma, W. J. Rappel. Phase-field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics. Pysical Review Letters. 1996, 53(4): 3017~3020
    49 S. G. Kim, W. T. Kim, T. Suzuki. Phase-field Model for Binary Alloys. Pysical Review Letters. 1999, 60(6): 7186~7197
    50 M. Ode, T. Suzuki. Numerical Simulation of Initial Microstructure Evolution of Fe-C Alloys Using a Phase-field Model. ISIJ International. 2002, 42(4): 368~374
    51 M. Ode, S.G. Kim, W. T. Kim. Numerical Prediction of the Secondary Dendrite Arm Spacing Using a Phase-field Model. ISIJ International. 2001, 41 (4): 345~349
    52 D. J. Seol, K. H. Oh, J. W. Cho. Phase-field Modeling of the Thermo Mechanical Properties of Carbon Steels. Acta Mater. 2002, 50: 2259~2268
    53 I. Steinbach, F. Pezzolla, B. Nestler. A Phase Field Concept for Multiphase System. Pysical Review Letters.1996, 94(1): 135~147
    54 B. Nestler, A. A. Wheeler. A Multi-phase-field Model of Eutectic and Peritectic Alloys: Numerical Simulation of Growth Structures. Pysical Review Letters. 2000, 138(1): 114~133
    55 R. Tonhardt, G. Amberg. Phase-field Simulation of Dendritic Growth in a Shear Flow. J. Crys. Growth. 1998, 194(1): 406~425
    56 X. Tong, C. Beckermann, A. karma. Velocity and Shape Selection of Dendritic Crystal in a Force Flow. Phys. Rev. E. 2000, 61(1): 49~52
    57 R. Folch, J. Casademunt, M. A. Hernandez. Phase-field Model for Hele-Shaw Flows With Arbitrary Viscosity Contrast. I. Theoretical Approach. PysicalReview Letters. 1999, 60(2): 1724~1733
    58 L. Q. Chen. Thermodynamics and Kinetics of Order-disorder Processes Derived from the Cluster-activation Method and Microscopic Diffusion Theory. Pysical Review Letters. 1994, 49(6): 3791~3799
    59 L. Q. Chen, W. Yang. Computer Simulation of the Domain Dynamics of a Quenched System with a Large Number of Nonconserved order Parameters: The grain-growth kinetics. Pysical Review Letters. 1994, 50(21): 15752~15756
    60 W. Yang, L. Q. Chen, L. Gary. Computer Simulation of Anisotropic Grain Growth. Mater. Sci. Eng. 1995, (A195): 179~187
    61 D. Fan, L. Q. Chen. Computer Simulation of Grain Growth Using a Continuum Field Model. Acta Mater. 1997, 45: 611~622
    62 D. Fan, L. Q. Chen, S. P. Chen. Effect of Grain Boundary width on Grain Growth in a Diffuse-interface Field Model. Mater. Sci. Eng. 1997, (A238): 78~84
    63 J. Z. Zhu, L. Q. Chen. Computing the Effective Diffusivity Using a Spectral Method. Mater. Sci. Eng. 2001, (A311): 135~141
    64 C. E. Krill III, L. Q. Chen. Computer Simulation of 3-D Grain Growth Using a Phase-field Model. Acta Mater. 2002, 50: 3057~3073
    65 M. K. Venkitachalam, L. Q. Chen, A. G. Khachaturyan, G. L. Messing. A Multiple-component Order Parameter Phase Field Model for Anisotropic Grain Growth. Mater. Sci. Eng. 1997, (A238): 94~100
    66闫牧夫.气体渗碳和稀土渗碳过程的数学模型及计算机模拟.哈尔滨工业大学博士论文. 1993: 69~80
    67徐有容,侯大华. 10Ti钢高温变形流变应力模型及晶粒大小变化.钢铁. 1995, 30(3): 33~38
    68林启权,张辉. 2519铝合金热压缩变形流变应力行为.热加工工艺. 2002, 3: 3~5
    69肖福仁,乔桂英. 86CrMoV7钢动态再结晶行为.钢铁. 2001, 36(11): 55~58
    70武建国,郭会光,刘建生. Mn18Cr18N护环钢热变形特性的试验研究.试验研究. 2004, 3: 1~4
    71鲍如强,黄旭. Ti10V2Fe3Al合金热变形的研究.材料工程. 2003, 12: 3~10
    72王秉新,徐旭东.新型Mn-Cr齿轮钢的动态再结晶行为研究.钢铁. 2004, 39 (9): 54~58
    73 K. R. Elder, Nikolas Provatas, Joel Berry, Peter Stefanovic, Martin Grant. Phase-field Crystal Modeling and Classical Density Functional Theory of Freezing, Pysical Review Letters. 2007,75(064107):415~417
    74黄拿灿.稀土元素在表面工程技术中的应用.金属热处理. 2003, 7(4): 7~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700