水芹和菖蒲对Pb-Cd污染水体的净化与修复试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水体重金属污染日益受到人们的共同关注,这也成为研究国内外水环境污染治理的难题和焦点。对于我国这样一个矿业资源丰富的大国,在矿区进行水体重金属修复是一项新的课题。
     本文针对广西车河选矿厂灰岭尾矿库废水的情况,以筛选适合的净化水体重金属污染的水生植物为试验研究,通过对该地的调查和比较前人的实验,选取水芹和菖蒲作为本次的研究对象。
     从单一的重金属Pb~(2+)、Cd~(2+)与水生植物关系,研究了不同的离子浓度下水生植物的生长状况、水生植物对Pb~(2+)、Cd~(2+)的吸收去除、不同时间下对Pb~(2+)、Cd~(2+)净化效果、水生植物体内重金属Pb~(2+)、Cd~(2+)的积累量以及水生植物生理的状况。实验结果表明,不论水芹或菖蒲,均生长良好,其中菖蒲的去除效果明显于水芹,菖蒲对Pb~(2+)、Cd~(2+)的去除率达到90.4%和87.5%,水芹对Pb~(2+)、Cd~(2+)的去除率达到74.7%和73.3%。
     通过水培实验,研究复合重金属离子对水生植物的生长、积累量以及Pb-Cd交互作用,实验结果表明:对于水芹和菖蒲,Pb-Cd相互作用效应与多种因素有关,包括重金属之间浓度组合、植物种类和植株部位等,表现得极为复杂,不仅仅是单纯的加和、拮抗或协同作用。
     本文通过用离子内扩散方程,Lagergren准一级动力学方程和准二级动力学方程对水芹和菖蒲对重金属的吸附机理进行了研究分析,结果表明:用离子内扩散方程验证发现,水芹和菖蒲对Pb~(2+)、Cd~(2+)的吸附过程是一个多线性吸附过程;吸附在整个过程不完全符合Lagergren准一级动力学模式,只是部分符合。准二级动力学方程进行各种拟合发现,其误差均小于离子内扩散方程和Lagergren准一级动力学的误差。通过误差分析,把分析结果按从大到小的顺序排列:离子内扩散方程>准一级动力学模式>准二级动力学模式。由此可以证实水芹和菖蒲对Pb~(2+)、Cd~(2+)的吸附过程的吸附过程符合准二级动力学方程。
At present, the heavy metal pollution causes the attention by us gradually. This also becomes the difficult problem and focus in studying water environment pollution at home and abroad. As a country being abundant in coal natural resources, it is a new subject by carrying out phytoremediation technology in heavy metal mining areas.
     In this paper, the heavy metal pollution is investigated and assessed in the heavy mining areas of GuangXi province. Plants growth and heavy metal accumulation of accumulating ecotypes of the selected planted were studied by hydroponics experiments. On the basis of preliminary experiment, the effects of oenanthe javaniaca BI. and Acorus calamusL. on single Pb or Cd, and Pb-Cd compound pollution were studied.
     Firstly, to elucidate the characteristics of single Pb or Cd in aquatic plants, a series of chemical, biochemical analytic techniques were used to study the growth, the absorption, the removing efficiency of Pb or Cd, the accumulation and physiological response of the plants. The results show that: both oenanthe javaniaca BI. and Acorus calamusL. could grow well in the solution culture experiment, and the purifying efficiency of Acorus calamusL. was superior to oenanthe javaniaca BI.. The removal rates of Pb, Cd by Acorus calamusL. were 90.4%, 87.5% respectively; and that of Pb, Cd by oenanthe javaniaca BI. were 74.7%, 73.3%.
     Secondly, using the method of aquatic culture, the growing responses, the accumulating charactertics of oenanthe javaniaca BI. and Acorus calamusL. with high tolerance to Pb-Cd compound pollution and the relationship between Pb and Cd reported in the previous study were further investigated. For the two aquatic plants, the interactive effect of Pb and Cd was complicated, not simply additive, antagonist and synergistic, but also related with many factors, including various concentration combinations of heavy metals, plant species and different tissues.
     Thirdly, the study investigates the mechanism of heavy metal ions(Pb~(2+), Cd~(2+)) adsorption of oenanthe javaniaca BI. and Acorus calamusL. was analyzed by the intraparticle diffusion modle, the pseudo-first-order and the pseudo-second-order equations. The results indicate as follow: adsorptions of Pb~(2+), Cd~(2+) onto oenanthe javaniaca BI. and Acorus calamusL. are multi-linear processes including three processes; the calculated Qe values obtained from linear regression of the Lagergren equation is far deviated from the experiment data. In addition, it was observed that the sorption data were well represented by the lagegren modle only for the first process; and comparison of error analysis of the intraparticle model, the pseudo-first-order and pseudo-second-order equations, the result show that the order of deviation was intraparticle diffusion model> the pseudo-first-order >pseudo-second-order. It was confirmed that the pseudo-second-order was the best one in describing the adsorption kinetics of Pb~(2+),Cd~(2+) onto oenanthe javaniaca BI. and Acorus calamusL..
引文
[1]闵茂中,倪培,崔卫东等.环境地质学.南京:南京大学出版社,1994
    [2]王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究.卫生研究,1999,28(1):6-8
    [3]吴攀,刘丛强,杨元根等.矿山环境中(重)金属的释放迁移地球化学及其环境效应.矿物学报,2001,21:213-218
    [4]陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996,25-71
    [5]徐建民,王秀丽.重金属铜、锌、锡、铅复合污染对土壤环境微生物群落的影响.环境科学学报,2003,23(1):22-27
    [6]Prasad B, Bose J M. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 2001, 41: 183-188
    [7]Teixeira E C, Orti L S, Alves M F C C, etal. Distribution of selected heavy metals influvi sediments of the coal mining region of Baixo Jacui, RS, Brazil. Environment Geology, 2001, 41: 145-154
    [8]Dinelli E., Tatco F. Factors controlling heavy-metal dispersion in mining areas: the case of Vigonzano (northern Italy), a Fe-Cu sulfide deposit associated with ophiolitic rocks. Environmental Geology, 2001, 40: 1138-1150
    [9]Clark M W , Walsh S R., Smith J M. The distribution of heavy metals in an abandoned mining area: a case study of Strauss Pit, theDrake mining area, Australia: implications for the environment of sites. Environmental Geology, 2001, 40 (6): 655-663
    [10]GnandiK., Tobschall H J. Heavy metals distribution of soils around mining sites of cadimium -rich marine sedimentary Phosphorites of Kpogam and Hahotoe (southemTogo). Environmental Geology, 2002, 41: 593-60
    [11]Masearol, Benvenuti B, CorslniF., etal. Mine wastes at the polymetallic deposit of Fenice Capanne (southem Thscany, Italy). And environmental impact. Environmental Geology, 2001, 41: 417-42
    [12]Benvenuti M, Mascarol, Corsini F, etal. Mine waste dumps and heavy Pollutionin abandoned mining district of Bocchenggiano (Southern Tuseany, Italy). Environmental Geology, 1997, 30 (3/4): 38-243
    [13]Kratochvil B. SamPling considerations in the elemental analysis of coal. Elemental analysis of coal and its by-products (ad.GVouropolos). World scirntific Publishing of.Pte. Ltd, 1992, 1
    [14]Buddy D E, Smith J N and Winters G V. Accumulation of contaminant metals in marine sediments of Halifax Harbour, Nova Scotia : enviornmental factors and historical trends. Applied Geochenmistry, 1995, 10: 175-179
    [15]郭朝晖,朱永官.典型矿冶周边地区土壤重金属污染及有效性含量.生态环境,2004,13(4):553-555
    [16]束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力研究.环境科学,2001,22(3):113-117
    [17]王宏康.土壤中重金属污染的研究进展.环境化学,1991,10(5):35-41
    [18]余永波.煤矸石堆放对水环境的影响-以山东省一些矸石堆为例.地学前缘,2001,8(1):163-169
    [19]冯启言.充州煤田矸石中的微量有害元素及其土壤环境的影响.中国矿业,2002,11(1):67-69
    [20]刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究.农业环境科学学,2003,22(1):64-66
    [21]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1197-1203
    [22]杨居荣,贺建群,张国祥等.农作物对镉毒害的耐性机理探讨.应用生态学报,1999,6(1)87-91
    [23]郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,1994,2(3):71-76
    [24]符建荣.土壤中铅的积累及污染的农业防治.农业环境保护,1993,12(3):223-225
    [25]杨肖娥,杨明杰.镉从农业土壤向人类食物的迁移.广东微量元素科学,1996,3(7):1-13
    [26]杨柳,李俐,钱龙等.贵阳市售蔬菜中有害元素含量分析.山地农业生物学报,2000,19(3):194-196
    [27]江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92-99
    [28]WenCH (文传浩), ChangXX (常学秀), etal. Study on dynamic change of nucleic acid metabolism of Datura steamonium exposed different heavy metal pollution duration.Agro-Environ protection (农业环境保护),1999, 18 (2): 49-53
    [29]Tomsett A B, Thurman D A. Molecular biology of metal tolerance of plants. Plant Cell Environ, 1998, 11: 383-394
    [30]Baker A J M. Metal tolerance. New phytol, 1987, 106: 93-111
    [31]Meharg A A, Macnair M R. Supperession of the high affinity Phosphate uptake system : mechanism of arsenate tolerance in Holeus lanatus. Exp Bot. 1992, 43: 524-529
    [32]吴燕玉,王新,梁仁禄.重金属复合对土壤-植物系统的生态效应(2):对作物、苜蓿、树木吸收元素的影响.应用生态学报,1997,8:545-552
    [33]杨居荣,贺建群,张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996,6(2):113-117
    [34]Kupper J, Zhao F J, Mcgrath S P. Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 1999, 119: 305-311
    [35]Salt D E, Prince R C, Piekering I J, etal. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol, 1995, 109: 1427-1433
    [36]Costa G, Morel J L. Cadmium uptake by LuPinus albus L:Cadmium excretion, a possible mechanism of cadmium tolerance. Plant Nutr, 1993, 16 (10): 1921-1929
    [37]Niles D H, Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium zine and cobalt in Alealigenes eutroPhus.. Bacteriol, 1989, 171: 896-900
    [38]Saneenon, VPuig S, Mira H, etal. Identification of a copper transporter family in Arabldopsis thalinaa. Plnat MoLBoil, 2003, 51: 577-587
    [39]Keltjens W G, vanBeusiehem M L. Phytochelatins as biomarkers for heavy metal toxieity in maize: single metal effects of copper and camium. Plant Nutr, 1998, 21: 635-648
    [40]Cobbett C S. Phytochelatin biosynthesis and function in heavy metal detoxification. Current Opinion in Plant Biology, 2000, 3: 211-216
    [41]秦天才,吴玉树,王焕校等.镉、锌及其相互作用对小白菜生理生化特性的影响.生态学报,1994,14(1):46-50
    [42]Kavi Kishor P B, Hong Z L, Miao G H, etal. Overesperssion ofl-pyrroline-5-carboxylate sythetase incrases Praline production and confers osmotolerance in transgenic plants. Plant Physoil, 1995, 108: 1387-1394
    [43]胡韧,林秋奇,张小兰.Cr~(3-)、Cr~(6-)及其复合污染对狐尾藻的毒害作用.生态科学,2003,22(4):327-331
    [44]Nishizono H. Therole of the root cell wall in the heavy metal tolerance of Athyrium Yokoscense. Plant and soil, 1987, 101: 15-20
    [45]Dunbabin J S, Bowmer K H. Potential use of constructed wetland for treatment of industrial waste waters containing metals. SciTital Environ, 1992, 111: 151-168
    [46]Zaman M S , Zereen F. Growth responses of radish plants to soil cadmium and lead contamination. Bull Environ Contan Toxicol, 1998, 61: 44-55
    [47] 沈振国,刘友良.重金属超量积累植物研究进展.植物生理学通讯,1998,34(2):133-139
    [48] Reeves R D, Brooks R R. Hyperaccumulaition of lead and zine by two metallophytes from mining areas of Ceniral EuroPe. EnvirormPollut SerA, 1983, 31: 277-285
    [49] Alekseeva-Popova N V. Toxie Effect of Lead on Higher plants, Ustoichivost ktyazhelym metallam dikorastushchik vidov (Tolerance of Plant Species Grown in the Wild to Heavy Metals) Ed. Leningrad: Lenuprizdat, 1991, 99, 92-100
    [50] Salt D E, Blayloek M, Kumar N P B A, etal. Phytoremediation: A novel strategy for the removel of toxicmetals from the environment using Plants. Biotechnology, 1995, 13: 468-474
    [51] Sanita di ToppiL and Gabbrielli R. Response to cadmium in higher Plants. Environ.ExP.Bot, 1999, 41: 105-130
    [52] Morel J L, Mench M, and Guekert A. Measurement of Pb, Cround Cd Binding with Mucilage Exudates from Maize (ZeamaysL.) Roots.. Biol.Fertil.Soils, 1986, 2: 29-34
    [53] 徐勤松,施国新,周耀明等.镉在黑藻叶细胞中的亚显微定位及毒害效应分析.实验生物学报,2004,37(6):461-465
    [54] 曲仲湘,吴玉树等.植物生态学(第2版).北京:高等教育出版社,1983,81:84
    [55] Thomine S, LelieAver F, Debarbieux Eetal. A multispecidic vacualar metal transpotrter involved in plant response to iron deficiency. Plant J, 2003, 34: 685-695
    [56] Nishizono H. Therole of the root cell wall in the heavy metal tolerance of Athyrium Yokoscense. Plant and soil, 1987, 101: 15-20
    [57] Brooks R.R., Shaw S.and MarfilA.A.. The chemieal form and Physiological function of nickel in some berian Alyssum species. Physiologia Plantarum, 1981, 51: 167-170
    [58] Kupper J, Zhao F J, McgrathS P. Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 1999, 119: 305-311
    [59] Kupper H, Lombi E, Zhao F J, etal.. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212: 75-84
    [60] Lasat M M., Baker A J. M and Kochian L V. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation inThlasPi. Plant Physiotogy, 1998a, 118: 875-883
    [61] Kramer U, Cotter-Howells J D, Chanloek J M, etal. Free histidine as a metal chelator in Plants that accumulate nickel. Nature, 1996, 37: 635-638
    [62] Lee J, Reeves R.D., Brooks R.R, etal. Isolation and identification of a citrate-complex of niekel from nockel-accumulating Plants. Phytochemistry, 1977, 16: 1503-1505
    [63] Salt D E, prince R C, Baker A J M, etal. Zine ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ Sci Technol, 1999, 33: 713-717
    [64] Mathys W. The role of malate, oxalte, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum, 1977, 40:130-136
    [65] Bovet L, Eggmann T, Meylan-Bettex M, etal. Transcript levels of AtMRPs after cadimium treatment : induction of AtMRP3. Plant Cell Environ, 2003, 26: 371-381
    [66] ZhuY L, Pilon-Smits E A H, Jouanin L, etal. Over expression of glutathione synthetase in Indian Mustard enhances cadmium accumulation and tolerance. Plant Physiol. 1999, 119: 73-79
    [67] Gupta M, etal. Role of glutathionce and phytochelatin in Hydrilla vertieillata (l.f.) Royle and Vallisneria spiralis L. Undre mercury stress. Chemosphere, 1998, 37(4): 785-800
    [68] 种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究.环境污染治理技术与设备, 2003,4(2):36-40
    [69]黄永杰,刘登义,王友保等.八种水生植物对重金属富集能力的比较研究.生态学杂志,2006,25(5):541-545
    [70]Ye Z H , Whiting S and Lin Z Q, etal. Removal and distribution of iron, manganese, cobalt, and nickel with a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal of Environmental quality, 2001, 30: 1464-1473
    [71]陈金霞,徐烨,张小莉.生物修复技术在污染治理中的应用.上海化工,2000,9:4-7
    [72]刘淑嫒,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究.北京大学学报,1999,35(4):1-5
    [73]马立珊,骆永明,吴文华等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究.土壤,2000,(2):99-101
    [74]王忠全,温琰茂,黄兆霆等.几种植物处理含重金属废水的适应性研究.生态环境,2005,14(4):540-544
    [75]成小英,王国祥,濮培民等.冬季富营养化湖泊中水生植物的恢复及净化作用.湖泊科学,2002,14(2):139-144
    [76]阮宜纶,林荣忱,张建国.地热水对环境影响及污染防治(二).中国给水排水,1994,10(6):12-16
    [77]王玉兵.广西湿地水生维管束植物区系研究.热带亚热带植物学报,2008,(16)3:255-265
    [78]高吉喜,叶春,杜娟等.水生植物对面源污水净化效率研究.中国环境科学,1997,17(3):247-25
    [79]成水平,况琪军,夏宜.香蒲、灯芯草人工湿地的研究(1):净化污水的效果.湖泊科学,1997,9(4):351-358
    [80]朱彤,许振成,胡康萍等.人工湿地污水处理系统应用研究.环境科学研究,1991,4(5):17-22
    [81]皮宇,陈志强,戴全裕.水芹菜对含银废水的净化功能.城市环境与城市生态,1991,4(1):15-20
    [82]戴全裕,蔡述伟,张秀英.水芹菜对黄金废水的净化与富集作用研究.应用生态学报,1998,9(1):107-109
    [83]黄田,周振兴,张劲等.富营养化水体的水芹菜浮床栽培试验.污染防治技术,2007,20(3):17-19
    [84]仇硕,黄苏珍,王鸿燕.Cd胁迫对黄菖蒲幼苗4种抗氧化酶活性的影响.植物资源与环境学报,2008,17(1):28-32
    [85]孙延东.Cd-Cu复合胁迫对黄菖蒲叶片及根系中Cd和Cu的积累及其迁移率的影响.植物资源与环境学报,2009,18(1):22-27
    [86]吴建强,阮晓红,王雪.人工湿地中水生植物的作用和选择.水资源保护,2005,2(11):1-6
    [87]夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究.生态学报,2001,21(7):1121-1129
    [88]罗亚平,李明顺,张学洪等.广西荔浦锰矿区优势植物重金属累积特征.广西师范大学学报(自然科学版),2005,23(4):89-93
    [89]达良俊,陈鸣.凤眼莲不同部位对重金属的吸收、吸附作用研究.上海环境科学,2003,22(11):765-767
    [90]陈明利.人工湿地植物处理重金属生活废水的实验研究.环境科学与技术,2008,31(12),164-168
    [91]何念祖,孟赐福.植物营养原理.上海:上海科技出版社,1987
    [92]韩志萍,张建梅,姜叶琴等.植物整治技术在重金属废水处理中的应用.环境科学与技术,2002, 25(3):46-50
    [93] Alberte RS. Thomber.Fiscus EL. Water sress effects on the content and chlorophyll in Mesophyll and budle sheach chlorlplasts of maize. Plant Physiol, 1997, 59: 351-353
    [94] 周卫红,施新国,杜开合等.Cd~(2+)污染对水花生生理生化及超微结构的影响.应用生态学报,2003,14(9):1581-1584
    [95] 魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析.应用生态学报,2003,14(1):143-147
    [96] Stolts E, .Greger M. Accumulation properties of As ,Cd,Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 2002, 47: 271-280
    [97] Zurayk R, .Sukkariyah B, Baalbaki R. Common hydrophytes as bioindicaters of nickel chromium and cadmium pollution. Water, Air, and Soil Polution, 2001, 127: 373-388
    [98] 原海燕.鸢尾属(Iris L.)4种植物镉(Cd)积累、耐性机理及影响因子研究.南京: 南京农业大学,2006
    [99] Weltje L. Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: acriticalevaluation of data . Chemosphere, 1998, 36(12): 2643-2660
    [100] 周启星.复合污染生态学.北京:中国环境科学出版社,1995,162-178
    [101] 周启星,程云,张倩茹等.复合污染生态毒理效应的定量关系分析.中国科学(C辑),2003,33(6):566-572
    [102] 王友保,刘登义,张莉等.铜、砷及其复合污染对黄豆(Glycine max)影响的初步研究.应用生态学报,2001,12(1):117-120
    [103] Keskinkan O, Goksu MZL, Basibuyuk M, etal. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllumspicatum). Process biochemistry, 2003, 39: 179-183
    [104] Keskinkan O, Goksu MZL, Basibuyuk M, etal. Heavy metal adsorption characteristics of a submerged aquatic plant (Ceratophyllumdemersum). Process biochemistry, 2004, 92: 197-200
    [105] Fernandez N, Chacin C, Garcia C, etal. The use of seeds pods from Albizia Lebbek for the removal of alkyl benzene sulphonates from aqueous solution. Process biochemistry, 1996, 31: 383-387
    [106] Gupta G S, Shukla S P, Prasad G , etal. China clay as an adsorbent for dye house wastewater. Environ Technol., 1992, 13: 926-936
    [107] Ho Y S, Wase D A J, Foster C F. Kinetie studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol, 1996, 17: 71-77
    [108] Kandah M. Zinc adsorption from aqueous solutions using disposal sheep manure waste (SWM). Chem Eng J, 2001, 84: 543-549
    [109] McKay G, Otteburm M S, Sweeney A G. The removal of colour from effluent using various adsorbents-Ⅲ silica rate Process. Water Res, 1980, 14: 15-20
    [110] Gregorio Crini. Hannel Ndongo Peindy, Frederic Gimbert. Capucine Robert Removal of C.I. Bascic Green (Malachite Green) from aqucous solution by adsoption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep.puri.Technol ,in press.
    [111] Foster C F, Mehrotra I, Alibhai KRK.. The multiple binding of heavy metals by digested sludge. Chem Techol Biotechnol, 1985, 35B: 145-154
    [112] Ho Y S, Huang C T, Huang, H W. Equilibrium sorption isotherm for metal ions on tree fern. Process biochemistry, 2002, 37: 1421-1430
    [113] Ho Y S. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scieniometries, 2004 (59), 171- 177
    [114] Ho Y S., McKay G. A comparison of chemisorption kinetic. Models applied to pollutant removal on various sorbents. Trans IChemE, 1998b, 76, 332-340
    [115] Ho Y S, MeKay G. A kinetic study of dye sorption by biosorbent waste product pith. Resource Conserv Recycling, 1999, 25 (3-4): 171-193
    [116] Benquella B, Benaissa H. Cadmium removal from aqueous solution by chitim kinetic and equilibriumm studies. Water Res., 2002, 36: 2463-2474
    [117] Cheng C W, Porter C F, MeKay G.. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol, 1997, 19: 55-64
    [118] Ho Y S, MeKay G.. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Trans. IChemE, 1998, 76:: 183-191
    [119] Kaewsarn P. Biosorption of copper (Ⅱ) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemospere, 2002, 47: 1081-1085
    [120] LacherC, Smith RW. Sorption of Hg (Ⅱ) by Potomogenten Natans dead biomass. MinEng., 2002, 15: 187-191
    [121] Fang C B (方从兵), Sun Q B (孙其宝), Sun J (孙俊). Studies on potassium and phosphate uptake Kinetics of peach (桃K~+、H_2PO_4~- 吸收动力学研究). Quarterly of Forest By-Product and Speciality in China.2001, 3: 4-6
    [122] SAYGIDEGE R S, GULNA Z O, ISTIFLI E S. Adsorption of Cd (Ⅱ) , Cu (Ⅱ) , Ni (Ⅱ) ions by Lemnaminor L: effect of physicochemical environment. Hazard Mater, 2005, B126: 96-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700