小分子在模型催化剂表面的吸附与反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管存在着“物质鸿沟”和“压力鸿沟”,在超高真空体系中原位制备结构规整的模型催化剂,并相应开展表面化学研究,为微观角度上了解实际多相催化体系提供了重要的研究手段。在本论文中,我们从金属单晶、薄膜氧化物到金属单晶担载的金属氧化物倒载模型催化剂三个不同层次的模型催化剂出发,分别选择Co(0001).FeO(111)/Pt(111)单层薄膜及FeO(111)/Pt(111)单层岛屿倒载模型催化剂三个研究体系,系统研究CP、H2、H2O等小分子在其表而的吸附与反应,取得如下研究结果:
     (1)研究了在清洁的Co(0001)模型表面上CO和H2的共吸附:CO(a)和H(a)之间存在较强的排斥作用。CO的吸附完全可以阻止H2的吸附,而H2的吸附虽然不能完全阻止CO的吸附,但可以在一定程度上改变其吸附行为。Co(0001)表面预覆盖不同种类的碳物种对H2和CO的吸附行为有着显著的影响。在原子碳覆盖的表面,CO吸附可以诱导其扩散至体相,而脱附以后又可逆的扩散至表面。H:则在表面解离后与原子碳直接反应生成CH。而表面预吸附的石墨烯物种对CO和H2的吸附的影响主要归结为位阻效应。(2)考察了H20在Co(0001)模型表面的吸附行为:在低温下,H20主要以分子形式吸附。而在室温下,H2O则解离成H和O,并氧化Co(0001)表面;Co(0001)表面氧物种的存在对H2O的吸附有很大影响,在0.45ML O(a)覆盖的Co(0001)表面,在130K时H2O的吸附发生2H20(a)+O(a)→-3OH(a)+H(a)表面反应,形成OH(a)+H(a)的共吸附层,但在对Co(0001)表面进行氧化生成CoO表面后,即使在室温H2O也以分子形式吸附。
     (3)研究了Co(0001)表面C2H4和C2H2的吸附和分解:低温下,C2H4在干净的Co(0001)表面的吸附与反应行为受到表面空位浓度的控制。在低覆盖度下,C2H4解离成C2H2和H,随着表面覆盖度的增加,C2H4分子吸附在表面。表面预覆盖碳可以抑制C2H4的解离从而使得C2H4发生分子吸附。表面预吸附O原子对C2H4的吸附也主要是位阻效应,O的存在改变了C2H4的吸附位置。另外,在C2H4解离的过程中,O可以与其中间体发生反应。在Co(0001)表面,相对于C2H4的吸附,C2H2的吸附与反应行为受表面覆盖度和温度的影响更加明显。在130K,C2H2在表面以分子形式吸附,升温过程中既可以直接脱H形成C2,也可以聚合形成碳环以后脱H形成石墨化碳,对这两种反应通道的选择性依赖于表面覆盖度。较高的初始覆盖度有利于生成石墨化碳的反应通道。通过C2H4不同温度下的吸附可以在Co(0001)表面制备不同种类的碳物种(如碳原子C1,双原子簇C2以及石墨烯),研究了C1,C2转化为石墨化碳的动力学和热力学,计算了其反应活化能和反应焓,发现虽然C1与C2转化为石墨烯的反应焓比较接近,但它们的反应活化能却相差较大。这些结果与目前有关石墨烯生长机理的理论计算结果基本一致,在实验上为理论计算提供了重要的参考。
     (4)考察了原子氢(氘)和H2O(D2O)与不同还原程度的FeO(111)/Pt(111)单层薄膜模型表面的相互作用:原子D与表面O可以生成表面羟基OD(a),在剂量比的FeO(111)单层薄膜表面,OD(a)倾向于生成D2O进而在表面产生O缺陷(OD(a)+OD(a)→D2O(g)+OL+Ov);随着O缺陷浓度的增加,生成D20的通道受到抑制,在FeO0.67的表面,OD(a)选择性地生成D2(OD(a)+OD(a)→D2(g)+2OL).这些结果揭示了O缺陷控制表面羟基反应性能的新概念:即O缺陷的浓度控制羟基生成D2O和D2的反应选择性。低温下,剂量比的FeO/Pt(111)单层薄膜表面上,D2O的吸附是可逆的。当表面存在O缺陷时,D2O部分解离在O缺陷位生成OD(a),部分以分子形式吸附在O缺陷位。吸附在缺陷位上的D2O可以在加热过程中解离。很有趣的是,我们在实验中,发现一个低温产生氢气的通道(反应温度<200K),我们推测其可能来自于O缺陷和氢键等共同作用,即吸附在缺陷位上的D2O可能由于与其他吸附的D2O分子形成氢键而发生解离(D2O(a)+Ov→OD(a)+D),解离产生的D原子进入水层中,在分子水脱附时以D2形式脱附。此外还考察了HCOOH在FeO(111)/Pt(111)单层薄膜模型表面上的吸附。在剂量比的FeO表面,HCOOH可以与表面O发生反应最终还原FeO。另外,在O缺陷的表面,HCOOH更加容易解离,并且HCOO-可以稳定存在很高的温度(>500K), HCOO在与表面O共同作用下解离主要生成CO2, CO和H2。
     (5)研究了FeO(111)/Pt(111)单层岛屿反转模型催化剂表面的吸附和反应行为。在表面暴露原子D,除了空白Pt(111)表面上的D并合脱附和上面提到的FeO表面上OD的反应脱附,而在Pt-FeO界面处,实验中观察到新的反应通道,即Pt上吸附的D原子与FeO表面上的OD发生反应(D(a)+OD(a)→D20)。与Pt(111)和完整的FeO表面上的分子吸附不同,在Pt-FeO界面处,由于暴露有配为不饱和Fe2+,D2O可以发生解离,生成OD。在界面处,我们同样首次在实验中观察到,加热过程中在Pt(111)表而吸附的CO可以和FeO表面吸附的OD发生界面反应生成CO2,该反应性能也受到FeO表面O缺陷的控制。在剂量比的FeO表面,OD与OD更容易反应生成D2O。表面O缺陷的存在抑制了OD生成D2O的反应,从而有利于上述CO-OD的界面反应的发生。这些结果不仅为Pt/氧化物催化剂界面处CO与OD的界面低温氧化反应提供了直接的证据,而且表明具有一定O缺陷的FeO单层结构是该反应的可能活性结构。
     总之,在超高真空体系原位制备不同结构层次的模型催化剂,并考察小分子在模型催化剂表面上的吸附与反应行为,一方面能够在原子分子层次理解固体表面组成和结构对其吸附与反应性能的影响;另一方面通过与实际催化反应相关联,加深了我们对与这些模型催化剂相关的包括费托合成,水汽变换和富氢条件下CO氧化等实际催化反应体系的基础理解。
Despite the existence of so call "materials gap" and "pressure gap", surface science studies of well-defined model surfaces prepared in-situ in ultra-high vacuum (UHV) conditions have been proved to be a useful approach for the fundamental understaning of real catalytic systems at a microscopic level. In this thesis, Co (0001), FeO(111) mono layer film grown on Pt (111) and inverse FeO(111)/Pt(111) model catalysts have been fabricated and their interaction with small molecules such as CO, H2and H2O have been systematically investigated. The main results are summarized in the following:
     (1) Coadsorption of CO and H2on Co(0001) has been investigated:there exists strong repulse interaction between CO(a) and H(a) on clean Co (0001) surface. The pre-adsorption of CO largely suppresses the adsorption of H2while the pre-adsorption of H2does not suppress the CO adsorption much but changes its adsorption behavior to a certain extent. The presence of various types of carbon species significantly influences the adsorption behavior of CO and H2. On atomic carbon-covered Co(0001), atomic carbon diffuses into the bulk upon CO adsorption and diffuses back to the surface after CO desorption. The formation of CH(a) was observed after H2adsorption at130K. On graphitic carbon-covered Co(0001), only the site-blocking effect exists for the adsorption of CO and H2.
     (2) The adsorption and reaction of water on Co(0001) surface have been investigated:H2O molecularly adsorb on Co(0001) at130K, forming an intact, non-wetting and3-dimensional layer on Co(0001) that desorbs molecularly upon heating. At300K, H2O adsorbs dissociatively on Co(0001), forming O(a) and H(a). Upon heating, H(a) forms H2desorbing from the surface whereas O(a) remains on the surface. The presence and nature of oxygen species on Co(0001) exert great influences on its reactivity towards H2O. On0.45ML O(a)-covered Co(0001), H2O adsorption forms a mixture layer of OH(a) and H(a) via the reaction of2H2O(a)+O(a)→3OH(a)+H(a) at130K. However, on oxide-like Co(0001) surface, H2O only molecularly adsorbs even at RT.
     (3) The adsorption and reaction of C2H4and C2H2on Co(0001) surface have been studied:At low temperature, the adsorption and reaction of C2H4on clean Co (0001) surface are controlled by the available free surface sites. C2H4dehydrogenate to C2H2(a) and H(a) at low coverage, and molecularly adsorb with the increasing of the surface coverage. The presence of atomic carbon on Co(0001) suppresses the dissociation of C2H4due to site-blocking effect. Pre-covered O(a) exerts the similar site-blocking effect on C2H4adsorption but further affects the C2H4adsorption site. During heating, O(a) coan interact with the surface intermediate produced formed by C2H4(a) decomposition. The adsorption and reaction of C2H2on Co (0001) surface is also controlled by the surface coverage and temperature. At130K. C2H2molecularly adsorbs on the surface. During heating, C2H2(a) undergoes two competing reaction pathways eventually to form carbon deposite:one is the direct dehydrogenation into C2clusters and the other is the polymerization of C2H2(a) into surface intermediate with a likely ring structure followed by further dehydrogenation into graphic carbon. The reaction pathway to graphic carbon is preferred at higher C2H2(a) surface coverage. Three different carbon species, atomic carbon(C1), C2carbon clusters and graphic carbon, have been prepared on Co (0001) by C2H4adsorption at different surface temperatures. The apparent reaction activation energy and reaction enthalpy for the formation of graphic carbon from C1and C2have been successfully determined. The activation energies of the C1-to-graphic carbon and C2-to-graphic carbon transformations vary much but the reaction enthalpies are similar, agreeing with the predicted results by theoritical calculations.
     (4) The interaction and reaction of atomic hydrogen (Deuterium) and H2O(D2O) on FeO(111)/Pt(111) monolayer films with different concentrations of oxygen vacancies have been investigated:surface hydroxyls (OH(a)) readily form on inert FeO(111) by the reaction of between H(g) and lattice oxygen (OL). On the stoichiometric FeO(111) monolayer film, OH(a) selectively reacts to form H2O, creating one oxygen vacancies (Ov) on the surface (OH(a)+OH(a)→H2O(g)+Ov+OL). With the increasing concentration of the oxygen vacancy concentration in the FeO(111) monolayer film, the above reaction pathway of OH(a) to form H2O get gradually suppressed while the reaction pathway of OH(a) to form H2(OD(a)+OD(a)→D2(g)+2OL) appears; on the FeOo67(111) monolayer film, OH(a) selectively form H2. These results reveal a novel concept of oxygen vacancy-controlled reactivity of surface hydroxyls in which the thermodynamically favorable reactions switches from reactions to form H2O and oxygen vacancies on the stoichiometric metal oxide surface to those to form H2on the partially-reduced metal oxide surface with an appropriate amount of oxygen vacancies. On the stoichiometric FeO surface, H2O molecular adsorption at130K is revisible. When the surface is with oxygen vacancies, for example, on FeOo67surface, H2O both dissociates on the O vacancies to form OH(a) and and molecularly adsorbs on the oxygen vacancies. Upon heating, part of H2O(a) on the oxygen vacancies dissociates to OD(a) and others desorbs molecularly. We observed an interesting novel H2production channel at low temperature (<200K) accompanying molecular H2O desorption. This might be ascribed to interplay between oxygen vacancies and hydrogen bond within adsorbed layer. The Ov-adsorbed HoO(a) can undergo dissociation reaction induced by the formation of hydrogen bond with co-adsorbed H2O(a), in which the formed H(a) might enter the H2O(a) layer and desorb simultaneously with the H2O(a) layer. In addition, We have also studied the adsorption and reaction of HCOOH on FeO(111) monolayer film. On the stoichiometric FeO(111) monolayer film, HCOOH decomposes and partially reduces the surface. In the presence of O vacancies, HCOOH dissociates more easily on the oxygen-vacancy sites and the formed HCOO(a) remains stable even above500K and then eventually decomposes into CO2, CO and H2at higher temperature.
     (5) The chemisorption and surface reactivity of FeOx(111)/Pt(111) inverse model catalysts with various surface coverages of FeOx(111) monolayer islands have been studied:Hydroxyls were produced on FeOx(111) monolayer islands employing atomic hydrogen and were found to be capable of oxidizing CO(a) on Pt(111) to produce CO2between RT and400K, and their reactivity are also controlled by the oxygen vacancy concentration in FeOx(111) monolayer islands. Hydroxyls on FeO058(111) monolayer islands with the highest oxygen vacancy concentration undergoes reactions to produce D2and CO2whereas hydroxyls on stoichiometric FeO(111) monolayer islands undergoes reactions to produce D2and D2O. Such an oxygen vacancy-controlled reactivity of hydroxyls on FeOx(111) monolayer islands can be attributed to the fact that the reaction pathway of OH(a) to produce H2O thermodynamically gets suppressed with the increase of oxygen vacancy concentration, thus opening other hydroxyls-involved reaction pathways. The interfacial oxidation of CO(a) by OH(a) to produce CO2at FeOx(111)-Pt(111) interface is not supressed by either excess CO(a) or excess H(a) on FeOx(111)/Pt(111) inverse model catalyst surface. These results not only provide solid experimental evidence for the low temperature interfacial oxidation of CO with hydroxyls at Pt-oxide interface but also demonstrate that FeO(111) monolayer islands with certain amount of oxygen vacancies are the active structure for such an elementary reaction.
     In summary, by studying the adsorption and reaction of small molecules on model catalyst surfaces, on one hand, we have unambiguously understood the influence of surface composition and structure of these surfaces on their chemisorption and surface reactivity at a molecular level; on the other hand, the fundamental understanding of revelant real catalytic reactions including Fischer-Tropsch synthesis, water gas shift reaction(WGS) and preferential oxidation of CO in H2-rich gases (PROX) has also been deepened.
引文
1 Y. L. Gabor A. Somorjai, Introduction to Surface Chemistry and Catalysis,2nd Edition John Wiley. and Sons,2010, p.800.
    2 S. John H, Role of surface science in catalysis Surface Science 2002,500 (1-3):p. 923-946.
    3 D. M. Collins,W. E. Spicer, The adsorption of CO, O2. and H2 on Pt:1. Thermal desorption spectroscopy studies Surface Science 1977,69 (1):p.85-113.
    4 G. D. Freund Hj, Ultrathin oxide films, in Handbook of Heterogeneous Catalysis Wiley-VCH Verlag GmbH & Co. KgaA 2008,3 p.30.
    5 M. S. Chen,D. W. Goodman, Ultrathin, ordered oxide films on metal surfaces Journal of Physics:Condensed Matter 2008,20 (26):p.264013.
    6 H.-J. Freund,G. Pacchioni, Oxide ultra-thin films on metals:new materials for the design of supported metal catalysts Chemical Society Reviews 2008,37 (10):p.
    7 M. Chen,D. W. Goodman, Catalytically active gold on ordered titania supports Chemical Society Reviews 2008,37 (9):p.
    8 F. Hans-Joachim, Clusters and islands on oxides:from catalysis via electronics and magnetism to optics Surface Science 2002,500 (1-3):p.271-299.
    9 Q. Fu,W.-X. Li,Y. Yao et al., Interface-Confined Ferrous Centers for Catalytic Oxidation Science 2010,328 (5982):p.1141-1144.
    10 J. A. Rodriguez,S. Ma,P. Liu et al., Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction Science 2007,318 (5857):p.1757-1760.
    11 K. Christmann, Interaction of hydrogen with solid surfaces Surface Science Reports 1988,9 (1-3):p.1-163.
    12 C. Z. Zheng,C. K. Yeung,M. M. T. Loy et al., Quantum diffusion of H on Pt(111):Step effects Physical Review Letters 2006,97 (16):p.-
    13 B. Lang,R. W. Joyner,G. A. Somorjai, Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum Surface Science 1972,30 (2):p.454-474.
    14 J. M. Vohs,M. A. Barteau, Valence band spectra of acetylenic moieties on zinc oxide: acetylide versus propargyl formation The Journal of Physical Chemistry 1990,94 (2):p. 882-885.
    15 D. J.E, Chemisorption of C2H2 on Pd(111) and Pt(111):formation of a thermally activated olefinic surface complex Chemical Physics Letters 1977,45 (1):p.12-17.
    16 K. Christmann, Adsorption of hydrogen on a Pt(111) surface Surf. Sci.1976,54 p.28.
    17 P. Van Helden,I. M. Ciobica, A DFT Study of Carbon in the Subsurface Layer of Cobalt Surfaces Chemphyschem 2011,12 (16):p.2925-2928.
    18 N. O. Lipari,C. B. Duke, The electronic structure of polyacenes:Naphthalene through pentacene The Journal of Chemical Physics 1975,63 (5):p.1768-1774.
    19 J. Nakamura,K.-I. Tanaka,I. Toyoshima, Reactivity of deposited carbon on Co Al2O3 catalyst Journal of Catalysis 1987,108 (1):p.55-62.
    20 N. A. Vinogradov,K. Schulte,M. L. Ng et al., Impact of Atomic Oxygen on the Structure ofGraphene Formed on Ir(111) and Pt(111) The Journal of Physical Chemistry C 2011,115(19): p.9568-9577.
    21 C. B. Duke, Surface science 1964--2003 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2003,21 (5):p. S34-S35.
    22 G. A. Somorjai, Modern Surface Science and Surface Technologies:An Introduction Chemical Reviews 1996,96 (4):p.1223-1236.
    23 G. Ketteler,W. Weiss,W. Ranke et al., Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure Physical Chemistry Chemical Physics 2001,3 (6): p.1114-1122.
    24 J. Rodriguez,D. Wayne Goodman, High-pressure catalytic reactions over single-crystal metal surfaces Surface Science Reports 1991,14 (1-2):p.1-107.
    25 Y.-P. Hsu,K. Jacobi,H. H. Rotermund, Adsorption of N2,CO and O2 on Ni(110) at 20 K Surface Science 1982,117 (1-3):p.581-589.
    26 A. E. Nelson,K. H. Schulz, High pressure reaction cell and transfer mechanism for ultrahigh vacuum spectroscopic chambers Review of Scientific Instruments 2000,71 (6):p. 2471-2475.
    27 M. J. Mcallister,J.-L. Li,D. H. Adamson et al., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite Chemistry of Materials 2007,19 (18):p. 4396-4404.
    28 G. R. Castro,J. Kuppers, Interaction of oxygen with hcp (0001) recrystallized cobalt surfaces Surface Science 1982,123 (2-3):p.456-470.
    29 M. E. Bridge,R. M. Lambert, Oxygen chemisorption, surface oxidation, and the oxidation of carbon monoxide on cobalt (0001) Surface Science 1979,82 (2):p.413-424.
    30 P. R. Norton,R. L. Tapping,J. W. Goodale, A photoemission study of the interaction of Ni(100), (110) and (111) surfaces with oxygen Surface Science 1977,65 (1):p.13-36.
    31 H. C. Galloway,P. Sautet,M. Salmeron, Structure and contrast in scanning tunneling microscopy of oxides:FeO monolayer on Pt(111) Physical Review B 1996,54 (16):p. R11145-R11148.
    32 J. Benziger,R. J. Madix, The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100) Surface Science 1980,94 (1):p.119-153.
    33 T. Schedel-Niedrig,W. Weiss,R. Schlogl, Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111) Physical Review B 1995,52 (24):p.17449-17460.
    34 T. J. Chuang,C. R. Brundle,D. W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces Surface Science 1976,59 (2):p.413-429.
    35 R. D. Diehl,R. Mcgrath, Current progress in understanding alkali metal adsorption on metal surfaces Journal of Physics:Condensed Matter 1997,9 (5):p.951.
    36 T. Aruga,Y. Murata, Alkali-metal adsorption on metals Progress in Surface Science 1989,31 (1-2):p.61-130.
    37 R. D. Diehl,R. Mcgrath, Structural studies of alkali metal adsorption and coadsorption on metal surfaces Surface Science Reports 1996,23 (2-5):p.43-171.
    38 G. Broden,G. Gafner,H. P. Bonzel, Co adsorption on potassium promoted Fe(110) Surface Science 1979,84 (2):p.295-314.
    39 L. J. Whitman,W. Ho, The effects of surface geometry and island formation on alkali-promoted surfaces:The coadsorption of CO and K on Ni(110) The Journal of Chemical Physics 1985,83 (9):p.4808-4816.
    40 J. Lahtinen,J. Vaari,T. Vaara et al., LEED investigations on Co(0001):the clean surface and the (2?)-K overlayer Surface Science 1999,425 (1):p.90-100.
    41 M. Kiskinova, Interactions of CO and sodium coadsorbed on Ru(1010) Surface Science 1987,182 (1-2):p.150-160.
    42 H. Marbach,S. Gunther,B. LuerBen et al., Selforganization of Alkali Metal on a Catalytic Metal Surface Catalysis Letters 2002,83 (3):p.161-164.
    43 V. Pitchon,M. Guenin,H. Praliaud*, X-ray photoelectron spectroscopic study of the electronic state of palladium in alkali metal doped Pd/SiO2 solids Applied Catalysis 1990,63 (1): p.333-343.
    44 M. Kiskinova,G. Pirug,H. P. Bonzel, Coadsorption of potassium and CO on Pt(111) Surface Science 1983,133 (2-3):p.321-343.
    45 A. Cassuto,M. Mane,M. Hugenschmidt et al., The effect of K, Cs and O atoms on ethylene adsorption on the Pt(111) surface Surface Science 1990,237 (1-3):p.63-71.
    46 J. E. Crowell,E. L. Garfunkel,G. A. Somorjai, The coadsorption of potassium andco on the pt(111) crystal surface:A TDS, HREELS and UPS study Surface Science 1982,121 (2):p. 303-320.
    47 H. P. Bonzel,R. Ku, On the kinetics of oxygen adsorption on a Pt(111) surface Surface Science 1973,40 (1):p.85-101.
    48 M. P. Kiskinova, CO adsorption on alkali-metal covered Ni(100) Surface Science 1981, 111 (3):p.584-594.
    49 G. Ertl,S. B. Lee,M. Weiss, Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces Surface Science 1982,114 (2-3):p.527-545.
    50 G. Ertl,S. B. Lee,M. Weiss, Kinetics of nitrogen adsorption on Fe(111) Surface Science 1982,114 (2-3):p.515-526.
    51 W. T. Tysoe,R. M. Lambert, Structure and reactivity at the halogen/metal interface: Chemisorption, corrosion and reaction pathways in the Pd(111) C12 system Surface Science 1988,199(1-2):p.1-12.
    52 N. J. Gudde,R. M. Lambert, Surface chemistry of the halogen-metal interface:The interaction of chlorine with ruthenium (100) Surface Science 1983,134 (3):p.703-712.
    53 K. Swamy,P. Hanesch,P. Sandl et al., Halogen-metal interaction:bromine on Pt(110) Surface Science 2000,466 (1-3):p.11-29.
    54 H. Nichols,R. M. Hexter, Vibrational frequencies of halogen atoms adsorbed on silver metal surfaces The Journal of Chemical Physics 1981,74 (3):p.2059-2063.
    55 A. P. C. Reed,R. M. Lambert,J. S. Foord, Chemisorption and corrosion at the metal-halogen interface:Overlayer growth and compound formation by bromine on Cr(I00) Surface Science 1983,134 (3):p.689-702.
    56 F. Cunha,E. Sa,F. Nart, In situ STM study of the adsorption of halogen derivatives of uracil on Au(111) Surface Science 2001,480 (1-2):p. L383-L388.
    57 C. T. Campbell, Chlorine promoters in selective ethylene epoxidation over Ag(111):A comparison with Ag(110) Journal of Catalysis 1986,99 (1):p.28-38.
    58 L. L. Lauderback,W. N. Delgass, The structure and mobility of carbon on Ru(001) Surface Science 1986,172 (3):p.715-732.
    59 F. Abild-Pedersen,O. Lytken,J. Engbaek et al., Methane activation on Ni(111):Effects of poisons and step defects Surface Science 2005,590 (2-3):p.127-137.
    60 K. M. E. Habermehl-Cwirzen,K. Kauraala,J. Lahtinen, Hydrogen on Cobalt:The Effects of Carbon Monoxide and Sulphur Additives on the D2/Co(0001) System Physica Scripta 2004, T108 p.28-32.
    61 H.-C. Jeong,E. D. Williams, Steps on surfaces:experiment and theory Surface Science Reports 1999,34(6-8):p.171-294.
    62 J. Rostrup-Nielsen,J. N(?)rskov, Step sites in syngas catalysis Topics in Catalysis 2006, 40(1):p.45-48.
    63 D. W. Blakely,G. A. Somorjai, The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces Journal of Catalysis 1976,42 (2):p.181-196.
    64 S. Dahl,A. Logadottir,R. C. Egeberg et al., Role of Steps in N_{2} Activation on Ru(0001) Physical Review Letters 1999,83 (9):p.1814-1817.
    65 H.-J. Freund, Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports Surface Science 2007,601 (6):p.1438-1442.
    66 R. A. Campbell,J. A. Rodriguez,D. W. Goodman, Chemical and electronic properties of ultrathin metal films:The Pd/Re(0001) and Pd/Ru(0001) systems Physical Review B 1992,46 (11):p.7077-7087.
    67 G. Pacchioni,R. M. Lambert, Cyclization of acetylene over Pd(111):a theoretical study of reaction mechanisms and surface intermediates Surface Science 1994,304 (1-2):p.208-222.
    68 C. Xu,B. E. Koel,M. T. Paffett, Adsorption and desorption behavior of n-butane and isobutane on Pt(111) and Sn/Pt(111) surface alloys Langmuir 1994,10 (1):p.166-171.
    69 F. C. Henn,P. J. Dalton,C. T. Campbell, Probing ensemble effects in surface reactions. 4. Cyclopentene adsorption on clean and bismuth-covered platinum(111) The Journal of Physical Chemistry 1989,93 (2):p.836-846.
    70 C. Xu,Y. L. Tsai,B. E. Koel, Adsorption of cyclohexane and benzene on ordered tin/platinum (111) surface alloys The Journal of Physical Chemistry 1994,98 (2):p.585-593.
    71 M. E. Bussell,F. C. Henn,C. T. Campbell, A BPTDS and HREELS study of the interaction of cyclohexane with the platinum (111) surface The Journal of Physical Chemistry 1992,96 (14):p.5978-5982.
    72 M. B. Hugenschmidt,A. L. Diaz,C. T. Campbell, Interaction of cyclohexadiene with platinum(111) studied by BPTDS and HREELS The Journal of Physical Chemistry 1992,96 (14): p,5974-5978.
    73 C. Xu,B. E. Koel, Dehydrogenation of cyclohexene on ordered Sn/Pt(111) surface alloys Surface Science 1994,304 (3):p.249-266.
    74 C. T. Campbell, Bimetallic Surface Chemistry Annual Review of Physical Chemistry 1990,41 (1):p.775-837.
    75 C. T. Campbell,J. M. Campbell,P. J. Dalton et al., Probing ensemble effects in surface reactions.1. Site-size requirements for the dehydrogenation of cyclic hydrocarbons on platinum(111) revealed by bismuth site blocking The Journal of Physical Chemistry 1989,93 (2): p.806-814.
    76 U. Bardi,A. Atrei,G. Rovida, Initial stages of oxidation of the Ni3Al alloy:a study by X-ray photoelectron spectroscopy and low energy He+scattering Surface Science 1990,239 (1-2):p. L511-L516.
    77 U. Bardi,A. Atrei,G. Rovida, Initial stages of oxidation of the Ni3Al alloy:structure and composition of the aluminum oxide overlayer studied by XPS, LEIS and LEED Surface Science 1992,268 (1-3):p.87-97.
    78 J. C. Lin,N. Shamir,R. Gomer, Interaction of oxygen and copper on a W(110) surface: I. Segregation Surface Science 1988,206 (1-2):p.61-85.
    79 J. Szanyi,D. W. Goodman, Kinetics of CO Oxidation on Cu/Rh(100) Model Bimetallic Catalysts Journal of Catalysis 1994,145 (2):p.508-515.
    80 J. E. Whitten,R. Gomer, Interaction of oxygen and Ni on W(110) Surface Science 1994, 316 (1-2):p.1-22.
    81 A. PavIovska,E. Bauer, Thin film formation on chemically modified surfaces:Au on Mo(110) Surface Science 1986,175 (2):p.369-384.
    82 I. J. Malik,J. Hrbek, Coadsorption-induced effects at surfaces:compression of a chemisorbed oxygen layer by gold on ruthenium(001) The Journal of Physical Chemistry 1991, 95 (6):p.2466-2471.
    83 C. Woll, The chemistry and physics of zinc oxide surfaces Progress in Surface Science 2007,82 (2-3):p.55-120.
    84 V. Staemmler,K. Fink,B. Meyer et al., Stabilization of Polar ZnO Surfaces:Validating Microscopic Models by Using CO as a Probe Molecule Physical Review Letters 2003,90 (10):p. 106102.
    85 J. C. Lavalley,J. Saussey,A. A. Tsyganenko, IR study of interactions between different molecules CO-adsorbed on ZnO Surface Science 1994,315 (1-2):p.112-118.
    86 T. Becker,S. Hovel,M. Kunat et al., Interaction of hydrogen with metal oxides:the case of the polar ZnO(0001) surface Surface Science 2001,486 (3):p. L502-L506.
    87 O. Dulub,U. Diebold,G. Kresse, Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn Physical Review Letters 2003,90 (1):p.016102.
    88 M. Kunat,S. G. Girol,U. Burghaus et al., The Interaction of Water with the Oxygen-Terminated, Polar Surface of ZnO The Journal of Physical Chemistry B 2003,107 (51): p.14350-14356.
    89 S. Crook,H. Dhariwal,G. Thornton, HREELS study of the interaction of formic acid with ZnO(1010) and ZnO(0001)-O Surface Science 1997,382 (1-3):p.19-25.
    90 C. T. Au,W. Hirsch,W. Hirschwald, Adsorption and interaction of carbon dioxide, formic acid and hydrogen/carbon dioxide mixtures on (1010) zinc oxide surfaces studied by photoelectron spectroscopy (XPS and UPS) Surface Science 1988,199 (3):p.507-517.
    91 C. T. Au,W. Hirsch,W. Hirschwald, Adsorption of carbon monoxide and carbon dioxide on annealed and defect zinc oxide (0001) surfaces studied by photoelectron spectroscopy (XPS and UPS) Surface Science 1988,197 (3):p.391-401.
    92 R. Davis,J. F. Walsh,C. A. Muryn et al., The orientation of formate and carbonate on ZnO(1010) Surface Science 1993,298 (1):p. L196-L202.
    93 U. Diebold, The surface science of titanium dioxide Surface Science Reports 2003,48 (58):p.53-229.
    94 C. Lun Pang,R. Lindsay,G. Thornton, Chemical reactions on rutile TiO2(110) Chemical Society Reviews 2008,37 (10):p.2328-2353.
    95 M. B. Hugenschmidt,L. Gamble,C. T. Campbell, The interaction of H2O with a TiO2(110) surface Surface Science 1994,302 (3):p.329-340.
    96 M. A. Henderson, Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O Surface Science 1998, 400 (1-3):p.203-219.
    97 S. Takakusagi,K.-I. Fukui,F. Nariyuki et al., STM study on structures of two kinds of wide strands formed on TiO2(110) Surface Science 2003,523 (1-2):p. L41-L46. 98 I. M. Brookes,C. A. Muryn,G. Thornton, Imaging Water Dissociation on TiO_{2}(110) Physical Review Letters 2001,87 (26):p.266103.
    99 S. Suzuki,K.-I. Fukui,H. Onishi et al., Hydrogen Adatoms on TiO2(110)-(1×1) Characterized by Scanning Tunneling Microscopy and Electron Stimulated Desorption Physical Review Letters 2000,84 (10):p.2156-2159.
    100 K. Onda,B. Li,H. Petek, Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and 02 or H2O adsorbates Physical Review B 2004,70 (4):p. 045415.
    101 L.-Q. Wang,A. N. Shultz,D. R. Baer et al.; 3 ed.; AVS:Mineapolis, Minnesota (USA), 1996; Vol.14, p 1532-1538.
    102 J. M. Pan,B. L. Maschhoff,U. Diebold et al.; 4 ed.; AVS:Seattle, Washington (USA), 1992; Vol.10, p 2470-2476.
    103 R. Lindsay,S. Tomic,A. Wander et al., Low Energy Electron Diffraction Study of TiO2(110)(2×1)-[HCOO]-The Journal of Physical Chemistry C 2008,112 (36):p. 14154-14157.
    104 M. Aizawa,Y. Morikawa,Y. Namai et al., Oxygen Vacancy Promoting Catalytic Dehydration of Formic Acid on TiO2(110) by in Situ Scanning Tunneling Microscopic Observation The Journal of Physical Chemistry B 2005,109 (40):p.18831-18838.
    105 H. Uetsuka,M. A. Henderson,A. Sasahara et al., Formate Adsorption on the (111) Surface of Rutile TiO2 The Journal of Physical Chemistry B 2004,108 (36):p.13706-13710.
    106 D. I. Sayago,M. Polcik,R. Lindsay et al., Structure Determination of Formic Acid Reaction Products on TiO2(110) The Journal of Physical Chemistry B 2004,108 (38):p. 14316-14323.
    107 K.-I. Fukui,S. Takakusagi,R. Tero et al., Dynamic aspects and associated structures of TiO2(110) and CeO2(111) surfaces relevant to oxide catalyses Physical Chemistry Chemical Physics 2003,5 (24):p.5349-5359.
    108 P. M. Jayaweera,E. L. Quah,H. Idriss, Photoreaction of Ethanol on TiO2(110) Single-Crystal Surface The Journal of Physical Chemistry C 2007,111 (4):p.1764-1769.
    109 V. A. Gercher,D. F. Cox, Formic acid decomposition on SnO2(110) Surface Science 1994,312 (1-2):p.106-114.
    110 V. A. Gercher,D. F. Cox,J.-M. Themlin, Oxygen-vacancy-controlled chemistry on a metal oxide surface:methanol dissociation and oxidation on SnO2(110) Surface Science 1994, 306 (3):p.279-293.
    111 G. S. Parkinson,Z. K. Novotny,P. Jacobson et al., Room Temperature Water Splitting at the Surface of Magnetite Journal of the American Chemical Society 2011,133 (32):p. 12650-12655.
    112 S. Shaikhutdinov,H.-J. Freund, Ultrathin Oxide Films on Metal Supports: Structure-Reactivity Relations Annual Review of Physical Chemistry 2012,63 (1):p.619-633.
    113 U. Diebold,S.-C. Li,M. Schmid, Oxide Surface Science Annual Review of Physical Chemistry 2010,61(1):p.129-148.
    114 H.-J. Freund,D. W. Goodman In Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA:2008.
    115 S. Altieri,L. H. Tjeng,G. A. Sawatzky, Ultrathin oxide films on metals:new physics and new chemistry? Thin Solid Films 2001,400 (1-2):p.9-15.
    116 C. T. Campbell, Ultrathin metal films and particles on oxide surfaces:structural, electronic and chemisorptive properties Surface Science Reports 1997,27 (1-3):p.1-111.
    117 S. C. Street,C. Xu,D. W. Goodman, The Physical and Chemical Properties of Ultrathin Oxide Films Annual Review of Physical Chemistry 1997,48 (1):p.43-68.
    118 W. Weiss,D. Zscherpel,R. Schlogl, On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts Catalysis Letters 1998,52 (3-4):p.215-220.
    119 R. J. Lad,V. E. Henrich, Photoemission study of the valence-band electronic structure in FexO, Fe3O4, and a-Fe2O3 single crystals Physical Review B 1989,39 (18):p. 13478-13485.
    120 Y. Wu,E. Garfunkel,T. E. Madey; 3 ed.; AVS:Mineapolis, Minnesota (USA),1996; Vol. 14, p 1662-1667.
    121 M.-C. Wu,D. W. Goodman, Paniculate Cu on Ordered Al2O3:Reactions with Nitric Oxide and Carbon Monoxide The Journal of Physical Chemistry 1994,98 (39):p.9874-9881.
    122 P. Gassmann,R. Franchy,H. Ibach, Investigations on phase transitions within thin Al2O3 layers on NiAl(110) - HREELS on aluminum oxide films Surface Science 1994,319 (12):p.95-109.
    123 A. Sandell,J. Libuda,M. Baumer et al., Metal deposition in adsorbate atmosphere: growth and decomposition of a palladium carbonyl-like species Surface Science 1996,346 (1-3): p.108-126.
    124 M. C. Wu,W. S. Oh,D. W. Goodman, Initial sticking probabilities of Cu vacuum deposited on ordered Al2O3 and MgO Surface Science 1995,330 (1):p.61-66.
    125 J. G. Chen,M. D. Weisel,J. H. Hardenbergh et al., Evidence for the potassium-promoted activation of methane on a K-doped NiO/Ni(100) surface Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films 1991,9 (3):p.1684-1687.
    126 M. Bender,K. Al-Shamery,H. J. Freund, Sodium Adsorption and Reaction on NiO(111)/Ni(111) Langmuir 1994,10 (9):p.3081-3085.
    127 O. L. Warren,P. A. Thiel, Structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis The Journal of Chemical Physics 1994,100 (1):p.659-663.
    128 C. A. Ventrice, Jr.,T. Bertrams,H. Hannemann et al., Stable reconstruction of the polar (111) surface of NiO on Au(111) Physical Review B 1994,49 (8):p.5773-5776.
    129 H. C. Galloway,J. J. Benitez,M. Salmeron, The structure of monolayer films of FeO on Pt(111) Surface Science 1993,298 (1):p.127-133.
    130 W. Weiss,A. Barbieri,M. A. Van Hove et al., Surface structure determination of an oxide film grown on a foreign substrate:Fe_{3}O_{4} multilayer on Pt(111) identified by low energy electron diffraction Physical Review Letters 1993,71 (12):p.1848-1851.
    131 H.-J. Freund, Adsorption of Gases on Complex Solid Surfaces Angewandte Chemie International Edition in English 1997,36 (5):p.452-475.
    132 M. V. Ganduglia-Pirovano,A. Hofmann,J. Sauer, Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges Surface Science Reports 2007,62 (6):p.219-270.
    133 M. Sterrer,M. Heyde,M. Novicki et al., Identification of Color Centers on MgO(001) Thin Films with Scanning Tunneling Microscopy The Journal of Physical Chemistry B 2005,110 (1):p.46-49.
    134 M. Sterrer,T. Risse,U. Martinez Pozzoni et al., Control of the Charge State of Metal Atoms on Thin MgO Films Physical Review Letters 2007,98 (9):p.096107.
    135 T. Risse.S. Shaikhutdinov,N. Nilius et al., Gold Supported on Thin Oxide Films:From Single Atoms to Nanoparticles Accounts of Chemical Research 2008,41 (8):p.949-956.
    136 F. Esch,S. Fabris,L. Zhou et al., Electron Localization Determines Defect Formation on Ceria Substrates Science 2005,309 (5735):p.752-755.
    137 C. T. Campbell.C. H. F. Peden, CHEMISTRY:Oxygen Vacancies and Catalysis on Ceria Surfaces Science 2005,309 (5735):p.713-714.
    138 S. Polarz,J. Strunk.V. Ischenko et al., On the Role of Oxygen Defects in the Catalytic Performance of Zinc Oxide 13 Angewandte Chemie International Edition 2006,45 (18):p. 2965-2969.
    139 Q. Wang,J. Biener,X.-C. Guo et al., Reactivity of Stoichiometric and Defective TiO2 (110) Surfaces toward DC OOD Decomposition The Journal of Physical Chemistry B 2003,107 (42):p.11709-11720.
    140 S. D. Senanayake,D. R. Mullins, Redox Pathways for HCOOH Decomposition over CeO2 Surfaces The Journal of Physical Chemistry C 2008,112 (26):p.9744-9752.
    141 K. Christmann,G. Ertl,T. Pignet, Adsorption of hydrogen on a Pt(111) surface Surface Science 1976,54 (2):p.365-392.
    142 K. Christmann,G. Ertl, Interaction of hydrogen with Pt(111):The role of atomic steps Surface Science 1976,60 (2):p.365-384.
    143 B. E. Nieuwenhuys, Influence of the surface structure on the adsorption of hydrogen on platinum, as studied by field emission probe-hole microscopy Surface Science 1976,59 (2):p. 430-446.
    144 R. W. Mccabe,L. D. Schmidt, Adsorption of H2 and CO on clean and oxidized (110) Pt Surface Science 1976,60 (1):p.85-98.
    145 D. Cappus,M. Haβel,E. Neuhaus et al., Polar surfaces of oxides:reactivity and reconstruction Surface Science 1995,337 (3):p.268-277.
    146 D. M. Collins, W. E. Spicer, The adsorption of CO, O2, and H2 on Pt:Ⅱ. Ultraviolet photoelectron spectroscopy studies Surface Science 1977,69 (1):p.114-132.
    147 Z. Qu,W. Huang,S. Zhou et al., Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support Journal of Catalysis 2005,234 (1):p. 33-36.
    148 A. M. Baro,H. Ibach,H. D. Bruchmann, Vibrational modes of hydrogen adsorbed on Pt(111):Adsorption site and excitation mechanism Surface Science 1979,88 (2-3):p.384-398.
    149 T. Engel,H. Kuipers, A molecular-beam investigation of the scattering, adsorption and absorption of H2 and D2 from/on/in Pd(111) Surface Science 1979,90 (1):p.162-180.
    150 G. B. Fisher,J. L. Gland, The interaction of water with the Pt(111) surface Surface Science 1980,94 (2-3):p.446-455.
    151 J. Wang,C. Y. Fan,Q. Sun et al., Surface Coordination Chemistry:Dihydrogen versus Hydride Complexes on RuO2(110) Angewandte Chemie International Edition 2003,42 (19):p. 2151-2154.
    152 M. Knapp,D. Crihan,A. P. Seitsonen et al., Hydrogen Transfer Reaction on the Surface of an Oxide Catalyst Journal of the American Chemical Society 2005,127 (10):p.3236-3237.
    153 M. Knapp,D. Crihan,A. P. Seitsonen et al., Unusual Process of Water Formation on RuO2(110) by Hydrogen Exposure at Room Temperature The Journal of Physical Chemistry B 2006,110 (29):p.14007-14010.
    154 F. Steinbach,J. Kiss.R. Krall, Identification and stability of CH3, CH2, and CH species on Co and Ni surfaces, a PES investigation Surface Science 1985,157 (2-3):p.401-412.
    155 B. Poelsema,L. S. Brown.K. Lenz et al., On the origin of the low-temperature (≈150 K) H2 desorption from Pt(111) Surface Science 1986,171 (1):p. L395-L400.
    156 M. Tringides,R. Gomer, Models of surface diffusion:11. Tunneling Surface Science 1986,166 (2-3):p.440-457.
    157 A. Hodgson,S. Haq, Water adsorption and the wetting of metal surfaces Surface Science Reports 2009,64 (9):p.381-451.
    158 M. A. Henderson, The interaction of water with solid surfaces:fundamental aspects revisited Surface Science Reports 2002,46 (1-8):p.1-308.
    159 P. A. Thiel,T. E. Madey, The interaction of water with solid surfaces:Fundamental aspects Surface Science Reports 1987,7 (6-8):p.211-385.
    160 B. J. Hinch,L. H. Dubois, Stable and metastable phases of water adsorbed on Cu(111) The Journal of Chemical Physics 1992,96 (4):p.3262-3268.
    161 E. M. Stuve,R. J. Madix,B. A. Sexton, The adsorption and reaction of H2O on clean and oxygen covered Ag(110) Surface Science 1981,111 (1):p.11-25.
    162 M. E. Gallagher,S. Haq,A. Omer et al., Water monolayer and multilayer adsorption on Ni(111) Surface Science 2007,601 (1):p.268-273.
    163 A. M. Baro,W. Erley, The adsorption of H2O on Fe(100) studied by EELS Journal of Vacuum Science and Technology 1982,20 (3):p.580-583.
    164 W.-H. Hung.J. Schwartz,S. L. Bernasek, Sequential oxidation of Fe(100) by water adsorption:formation of an ordered hydroxylated surface Surface Science 1991,248 (3):p. 332-342.
    165 C. Xu,D. W. Goodman, Morphology and local electronic structure of metal particles on metal oxide surfaces:a scanning tunneling microscopic and scanning tunneling spectroscopic study Chemical Physics Letters 1996,263 (1-2):p.13-18.
    166 J. Libuda,F. Winkelmann,M. Baumer et al., Structure and defects of an ordered alumina film on NiAl(110) Surface Science 1994,318 (1-2):p.61-73.
    167 M. Baumer,M. Frank,J. Libuda et al., Growth and morphology of Rh deposits on an alumina film under UHV conditions and under the influence of CO Surface Science 1997,391 (1-3):p.204-215.
    168 M. Valden,X. Lai,D. W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance ofNonmetallic Properties Science 1998,281 (5383):p.1647-1650.
    169 M S. Chen,D. W. Goodman, The Structure of Catalytic ally Active Gold on Titania Science 2004,306 (5694):p.252-255.
    170 M. Chen,D. W. Goodman, Catalytically Active Gold:From Nanoparticles to Ultrathin Films Accounts of Chemical Research 2006,39 (10):p.739-746.
    171 T. Schalow,M. Laurin,B. Brandt et al., Oxygen Storage at the Metal/Oxide Interface of Catalyst Nanoparticles Angewandte Chemie International Edition 2005,44 (46):p.7601-7605.
    172 T. Schalow,B. Brandt,D. E. Starr et al., Size-Dependent Oxidation Mechanism of Supported Pd Nanoparticles Angewandte Chemie International Edition 2006,45 (22):p. 3693-3697.
    173 G. A. Somorjai,J. Y. Park, Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure Chemical Society Reviews 2008,37 (10):p. 2155-2162.
    174 L. J. Gorodetskii V, Rotermund Hh, Block Jh, Ertl G., Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction-diffusion waves. Nature 1994, 370 p.4.
    175 M. Sander,R. Imbihl,G. Ertl, Kinetic oscillations in catalytic CO oxidation on a cylindrical Pt single crystal surface The Journal of Chemical Physics 1992,97 (7):p.5193-5204.
    176 W. X. Huang,X. H. Bao,H. H. Rotermund et al., CO Adsorption on the O-saturated AglPt(110) Composite Surface:Direct Observation of the Diffusion of Adsorbed CO from Strongly Bound Pt Sites to Weakly Bound Ag Sites The Journal of Physical Chemistry B 2002, 106 (22):p.5645-5647.
    177 M. M. Khader,G. H. Vurens,I. K. Kim et al., Photoassisted catalytic dissociation of water to produce hydrogen on partially reduced alpha.-iron(111) oxide Journal of the American Chemical Society 1987,109 (12):p.3581-3585.
    178 C. Q. Dong,X. L. Liu,W. Qin et al., Deep reduction behavior of iron oxide and its effect on direct CO oxidation Applied Surface Science 2012,258 (7):p.2562-2569.
    179 M. Estrella,L. Barrio,G. Zhou et al., In Situ Characterization of CuFe(2)O(4) and Cu/Fe(3)O(4) Water-Gas Shift Catalysts Journal of Physical Chemistry C 2009,113 (32):p. 14411-14417.
    180 U. S. R.M.Cornell, The Iron Oxides:Structure, Properties, Reactions, Occurences and Uses, Second Edition Wiley-VCH Verlag Gmbh & Co. KGaA 2004, p.
    181 S. Sakurai,A. Namai.K. Hashimoto et al., First Observation of Phase Transformation of All Four Fe2O3 Phases (gamma-> epsilon-> beta-> alpha-Phase) Journal of the American Chemical Society 2009,131 (51):p.18299-18303.
    182 C. Scott A, Epitaxial growth and properties of thin film oxides Surface Science Reports 2000,39 (5-6):p.105-180.
    183 S. I. Yi,Y. Liang,S. Thevuthasan et al., Morphological and structural investigation of the early stages of epitaxial growth of α-Fe2O3 (0001) on α-Al2O3 (0001) by oxygen-plasma-assisted MBE Surface Science 1999,443 (3):p.212-220.
    184 S. A. Chambers,S. A. Joyce, Surface termination, composition and reconstruction of Fe3O4(001) and γ-Fe2O3(001) Surface Science 1999,420 (2-3):p.111-122.
    185 Y. J. Kim,Y. Gao,S. A. Chambers, Selective growth and characterization of pure, epitaxial α-Fe2O3(0001) and Fe3O4(001) films by plasma-assisted molecular beam epitaxy Surface Science 1997,371 (2-3):p.358-370.
    186 W. Weiss,W. Ranke, Surface chemistry and catalysis on well-defined epitaxial 4 iron-oxide layers Progress in Surface Science 2002,70 (1-3):p.1-151.
    187 C. Schlueter,M. Lubbe,A. M. Gigler et al., Growth of iron oxides on Ag(111) Reversible Fe2O3/Fe3O4 transformation Surface Science 2011,605 (23-24):p.1986-1993.
    188 X. Y. Deng,C. Matranga, Selective Growth of Fe(2)O(3) Nanoparticles and Islands on Au(111) Journal of Physical Chemistry C 2009,113 (25):p.11104-11109.
    189 X. Y. Deng,J. Lee,C. Matranga, Preparation and characterization of Fe(3)O(4)(111) nanoparticles and thin films on Au(111) Surface Science 2010,604 (7-8):p.627-632.
    190 W. Ranke,M. Ritter,W. Weiss, Crystal structures and growth mechanism for ultrathin films of ionic compound materials:FeO(111) on Pt(111) Physical Review B 1999,60 (3):p. 1527-1530.
    191 C. Lemire.R. Meyer,S.K. Shaikhutdinov et al., CO adsorption on oxide supported gold:from small clusters to monolayer islands and three-dimensional nanoparticles Surface Science 2004,552 (1-3):p.27-34.
    192 C. Lemire,R. Meyer,V. E. Henrich et al., The surface structure of Fe3O4(111) films as studied by CO adsorption Surface Science 2004,572 (1):p.103-114.
    193 W. Ranke,W. Weiss, Photoemission of ethylbenzene adsorbed on Pt(111) and on epitaxial films of FeO(111) and Fe3O4(111):electronic structure and isosteric heats of adsorption Surface Science 1998,414 (1-2):p.236-253.
    194 D. Zscherpel,W. Ranke,W. Weiss et al., Energetics and kinetics of ethylbenzene adsorption on epitaxial FeO(111) and Fe3O4(111) films studied by thermal desorption and photoelectron spectroscopy The Journal of Chemical Physics 1998,108 (22):p.9506-9515.
    195 Y. Joseph,C. Kuhrs,W. Ranke et al., Adsorption of water on FeO(111) and Fe3O4(111): identification of active sites for dissociation Chemical Physics Letters 1999,314 (3-4):p. 195-202.
    196 U. Leist,W. Ranke,K. Al-Shamery, Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111) and Fe2O3(biphase) Physical Chemistry Chemical Physics 2003,5(11): p.2435-2441.
    197 Y. Joseph,W. Ranke.W. Weiss, Water on FeO(111) and Fe3O4(111):Adsorption behavior on different surface terminations Journal of Physical Chemistry B 2000,104 (14):p. 3224-3236.
    198 M. E. Grillo,M. W. Finnis,W. Ranke, Surface structure and water adsorption on Fe_{3}O_{4}(111):Spin-density functional theory and on-site Coulomb interactions Physical Review B 2008,77 (7):p.075407.
    199 W. X. Huang,W. Ranke, Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen Surface Science 2006,600 (4):p.793-802.
    200 J. Knudsen,L. R. Merte,L. C. Grabow et al., Reduction of FeO/Pt(111) thin films by exposure to atomic hydrogen Surface Science 2010,604 (1):p.11-20.
    201 L. R. Merte,J. Knudsen,L. C. Grabow et al., Correlating STM contrast and atomic-scale structure by chemical modification:Vacancy dislocation loops on FeO/Pt(111) Surface Science 2009,603 (2):p. L15-L18.
    202 L. R. Merte,L. C. Grabow,G. Peng et al., Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111) The Journal of Physical Chemistry C 2011, p. null-null.
    203 W. Wang,H. Zhang,W. Wang et al., Observation of water dissociation on nanometer-sized FeO islands grown on Pt(111) Chemical Physics Letters 2010,500 (1-3):p. 76-81.
    204 Y. Yao,Q. Fu,Z. Wang et al., Growth and Characterization of Two-Dimensional FeO Nanoislands Supported on Pt(111) The Journal of Physical Chemistry C 2010,114 (40):p. 17069-17079.
    205 T. Ma,Q. Fu,Y. Cui et al., Controlled Transformation of the Structures of Surface Fe (FeO) and Subsurface Fe on Pt(111) Chinese Journal of Catalysis 2010,31 (1):p.24-32.
    206 T. Ma,Q. Fu,Y. Yao et al., Formation of Periodic Arrays of O Vacancy Clusters on Monolayer FeO Islands Grown on Pt(111) Chin. J. Catal.2010,31 (8):p.1013-1018.
    1陆家和,陈长彦等编著,表面分析技术 电子工业出版社,1987
    2陆家和,陈长彦等编著,现代分析技术 清华大学出版社,1995
    3 Woodruff D.P. and Delchar T.A., Modern techniques of surface science Cambridge University Press,1986, London
    4 Carlson T.A.著,王殿勋,郁向荣译,光电子和俄歇能谱学 科学出版社,1991
    5 Baun W.L., Surf. Interface Anal.1981,3,243
    6 Pendry L.B., Low Energy Electron Diffraction Academic Press,1974, London
    7 Redhead P. A, Vacuum 1957,12,203
    8 Ibachand H., Mills D.L., Electron Energy Loss Spectroscopy and Surface Vibrations Academic Press,1982, New York
    9 D.E. Briggs著,桂琳琳、黄惠忠、郭国霖译,X-射线与紫外光电子能谱 北京大学出版社,1984
    10 Davis L. E., MacDonald N. C, Palmberg P.W., Riach G. E.and Weber R. E., Handbook of Auger Spectroscopy,2nd Edition, P.E. Ind.Inc., USA,1976
    11 Somorjai G.A., Chemistry in Two Dimensional Surface Cornell University Press,1979
    1 K. M. E. Habermehl-Cwirzen,K. Kauraala,J. Lahtinen, Hydrogen on Cobalt:The Effects of Carbon Monoxide and Sulphur Additives on the D2/Co(0001) System Physica Scripta 2004, T108 p.28-32.
    2 P. A. Redhead, Thermal desorption of gases Vacuum 12 (4):p.203-211.
    3 J. Lahtinen,J. Vaari,K. Kauraala, Adsorption and structure dependent desorption of CO on Co(0001) Surface Science 1998,418 (3):p.502-510.
    4 F. Greuter,D. Heskett,E. W. Plummer et al., Chemisorption of CO on Co(0001). Structure and electronic properties Physical Review B 1983,27 (12):p.7117.
    5 M. E. Bridge,C. M. Comrie,R. M. Lambert, Chemisorption studies on cobalt single crystal surfaces:I. Carbon monoxide on Co(0001) Surface Science 1977,67 (2):p.393-404.
    6 M. E. Bridge,C. M. Comrie,R. M. Lambert, Hydrogen chemisorption and the carbon monoxide-hydrogen interaction on cobalt (0001) Journal of Catalysis 1979,58 (1):p.28-33.
    7 A. Hodgson,S. Haq, Water adsorption and the wetting of metal surfaces Surface Science Reports 2009,64 (9):p.381-451.
    8 M. A. Henderson, The interaction of water with solid surfaces:fundamental aspects revisited Surface Science Reports 2002,46 (1-8):p.1-308.
    9 P. A. Thiel,T. E. Madey, The interaction of water with solid surfaces:Fundamental aspects Surface Science Reports 1987,7 (6-8):p.211-385. 10 A. Verdaguer,G. M. Sacha,H. Bluhm et al., Molecular Structure of Water at Interfaces:
    Wetting at the Nanometer Scale Chemical Reviews 2006,106 (4):p.1478-1510.
    11 C. Z. Zheng,C. K. Yeung,M. M. T. Loy et al., Quantum Diffusion of H on Pt(111):Step Effects Physical Review Letters 2006,97 (16):p.166101.
    12 S. Altieri,L. H. Tjeng,G. A. Sawatzky, Ultrathin oxide films on metals:new physics and new chemistry? Thin Solid Films 2001,400 (1-2):p.9-15.
    13 B. J. Hinch,L. H. Dubois, Stable and metastable phases of water adsorbed on Cu(111) The Journal of Chemical Physics 1992,96 (4):p.3262-3268.
    14 E. M. Stuve,R. J. Madix,B. A. Sexton, The adsorption and reaction of H2O on clean and oxygen covered Ag(110) Surface Science 1981,111 (1):p.11-25.
    15 S. C. Street,C. Xu,D. W. Goodman, The physical and chemical properties of ultrathin oxide films Annual Review of Physical Chemistry 1997,48 (1):p.43-68.
    16 M. E. Gallagher,S. Haq,A. Omer et al., Water monolayer and multilayer adsorption on Ni(111) Surface Science 2007,601 (1):p.268-273.
    17 S. Shaikhutdinov,H.-J. Freund, Ultrathin Oxide Films on Metal Supports: Structure-Reactivity Relations Annual Review of Physical Chemistry 2012,63 (1):p.619-633.
    18 C. Woll, The chemistry and physics of zinc oxide surfaces Progress in Surface Science 2007,82 (2-3):p.55-120.
    19 A. M. Baro,W. Erley, The adsorption of H[sub 2]O on Fe(100) studied by EELS Journal of Vacuum Science and Technology 1982,20 (3):p.580-583.
    20 W.-H. Hung,J. Schwartz,S. L. Bernasek, Sequential oxidation of Fe(100) by water adsorption:formation of an ordered hydroxylated surface Surface Science 1991,248 (3):p. 332-342.
    21 J. M. Heras,E. V. Albano, Work function changes of cobalt films at 77 K upon water adsorption Applications of Surface Science 1981,7 (4):p.332-346.
    22 R. B. Moyes,M. W. Roberts, Interaction of cobalt with oxygen, water vapor, and carbon monoxide:X-Ray and ultraviolet photoemission studies Journal of Catalysis 1977,49 (2): p.216-224.
    23 F. Grellner,B. Klingenberg,D. Borgmann et al., Interaction of H2O with Co(112-0):a photoelectron spectroscopic study Surface Science 1994,312 (1-2):p.143-150.
    24 B. J. Hinch,L. H. Dubois, Water adsorption on Cu(111):evidence for Volmer--Weber film growth Chemical Physics Letters 1991,181 (1):p.10-15.
    25 T. Schiros,L. Naslund,K. Andersson et al., Structure and Bonding of the Water-Hydroxyl Mixed Phase on Pt(111) The Journal of Physical Chemistry C 2007,111 (41):p. 15003-15012.
    26 J. M. Heras,H. Papp,W. Spiess, Face specificity of the H2O adsorption and decomposition on Co surfaces--a LEED, UPS, sp and TPD study Surface Science 1982,117 (1-3):p.590-604.
    27 T. Schiros,O. Takahashi,K. J. Andersson et al., The role of substrate electrons in the wetting of a metal surface The Journal of Chemical Physics 2010,132 (9):p.094701-094709.
    28 T. E. Madey,F. P. Netzer, The adsorption of H2O on Ni(111); influence of preadsorbed oxygen on azimuthal ordering Surface Science 1982,117 (1-3):p.549-560.
    29 H. Steininger,H. Ibach,S. Lehwald, Surface reactions of ethylene and oxygen on Pt(111) Surface Science 1982,117 (1-3):p.685-698.
    30 L. L. Kesmodel,L. H. Dubois,G. A. Somorjai, Dynamical LEED study of C2H2 and C2H4 chemisorption on Pt(111):evidence for the ethylidyne group Chemical Physics Letters 1978,56 (2):p.267-271.
    31 B. E. Koel,B. E. Bent,G. A. Somorjai, Hydrogenation and H, D Exchange studies of ethylidyne (CCH3) on Rh(111) crystal surfaces at I atm pressure using high resolution electron energy loss spectroscopy Surface Science 1984,146 (1):p.211-228.
    32 J. A. Gates,L. L. Kesmodel, Thermal evolution of acetylene and ethylene on Pd(111) Surface Science 1983,124 (1):p.68-86.
    33 K. L. Kostov,T. S. Marino va, Interaction of ethylene and acetylene with oxygen on An Ir(111) surface Surface Science 1987,184 (3):p.359-373.
    34 M. A. Barteau,J. Q. Broughton,D. Menzel, Vibrational spectroscopy of hydrocarbon intermediates on Ru(001) Applications of Surface Science 1984,19 (1-4):p.92-115.
    35 T. Livneh,M. Asscher, The adsorption and decomposition of C2H4 on Ru(001):A combined TPR and work function change study Journal of Physical Chemistry B 2000,104 (14): p.3355-3363. 36 A. J. Slavin,B. E. Bent,C. T. Kao et al., Thermal fragmentation of ethylene on the Rh(100) single crystal surface in the temperature range of 200-800 K Surface Science 1988,206 (1-2):p.124-144.
    37 J. C. Hamilton,N. Swanson,B. J. Waclawski et al., Specular and off-specular high resolution electron energy loss spectroscopy of acetylene and ethylene on tungsten (100) The Journal of Chemical Physics 1981,74(7):p.4156-4163.
    38 S. Lehwald,H. Ibach, Decomposition of hydrocarbons on flat and stepped Ni(111) surfaces Surface Science 1979,89 (1-3):p.425-445.
    39 W. Erley,A. M. Baro,H. Ibach, Vibrational spectra of acetylene and ethylene adsorbed on Fe(110) Surface Science 1982,120 (2):p.273-290.
    40 Y. Y. Yeo,A. Stuck,C. E. Wartnaby et al., Microcalorimetric study of ethylene adsorption at 300 K on Pt(100}-hex and Pt{100}-(1×1) Journal of Molecular Catalysis A: Chemical 1998,131 (1-3):p.31-38.
    41 M. R. Albert,L. G. Sneddon,E. W. Plummer, An UPS study of the chemisorption of acetylene and ethylene on Co(0001) Surface Science 1984,147 (1):p.127-142.
    42 P. Tiscione,G. Rovida, Adsorption and decomposition of ethylene and acetylene on cobalt Surface Science 1985,154 (2-3):p. L255-L260.
    43 B. Vermang,M. Juel,S. Raaen, Temperature programed desorption of C2H4 from pure and graphite-covered Pt(111) Journal of Vacuum Science & Technology A 2007,25 (6):p. 1512-1518.
    44 N. Freyer,G. Pirug,H. P. Bonzel, C(1s) spectroscopy of hydrocarbons adsorbed on Pt(111) Surface Science 1983,126 (1-3):p.487-494.
    45 L. Vattuone,L. Savio,M. Rocca et al., Real-time XPS investigation of the impact-energy dependence of C2H4 adsorption on Ag(100) Physical Review B 2002,66 (8):p.
    46 T. Kravchuk,L. Vattuone,L. Burkholder et al., Ethylene Decomposition at Undercoordinated Sites on Cu(410) Journal of the American Chemical Society 2008,130 (38):p. 12552-12553.
    47 J. E. Demuth,D. E. Eastman, Photoemission Observations of π-d Bonding and Surface Reactions of Adsorbed Hydrocarbons on Ni(111) Physical Review Letters 1974,32 (20):p.1123.
    48 A. Cassuto,M. Touffaire,M. Hugenschmidt et al., Ethylene [pi]-species on bare and K-, Cs- and O-precovered Pt(111):a TDS and UPS study Vacuum 1990,41 (1-3):p.161-162.
    49 K. Horn,A. M. Bradshaw,K. Jacobi, Angular-resolved UPS studies of the chemisorption of ethylene and acetylene on nickel (100) Journal of Vacuum Science and Technology 1978,15 (2):p.575-579.
    50 L. Xu,Y. Ma,Y. Zhang et al., Surface Chemistry of C2H4, CO, and H2 on Clean and Graphite Carbon-Modified Co(0001) Surfaces The Journal of Physical Chemistry C 2011,115 (8):p.3416-3424.
    51 J. Vaari,J. Lahtinen,P. Hautojarvi, The adsorption and decomposition of acetylene on clean and K-covered Co(0001) Catalysis Letters 1997,44 (1):p.43-49.
    52 R. Rosei,S. Modesti,F. Sette et al., Electronic structure of carbidic and graphitic carbon on Ni(111) Physical Review B 1984,29 (6):p.3416.
    53 T. Takahashi,H. Tokailin,T. Sagawa, Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite Physical Review B 1985,32 (12):p. 8317.
    54 H. Zhang,Q. Fu,Y. Cui et al., Growth Mechanism of Graphene on Ru(0001) and 02 Adsorption on the Graphene/Ru(0001) Surface The Journal of Physical Chemistry C 2009,113 (19):p.8296-8301.
    55 A. Varykhalov,O. Rader, Graphene grown on Co(0001) films and islands:Electronic structure and its precise magnetization dependence Physical Review B 2009,80 (3):p.035437.
    56 S. Schelz,T. Richmond,P. Kania et al., Electronic and atomic structure of evaporated carbon films Surface Science 1996,359 (1-3):p.227-236.
    57 F. Steinbach,J. Kiss,R. Krall, Identification and stability of CH3, CH2, and CH species on Co and Ni surfaces, a Pes investigation Surface Science 1985,157 (2-3):p.401-412.
    58 H. Gabasch,K. Hayek,B. Klotzer et al., Carbon Incorporation in Pd(111) by Adsorption and Dehydrogenation of Ethene The Journal of Physical Chemistry B 2006,110 (10): p.4947-4952.
    59 I. Jungwirthova,L. L. Kesmodel, Benzene formation from acetylene on Pd(111):a high-resolution electron energy loss spectroscopy study Surface Science 2000,470 (1-2):p. L39-L44.
    60 A. F. Lee.K. Wilson,R. L. Middleton et al., In Situ Observation of a Surface Chemical Reaction by Fast X-Ray Photoelectron Spectroscopy Journal of the American Chemical Society 1999,121 (34):p.7969-7970.
    61 C. H. Patterson,R. M. Lambert, Molecular pathways in the cyclotrimerization of ethyne on palladium:role of the C4 intermediate Journal of the American Chemical Society 1988,110 (20):p.6871-6877.
    62 A. Baraldi,G. Comelli,S. Lizzit et al., Real-time X-ray photoelectron spectroscopy of surface reactions Surface Science Reports 2003,49 (6-8):p.169-224.
    63 N. R. Avery, Adsorption and reactivity of acetylene on a copper(110) surface Journal of the American Chemical Society 1985,107 (23):p.6711-6712.
    64 J. R. Lomas,C. J. Baddeley,M. S. Tikhov et al., Ethyne Cyclization to Benzene over Cu(110) Langmuir 1995,11 (8):p.3048-3053.
    65 J. Dvorak,J. Hrbek, Adsorbate Ordering Effects in the Trimerization Reaction of Acetylene on Cu(100) The Journal of Physical Chemistry B 1998,102 (47):p.9443-9450.
    66 W. Liu,J. S. Lian,Q. Jiang, Theoretical Study of C2H2 Adsorbed on Low-Index Cu Surfaces The Journal of Physical Chemistry C 2007,111 (49):p.18189-18194.
    67 G. Kyriakou,J. Kim,M. S. Tikhov et al., Acetylene Coupling on Cu(111):Formation of Butadiene, Benzene, and Cyclooctatetraene The Journal of Physical Chemistry B 2005,109 (23):p.10952-10956.
    68 P. S. Cremer,X. Su,Y. R. Shen et al., Temperature-Dependent Rearrangements and Reactions of Acetylene Adsorbed on Pt(111) Monitored in the Range 125-381 K by Sum Frequency Generation The Journal of Physical Chemistry B 1997,101 (33):p.6474-6478.
    69 W. H. Hung,S. L. Bernasek, Adsorption and Decomposition of Ethylene and Acetylene on Fe(100) Surface Science 1995,339 (3):p.272-290.
    70 T. N. Rhodin,C. F. Brucker,A. B. Anderson, Structure and bonding of acetylene and ethylene on.alpha.-iron surfaces at low temperatures The Journal of Physical Chemistry 1978, 82 (8):p.894-898.
    71 U. Seip,M. C. Tsai,J. Kuppers et al., Interaction of acetylene and ethylene with an Fe(111) surface Surface Science 1984,147 (1):p.65-88.
    72 T. Ramsvik,A. Borg,T. Worren et al., Hybridisation and vibrational excitation of C2H2 on Co(0001) Surface Science 2002,511 (1-3):p.351-358.
    73 T. Ramsvik,A. Borg,H. J. Venvik et al., Acetylene chemisorption and decomposition on the Co(1120) single crystal surface Surface Science 2002,499 (2-3):p.183-192.
    74 R. Rosei,S. Modesti,F. Sette et al., Photoemission spectroscopy investigation of the electronic structure of carbidic and graphitic carbon on Ni (111) Solid State Communications 1983,46 (12):p.871-874.
    75 J. Sanchez-Barriga,A. Varykhalov,M. R. Scholz et al., Chemical vapour deposition of graphene on Ni(111) and Co(0001) and intercalation with Au to study Dirac-cone formation and Rashba splitting Diamond and Related Materials 19 (7-9):p.734-741.
    76 P. Reinke,G. Francz,P. Oelhafen, Structural phase transitions of carbon observed with photoelectron spectroscopy Thin Solid Films 1996,290-291 (0):p.148-152.
    77 B. Wang,X. Ma,M. Caffio et al., Size-Selective Carbon Nanoclusters as Precursors to the Growth of Epitaxial Graphene Nano Letters 2011,11 (2):p.424-430.
    78 X. Y. Zhu,M. E. Castro,S. Akhter et al., C---H bond cleavage for ethylene and acetylene on Ni(100) Surface Science 1988,207 (1):p.1-16.
    79 H. H. Hwu,J. G. Chen, Substrate-Dependent Reaction Pathways of Ethylene on Clean and Carbide-Modified W(110) and W(111) The Journal of Physical Chemistry B 2003,107 (41): p.11467-11474.
    80 H. Chen,W. Zhu,Z. Zhang, Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces Physical Review Letters 2010, 104(18):p.186101.
    81 J. Gao,Q. Yuan,H. Hu et al., Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface The Journal of Physical Chemistry C 2011,115 (36):p.17695-17703.
    82 J. Gao,J. Yip,J. Zhao et al., Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge Journal of the American Chemical Society 2011,133 (13):p.5009-5015.
    83 S. Helveg,C. Lopez-Cartes,J. Sehested et al., Atomic-scale imaging of carbon nanofibre growth Nature 2004,427 (6973):p.426-429.
    84 F. Abild-Pedersen,Oslash,J. K. Rskov et al., Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations Physical Review B 2006,73 (11):p.115419.
    85 S. Hofmann,Cs,Aacute et al., Surface Diffusion:The Low Activation Energy Path for Nanotube Growth Physical Review Letters 2005,95 (3):p.036101.
    86 S. Saadi,F. Abild-Pedersen,S. Helveg et al., On the Role of Metal Step-Edges in Graphene Growth The Journal of Physical Chemistry C 2010,114 (25):p.11221-11227.
    87 O. V. Yazyev,A. Pasquarello, Effect of Metal Elements in Catalytic Growth of Carbon Nanotubes Physical Review Letters 2008,100 (15):p.156102.
    88 P. Wu,W. Zhang,Z. Li et al., Communication:Coalescence of carbon atoms on Cu (111) surface:Emergence of a stable-bridging-metal structure motif The Journal of Chemical Physics 2010,133 (7):p.071101-071104.
    89 P. Lacovig,M. Pozzo.Alf et al., Growth of Dome-Shaped Carbon Nanoislands on Ir(111):The Intermediate between Carbidic Clusters and Quasi-Free-Standing Graphene Physical Review Letters 2009,103 (16):p.166101.
    90 L. Elena,Et Al., Evidence for graphene growth by C cluster attachment New Journal of Physics 2008,10 (9):p.093026.
    91 X. Li,W. Cai,L. Colombo et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling Nano Letters 2009,9 (12):p.4268-4272.
    92 A. Wiltner,C. Linsmeier,T. Jacob, Carbon reaction and diffusion on Ni(111), Ni(100), and Fe(110):Kinetic parameters from x-ray photoelectron spectroscopy and density functional theory analysis The Journal of Chemical Physics 2008,129 (8):p.084704-084710.
    93 V. JohaNek,A. B. De La Ree,J. C. Hemminger, Scanning Tunneling Microscopy Investigation of the Conversion of Ethylene to Carbon Clusters and Graphite on Pt(111) The Journal of Physical Chemistry C 2009,113 (11):p.4441-4444.
    94 Z. Li,P. Wu,C. Wang et al., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources ACS Nano 2011,5 (4):p.3385-3390.
    95 E. Kim,H. An,H. Jang et al., Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate Chemical Vapor Deposition 2011,17 (1-3):p.9-14.
    96 J. C. W. Swart,E. Van Steen,I. M. Ciobica et al., Interaction of graphene with FCC-Co(111) Physical Chemistry Chemical Physics 2009,11 (5):p.803-807.
    97 D. Eom,D. Prezzi,K. T. Rim et al., Structure and Electronic Properties of Graphene Nanoislands on Co(0001) Nano Letters 2009,9 (8):p.2844-2848.
    98 R. T. K. Baker,P. S. Harris,R. B. Thomas et al., Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene Journal of Catalysis 1973,30 (1):p.86-95.
    99 K. F. Mccarty,P. J. Feibelman,E. Loginova et al., Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001) Carbon 2009,47 (7):p.1806-1813.
    100 P. Van Helden,I. M. Ciobica, A DFT Study of Carbon in the Subsurface Layer of Cobalt Surfaces Chemphyschem 2011,12 (16):p.2925-2928.
    101 A. Zangwill,D. D. Vvedensky, Novel Growth Mechanism of Epitaxial Graphene on Metals Nano Letters 2011,11 (5):p.2092-2095.
    102 Y. Cui,Q. Fu,H. Zhang et al., Formation of identical-size graphene nanoclusters on Ru(0001) Chemical Communications 2011,47 (5):p.1470-1472.
    103 G. F. Cabeza,P. Legare,N. J. Castellani, Adsorption of CO on Co(0001) and Pt-Co(0001) surfaces:an experimental and theoretical study Surface Science 2000,465 (3):p. 286-300.
    104 D. J. Klinke li,S. Wilke,L. J. Broadbelt, A Theoretical Study of Carbon Chemisorption on Ni(111) and Co(0001) Surfaces Journal of Catalysis 1998,178 (2):p.540-554.
    105 X.-Q. Gong,R. Raval,P. Hu, CH[sub x] hydrogenation on Co(0001):A density functional theory study The Journal of Chemical Physics 2005,122 (2):p.024711-024716.
    106 E. O. F. Zdansky,A. Nilsson,N. Martensson, CO-induced reversible surface to bulk transformation of carbidic carbon on Ni(100) Surface Science 1994,310 (1-3):p. L583-L588.
    107 F. Steinbach,J. Kiss,R. Krall, Identification and stability of CH3, CH2, and CH species on Co and Ni surfaces, a Pes investigation Surface Science 1985,157 (2-3):p.401-412.
    108 M. Araki,V. Ponec, Methanation of carbon monoxide on nickel and nickel-copper alloys Journal of Catalysis 1976,44 (3):p.439-448.
    109 P. R. Wentrcek,B. J. Wood,H. Wise, The role of surface carbon in catalytic methanation Journal of Catalysis 1976,43 (1-3):p.363-366.
    110 R. W. Joyner, Mechanism of hydrocarbon synthesis from carbon monoxide and hydrogen Journal of Catalysis 1977,50 (1):p.176-180.
    111 P. Biloen,J. N. Helle,W. M. H. Sachtler, Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis:Mechanistic implications Journal of Catalysis 1979,58(1):p.95-107.
    112 J. G. Mccarty,H. Wise, Hydrogenation of surface carbon on alumina-supported nickel Journal of Catalysis 1979,57 (3):p.406-416.
    113 J. W. A. Sachtler, J. M. Kool,V. Ponec, The role of carbon in methanation by cobalt and ruthenium Journal of Catalysis 1979,56 (2):p.284-286.
    114 D. W. Goodwan,R. D. Kelley,T. E. Madey et al., Measurement of carbide buildup and removal kinetics on Ni(100) Journal of Catalysis 1980,64 (2):p.479-481.
    115 D. W. Goodman, Model catalytic studies over metal single crystals Accounts of Chemical Research 1984,17 (5):p.194-200.
    116 R. Deng,E. Herceg,M. Trenary, Identification and Hydrogenation of C2 on Pt(111) Journal of the American Chemical Society 2005,127 (50):p.17628-17633.
    117 M. Y. Smirnov,V. V. Gorodetskii,A. R. Cholach et al., Hydrogenation of isolated atoms and small clusters of carbon on Pt(111) surface:HREELS/TDS studies Surface Science 1994, 311 (3):p.308-321.
    118 G. Klivenyi,F. Solymosi, Generation of CH2 species:thermal and photo-induced dissociation of CH2I2 on Rh(111) surface Surface Science 1995,342 (1-3):p.168-184.
    119 G. Gdowski,R. J. Madix, Gasification of surface carbon by H2O on Fe(100) Surface Science 1981,105 (2-3):p. L307-L311.
    120 T. Matsuyama,A. Ignatiev, LEED-AES study of the temperature dependent oxidation of the cobalt (0001) surface Surface Science 1981,102 (1):p.18-28.
    121 F. Grellner,B. Klingenberg,D. Borgmann et al., Electron spectroscopic study of the interaction of oxygen with Co(110) and of coadsorption with water Journal of Electron Spectroscopy and Related Phenomena 1995,71 (2):p.107-115.
    122 M. E. Bridge,R. M. Lambert, Oxygen chemisorption, surface oxidation, and the oxidation of carbon monoxide on cobalt (0001) Surface Science 1979,82 (2):p.413-424.
    123 B. W. Lee,A. Ignatiev,J. A. Taylor et al., Atomic structure sensitivity of XPS:The oxidation of cobalt Solid State Communications 1980,33 (12):p.1205-1208.
    124 G. R. Castro,J. Kuppers, Interaction of oxygen with hcp (0001) recrystallized cobalt surfaces Surface Science 1982,123 (2-3):p.456-470.
    125 A. Bogen,J. Kuppers, Oxidation of Co(poly) and Co(100) surfaces:Structure and temperature effects Surface Science 1983,134 (1):p.223-236.
    126 N.-L. Wang,U. Kaiser,O. Ganschow et al., Oxidation of cobalt at room temperature, studied by combined static SIMS, static AES, XPS and work function investigations Surface Science 1983,124(1):p.51-67.
    127 T. J. Chuang,C. R. Brundle,D. W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces Surface Science 1976,59 (2):p.413-429.
    128 G. Benitez,J. M. Heras,L. Viscido, Oxygen adsorption on thin cobalt films. An Auger and work function study Vacuum 1997,48 (7-9):p.651-653.
    129 J. Lahtinen,J. Vaari,A. Taio et al., Adsorption and desorption measurements of CO and O2 on cobalt Vacuum 1990,41 (1-3):p.112-114.
    130 M. Hassel,H. J. Freund, High Resolution XPS Study of a Thin CoO(111) Film Grown on Co(0001) Surface Science Spectra 1996,4 (3):p.273-278.
    131 J. Nakamura,K.-I. Tanaka,I. Toyoshima, Reactivity of deposited carbon on Co/Al2O3 catalyst Journal of Catalysis 1987,108 (1):p.55-62.
    132 R. W. Joyner,G. R. Darling,J. B. Pendry, Stability of bulk and surface carbide layers and their relation to the Fischer-Tropsch hydrocarbon synthesis Surface Science 1988,205 (3):p. 513-522.
    133 H. J. Krebs,H. P. Bonzel,G. Gafner, A model study of the hydrogenation of CO over po/ycrystalline iron Surface Science 1979,88 (1):p.269-283.
    134 J. Nakamura,I. Toyoshima,K.-I. Tanaka, Formation of carbidic and graphite carbon from CO on polycrystalline cobalt Surface Science 1988,201 (1-2):p.185-194.
    135 D. W. Goodman,R. D. Kelley,T. E. Madey et al., Kinetics of the hydrogenation of CO over a single crystal nickel catalyst Journal of Catalysis 1980,63 (1):p.226-234.
    136 T. J. Vink.M. Bolech,O. L. J. Gijzeman et al., The reactivity of the graphite overlayer on Fe(110) towards oxygen Surface Science 1988,194 (3):p.559-566.
    137 T. J. Vink,S. F. G. M. Spronck,O. L. J. Gijzeman et al., Gasification of the carbide layer on Fe(100) by oxygen Surface Science 1986,175 (1):p.177-184.
    138 T. N. Rhodin,C. F. Brucker, Effect of surface deactivation on molecular chemisorption: Co on a Fe(100) surfaces Solid State Communications 1977,23 (5):p.275-279.
    139 H. K6rner,H. Landes,G. Wedler et al., The effect of carburization and oxygen exposure on the reaction of carbon monoxide on iron films at 573 K under a pressure between 5 and 10 mbar Applications of Surface Science 18 (4):p.361-376.
    140 J. Benziger,R. J. Madix, The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100) Surface Science 1980,94 (1):p.119-153.
    141 D. R. Mullins,S. H. Overbury, Formation of subsurface carbon induced by oxygen adsorption on carbon-covered W(001) Surface Science 1989,210 (3):p.501-519.
    142 L. vari,J. Kiss,A. P. Farkas et al., Reactivity of Mo2C/Mo(100) toward oxygen:LEIS, AES, andXPSstudy Surface Science 2004,566-568 (Part 2):p.1082-1086.
    143 N. A. Vinogradov,K. Schulte,M. L. Ng et al., Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111) The Journal of Physical Chemistry C 2011,115 (19): p.9568-9577.
    144 G. A. Mills,F. W. Steffgen, Catalytic Methanation Catalysis Reviews:Science and Engineering 1974,8 (1):p.159-210.
    145 Z.-J. Wang,Z. Yan,C.-J. Liu et al., Surface Science Studies on Cobalt Fischer-Tropsch Catalysts ChemCatChem 2011,3 (3):p.551-559.
    146 W. Weiss,W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers Progress in Surface Science 2002,70 (1-3):p.1-151.
    147 G. S. Herman,Y. J. Kim,S. A. Chambers et al., Interaction of D2O with CeO2(001) Investigated by Temperature-Programmed Desorption and X-ray Photoelectron Spectroscopy Langmuir 1999,15 (11):p.3993-3997.
    148 M. Hassel,H. J. Freund, NO on CoO(111)/Co(0001):hydroxyl assisted adsorption Surface Science 1995,325 (1-2):p.163-168.
    149 G. Benndorf,C. Nobl,T. E. Madey, H2O adsorption on oxygen-dosed Ni(110): Formation and orientation of OH(ad) Surface Science 1984,138 (2-3):p.292-304.
    150 R. Reichelt,S. Gunther,Ro et al., High-pressure STM of the interaction of oxygen with Ag(111) Physical Chemistry Chemical Physics 2007,9 (27):p.3590-3599.
    151 A. Kokalj,A. Dal Corso,S. De Gironcoli et al., DFT Study of a Weakly π-Bonded C2H4 on Oxygen-Covered Ag(100) The Journal of Physical Chemistry B 2005,110 (1):p.367-376.
    152 J. R. Hahn,W. Ho, Direct Observation of C2 Hydrocarbon-Oxygen Complexes on Ag(110) with a Variable-Low-Temperature Scanning Tunneling Microscope The Journal of Physical Chemistry B 2005,109 (43):p.20350-20354.
    153 A. Kokalj,A. Dal Corso,S. De Gironcoli et al., Co-adsorption of ethylene and oxygen on the Ag(001) surface Surface Science 2003,532-535 (0):p.191-197.
    154 V.1. Bukhtiyarov,V. V. Kaichev,E. A. Podgornov et al., XPS, UPS, TPD and TPR studies of oxygen species active in silver-catalysed ethylene epoxidation Catalysis Letters 1999, 57 (4):p.233-239.
    155 M. Akita,N. Osaka,S. Hiramoto et al., Infrared reflection absorption spectroscopic study on the adsorption structures of ethylene on Ag(110) and atomic oxygen pre-covered Ag(110) surfaces Surface Science 1999,427-428 (0):p.374-380.
    156 V. I. Bukhtiyarov,I. P. Prosvirin,R. I. Kvon, Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR Surface Science 1994,320 (1-2):p. L47-L50.
    157 C. T. Campbell Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface:Structural sensitivity; AVS,1984; Vol.2.
    158 P. Berlowitz,C. Megiris,J. B. Butt et al., Temperature-programmed desorption study of ethylene on a clean, a hydrogen-covered, and an oxygen-covered platinum(Ill) surface Langmuir 1985,1 (2):p.206-212.
    159 A. Cassuto,M. Mane.M. Hugenschmidt et al., The effect of K, Cs and O atoms on ethylene adsorption on the Pt(111) surface Surface Science 1990,237 (1-3):p.63-71.
    160 D. Velic,R. J. Levis Selective collision?induced desorption:Measurement of the π bonded C2H4 binding energy on Pt{111} precovered with atomic oxygen; AIP,1996; Vol.104.
    161 E. M. Stuve,R. J. Madix,C. R. Brundle, The adsorption and reaction of ethylene on clean and oxygen covered Pd(100) Surface Science 1985,152-153 (Part 1):p.532-542.
    162 J.-F. Jia,K. Wu,S.-H. Lu et al., Oxidation of ethylene on the ordered alloy surface Pd{001}c(2 ×2)-Mn Surface Science 1995,338 (1-3):p,69-76.
    163 E. M. Stuve,R. J. Madix, Oxidation of ethylene on Pd(100); bonding of ethylene and scavenging of dehydrogenation fragments by surface oxygen Surface Science 1985,160 (1):p. 293-304.
    164 R. E. Rettew,A. Meyer,S. D. Senanayake et al., Interactions of oxygen and ethylene with submonolayer Ag films supported on Ni(111) Physical Chemistry Chemical Physics 2011, 13 (23):p.11034-11044.
    165 M. P. A. Lorenz,T. Fuhrmann,R. Streber et al., Ethene adsorption and dehydrogenation on clean and oxygen precovered Ni(111) studied by high resolution x-ray photoelectron spectroscopy The Journal of Chemical Physics 2010,133 (1):p.014706-014706.
    166 A. Ritz,A. Spitzer,H. Liith, Adsorption of ethylene on clean and oxygen precovered Cu(110) surfaces Applied Physics A:Materials Science & Processing 1984,34 (1):p. 31-33.
    167 D. Torres,N. Lopez,F. Illas, A theoretical study of coverage effects for ethylene epoxidation on Cu(111) under low oxygen pressure Journal of Catalysis 2006,243 (2):p. 404-409.
    168 J. Kubota,J. N. Kondo,K. Domen et al., IRAS Studies of Adsorbed Ethene (C2H4) on Clean and Oxygen-Covered Cu(110) Surfaces The Journal of Physical Chemistry 1994,98 (31): p.7653-7656.
    169 D. Torres,F. Illas, On the Performance of Au(111) for Ethylene Epoxidation:A Density Functional Study The Journal of Physical Chemistry B 2006,110 (27):p.13310-13313.
    170 D. A. Outka,R. J. Madix, Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene Journal of the American Chemical Society 1987,109 (6):p.1708-1714.
    171 R. Schlogl, The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation Science 2008,320 p.5.
    172 H.J.Freund, Hydrogenation on Metal Surfaces:Why are Nanoparticles More Active than Single Crystals? Angew. Chem. Int. Ed 2003,42 p.4.
    173 D. W. Flaherty,S. P. Berglund,C. B. Mullins, Selective decomposition of formic acid on molybdenum carbide:A new reaction pathway Journal of Catalysis 2010,269 (1):p.33-43.
    174 P. Wu,H. Jiang, W. Zhang et al., Lattice Mismatch Induced Nonlinear Growth of Graphene Journal of the American Chemical Society 2012,134 (13):p.6045-6051.
    1 H.-J. Freund,G. Pacchioni, Oxide ultra-thin films on metals:new materials for the design of supported metal catalysts Chemical Society Reviews 2008,37 (10):p.
    2 G. D. Freund Hj, Ultrathin oxide films. in Handbook of Heterogeneous Catalysis Wiley-VCH Verlag GmbH & Co. KgaA 2008,3 p.30.
    3 M. Sterrer,M. Heyde,M. Novicki et al., Identification of Color Centers on MgO(001) Thin Films with Scanning Tunneling Microscopy The Journal of Physical Chemistry B 2005,110 (1):p.46-49.
    4 M. Sterrer,T. Risse,U. Martinez Pozzoni et al., Control of the Charge State of Metal Atoms on Thin MgO Films Physical Review Letters 2007,98 (9):p.096107.
    5 T. Risse,S. Shaikhutdinov,N. Nilius et al., Gold Supported on Thin Oxide Films:From Single Atoms to Nanoparticles Accounts of Chemical Research 2008,41 (8):p.949-956.
    6 J. Rodriguez,D.Wayne Goodman, High-pressure catalytic reactions over single-crystal metal surfaces Surface Science Reports 1991,14 (1-2):p.1-107.
    7 C. T. Campbell, Ultrathin metal films and particles on oxide surfaces:structural, electronic and chemisorptive properties Surface Science Reports 1997,27 (1-3):p.1-111.
    8 F. Esch,S. Fabris,L. Zhou et al., Electron Localization Determines Defect Formation on Ceria Substrates Science 2005,309 (5735):p.752-755.
    9 C. T. Campbell,C. H. F. Peden, CHEMISTRY:Oxygen Vacancies and Catalysis on Ceria Surfaces Science 2005,309 (5735):p.713-714.
    10 S. Polarz,J. Strunk.V. Ischenko et al., On the Role of Oxygen Defects in the Catalytic Performance of Zinc Oxide13 Angewandte Chemie International Edition 2006,45 (18):p. 2965-2969.
    11 Q. Wang,J. Biener,X.-C. Guo et al., Reactivity of Stoichiometric and Defective TiO2 (110) Surfaces toward DC OOD Decomposition The Journal of Physical Chemistry B 2003,107 (42):p.11709-11720.
    12 M. V. Ganduglia-Pirovano,A. Hofmann,J. Sauer, Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges Surface Science Reports 2007,62 (6):p.219-270.
    13 M. Chiesa,M. C. Paganini,E. Giamello, Bidimensional Solvation and Delocalisation of Electrons at the Surface of an Insulating Oxide:The Role of Surface Hydroxyl Groups on MgO Chemphyschem 2004,5 (12):p.1897-1900.
    14 K. Onda,B. Li,J. Zhao et al., Wet Electrons at the H2O/TiO2(110) Surface Science 2005,308(5725):p.1154-1158.
    15 P. J. Eng,T. P. Trainor,G. E. Brown Jr. et al., Structure of the Hydrated a-Al2O3 (0001) Surface Science 2000,288 (5468):p.1029-1033.
    16 F. Rohr,K. Wirth,J. Libuda et al., Hydroxyl driven reconstruction of the polar NiOflll) surface Surface Science 1994,315 (1-2):p. L977-L982.
    17 D. Cappus,M. Haβel,E. Neuhaus et al., Polar surfaces of oxides:reactivity and reconstruction Surface Science 1995,337 (3):p.268-277.
    18 J. Libuda,M. Frank,A. Sandell et al., Interaction of rhodium with hydroxylated alumina model substrates Surface Science 1997,384 (1-3):p.106-119.
    19 Z. Qu,W. Huang,S. Zhou et al., Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support Journal of Catalysis 2005,234 (1):p. 33-36.
    20 K. Qian,J. Fang,W. Huang et al., Understanding the deposition-precipitation process for the preparation of supported Au catalysts Journal of Molecular Catalysis A:Chemical 2010, 320 (1-2):p.97-105.
    21 A. Fukuoka,J.-I. Kimura,T. Oshio et al., Preferential Oxidation of Carbon Monoxide Catalyzed by Platinum Nanoparticles in Mesoporous Silica Journal of the American Chemical Society 2007,129 (33):p.10120-10125.
    22 P. O. Graf,D. J. M. De Vlieger,B. L. Mojet et al., New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2 Journal of Catalysis 2009,262 (2):p.181-187.
    23 J. Wang,C. Y. Fan,Q. Sun et al., Surface Coordination Chemistry:Dihydrogen versus Hydride Complexes on RuO2(110) Angewandte Chemie International Edition 2003,42 (19):p. 2151-2154.
    24 M. Knapp,D. Crihan,A. P. Seitsonen et al., Hydrogen Transfer Reaction on the Surface of an Oxide Catalyst Journal of the American Chemical Society 2005,127 (10):p.3236-3237.
    25 M. Knapp,D. Crihan,A. P. Seitsonen et al., Unusual Process of Water Formation on RuO2(110) by Hydrogen Exposure at Room Temperature The Journal of Physical Chemistry B 2006,110 (29):p.14007-14010.
    26 M. Kunat,U. Burghaus,C. Woll, Adsorption of hydrogen on the polar O-ZnO surface:a molecular beam study Physical Chemistry Chemical Physics 2003,5 (21):p.4962-4967.
    27 X.-L. Yin,A. Birkner,K. Hanel et al., Adsorption of atomic hydrogen on ZnO(10[l with combining macronJO):STM study Physical Chemistry Chemical Physics 2006,8 (13):p. 1477-1481.
    28 Y. Wang,B. Meyer,X. Yin et al., Hydrogen Induced Metallicity on the ZnO(1010) Surface Physical Review Letters 2005,95 (26):p.266104.
    29 W. Weiss,W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers Progress in Surface Science 2002,70 (1-3):p.1-151.
    30 O. Shekhah,W. Ranke,A. Schule et al., Styrene Synthesis:High Conversion over Unpromoted Iron Oxide Catalysts under Practical Working Conditions Angewandte Chemie International Edition 2003,42 (46):p.5760-5763.
    31 O. Shekhah,W. Ranke,R. Schlogl, Styrene synthesis:in situ characterization and reactivity studies of unpromoted and potassium-promoted iron oxide model catalysts Journal of Catalysis 2004,225 (1):p.56-68.
    32 W. X. Huang,W. Ranke, Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen Surface Science 2006,600 (4):p.793-802.
    33 W. Huang, W. Ranke,R. Schlogl, Reduction of an a-Fe2O3(0001) Film Using Atomic Hydrogen The Journal of Physical Chemistry C 2007,111 (5):p.2198-2204.
    34 C. Ratnasamy,J. P. Wagner, Water Gas Shift Catalysis Catalysis Reviews 2009,51 (3): p.325-440.
    35 M. Kotobuki,A. Watanabe,H. Uchida et al., Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts Journal of Catalysis 2005,236 (2):p.262-269.
    36 Y.-N. Sun,L. Giordano,J. Goniakowski et al., The Interplay between Structure and CO Oxidation Catalysis on Metal-Supported Ultrathin Oxide Films Angewandte Chemie International Edition 2010,49 (26):p.4418-4421.
    37 Q. Fu,W.-X. Li,Y. Yao et al., Interface-Confined Ferrous Centers for Catalytic Oxidation Science 2010,328 (5982):p.1141-1144.
    38 J. Knudsen,L. R. Merte,L. C. Grabow et al., Reduction of FeO/Pt(111) thin films by exposure to atomic hydrogen Surface Science 2010,604 (1):p.11-20.
    39 Y. K. Kim,Z. Zhang,G. S. Parkinson et al., Reactivity of FeO(111)/Pt(111) with Alcohols The Journal of Physical Chemistry C 2009,113 (46):p.20020-20028.
    40 L. R. Merte,L. C. Grabow,G. Peng et al., Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111) The Journal of Physical Chemistry C 2011, p. null-null.
    41 S.T.Ceyer, The Unique Chemistry of Hydrogen beneath the Surface:Catalytic Hydrogenation of Hydrocarbons Acc.Chem.Res 2001,34 p.8.
    42 S.T.Ceyer, The Chemistry of Bulk Hydrogen:Reaction of Hydrogen Embedded in Nickel with Adsorbed CH3 Science 1992,257 p.3.
    43 C. Lemire,R. Meyer,V E. Henrich et al., The surface structure of Fe3O4(111) films as studied by CO adsorption Surface Science 2004,572 (1):p.103-114.
    44 B. Geil,T. M. Kirschgen,F. Fujara, Mechanism of proton transport in hexagonal ice Physical Review B 2005,72 (1):p.014304.
    45 Y. Joseph,W. Ranke,W. Weiss, Water on FeO(111) and Fe3O4(111):Adsorption behavior on different surface terminations Journal of Physical Chemistry B 2000,104 (14):p. 3224-3236.
    46 U. Leist,W. Ranke,K. Al-Shamery, Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111) and Fe2O3(biphase) Physical Chemistry Chemical Physics 2003,5 (11): p.2435-2441.
    47 M. A. Henderson, The interaction of water with solid surfaces:fundamental aspects revisited Surface Science Reports 2002,46 (1-8):p.1-308.
    48 C. Clay,S. Haq,A. Hodgson, Intact and dissociative adsorption of water on Ru(0001) Chemical Physics Letters 2004,388 (1-3):p.89-93.
    49 C.-W. Lee,P.-R. Lee,H. Kang, Protons at Ice Surfaces Angewandte Chemie International Edition 2006,45 (33):p.5529-5533.
    50 M. E. Grillo,M. W. Finnis,W. Ranke, Surface structure and water adsorption on Fe3O4(111):Spin-density functional theory and on-site Coulomb interactions Physical Review B 2008,77 (7):p.075407.
    51 A. Boddien,B. R. Loges,F. GaRtner et al., Iron-Catalyzed Hydrogen Production from Formic Acid Journal of the American Chemical Society 2010,132 (26):p.8924-8934.
    52 W.-H. Hung,S. L. Bernasek, The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe (100) surface Surface Science 1996,346 (1-3):p. 165-188.
    53 R. L. Toomes,D. A. King, Potassium-promoted synthesis of surface formate and reactions of formic acid on Co{100} Surface Science 1996,349 (1):p.43-64.
    54 S. Katano,Y. Kim,Y. Kagata et al., Single-Molecule Vibrational Spectroscopy and Inelastic-Tunneling-Electron-Induced Diffusion of Formate Adsorbed on Ni(110) The Journal of Physical Chemistry C 2010,114 (7):p.3003-3007.
    55 J. Kubota,A. Bandara,A. Wada et al., IRAS study of formic acid decomposition on NiO(111)/Ni(111) surface:comparison of vacuum and catalytic conditions Surface Science 1996, 368 (1-3):p.361-365.
    56 S. Haq,J. G. Love,H. E. Sanders et al., Adsorption and decomposition of formic acid on Ni{110} Surface Science 1995,325 (3):p.230-242.
    57 R. J. Madix,J. L. Gland,G. E. Mitchell et al., Identification of the intermediates in the dehydration of formic acid on Ni(110) by high resolution electron energy loss vibrational spectroscopy Surface Science 1983,125 (2):p.481-489.
    58 T. G. A. Youngs,S. Haq,M. Bowker, Formic acid adsorption and oxidation on Cu(110) Surface Science 2008,602 (10):p.1775-1782.
    59 P. Stone,S. Poulston,R. A. Bennett et al.. An STM, TPD and XPS investigation of formic acid adsorption on the oxygen-precovered c(6×2) surface of Cu(110) Surface Science 1998,418(1):p.71-83.
    60 A. F. Carley,P. R. Davies,G. G. Mariotti, The oxidation of formic acid to carbonate at Cu(110) surfaces Surface Science 1998,401 (3):p.400-411.
    61 M. Bowker,E. Rowbotham,F. M. Leibsle et al., The adsorption and decomposition of formic acid on Cu{110} Surface Science 1996,349 (2):p.97-110.
    62 B. E. Hayden,K. Prince,D. P. Woodruff et al., An iras study of formic acid and surface formate adsorbed on Cu(110) Surface Science 1983,133 (2-3):p.589-604.
    63 R. B. Barros,A. R. Garcia,L. M. Ilharco, The chemistry of formic acid on oxygen modified Ru(001) surfaces Surface Science 2005,591 (1-3):p.142-152.
    64 J. Xie,W. J. Mitchell,K. J. Lyons et al., Atomic hydrogen-induced decomposition of chemisorbed formate at 100 K on the Ru(001) surface The Journal of Chemical Physics 1994, 101 (10):p.9195-9197.
    65 B. Meng,T. A. Jachimowski,Y. Sun et al., Stabilization effects in the decomposition of formate on Ru(001) Surface Science 1994,315 (1-2):p. L959-L963.
    66 Y. K. Sun,W. H. Weinberg, Catalytic decomposition of formic acid on Ru(001): Transient measurements The Journal of Chemical Physics 1991,94 (6):p.4587-4599.
    67 G. Hoogers,D. C. Papageorgopoulos,Q. Ge et al., Self-acceleration in the decomposition of acetic acid on Rh{111}:a combined TPD and laser induced desorption study Surface Science 1995,340 (1-2):p.23-35.
    68 C. Houtman,M. A. Barteau, Reactions of formic acid and formaldehyde on Rh(111) and Rh(111)-(2×2)O surfaces Surface Science 1991,248 (1-2):p.57-76.
    69 F. Solymosi,J. Kiss,I. Kovacs, Adsorption of HCOOH on Rh(111) and its reaction with preadsorbed oxygen Surface Science 1987,192 (1):p.47-65.
    70 F. Solymosi,J. Kiss, Interaction of HCOOH with a rhodium surface, studied by Auger electron, electron energy loss, and thermal desorption spectroscopy Journal of Catalysis 1983,81 (1):p.95-106.
    71 T. Zheng,D. Stacchiola,D. K. Saldin et al., The structure of formate species on Pd(111) calculated by density functional theory and determined using low energy electron diffraction Surface Science 2005,574 (2-3):p.166-174.
    72 M. Bowker,C. Morgan,J. Couves, Acetic acid adsorption and decomposition on Pd(l 10) Surface Science 2004,555(1-3):p.145-156.
    73 F. Solymosi,I. Kovacs, Adsorption and reaction of HCOOH on K-promoted Pd(100) surfaces Surface Science 1991,259 (1-2):p.95-108.
    74 C. Egawa,I. Doi,S. Naito et al., Adsorption of methanol, formaldehyde and formic acid on Pd(100) surfaces modified by a sodium and sodium oxide overlayer Surface Science 1986, 176 (3):p.491-504.
    75 B. A. Sexton,R. J. Madix, A vibrational study of formic acid interaction with clean and oxygen-covered silver (110) surfaces Surface Science 1981,105 (1):p.177-195.
    76 V. Grozovski,V. Climent,E. Herrero et al., Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces Physical Chemistry Chemical Physics 2010, 12 (31):p.8822-8831.
    77 H.-F. Wang,Z.-P. Liu, Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model The Journal of Physical Chemistry C 2009,113 (40):p.17502-17508.
    78 N. Schumacher,K. J. Andersson,J. Nerlov et al., Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111) Surface Science 2008,602 (16):p. 2783-2788.
    79 F. S. Thomas,R. I. Masel, Formic acid decomposition on palladium-coated Pt(110) Surface Science 2004,573 (2):p.169-175.
    80 T. Ohtani,J. Kubota,A. Wada et al., IRAS and TPD study of adsorbed formic acid on Pt(110)-(1×2) surface Surface Science 1996,368 (1-3):p.270-274.
    81 M. R. Columbia,P. A. Thiel, The stabilization of formate on Pt(111) by coadsorbed atomic oxygen Chemical Physics Letters 1994,220 (3-5):p.167-171.
    82 M. R. Columbia,A. M. Crabtree,P. A. Thiel, The temperature and coverage dependences of adsorbed formic acid and its conversion to formate on platinum(111) Journal of the American Chemical Society 1992,114 (4):p.1231-1237.
    83 M. R. Columbia,P. A. Thiel, The reaction of formic acid with clean and water-covered Pt(111) Surface Science 1990,235 (1):p.53-59.
    84 N. R. Avery, Adsorption of formic acid on clean and oxygen covered Pt(111) Applications of Surface Science 1982,11-12 p.774-783.
    85 D. A. Outka,R. J. Madix, Acid-base and nucleophilic chemistry of atomic oxygen on the Au(110) surface:Reactions with formic acid and formaldehyde Surface Science 1987,179 (2-3):p.361-376.
    86 M. Chtaib,P. A. Thiry,J. J. Pireaux et al., Evidence for different adsorption configurations of HCOOH on Au(111) andAu(110) Surface Science 1985,162 (1-3):p.245-251.
    87 M. Chtatb,P. A. Thiry,J. Delrue et al., HREELS study of formic acid adsorption on gold (110) and (111) surfaces Journal of Electron Spectroscopy and Related Phenomena 1983,29 (1): p.293-299.
    88 M. Chtaib,Et Al., Decomposition of HCOOH on Gold Studied by XPS and TDS Spectroscopies and its Behaviour Under Very Low Energy Electron Excitation Physica Scripta 1983,1983 (T4):p.133.
    89 D. W. Flaherty,S. P. Berglund,C. B. Mullins, Selective decomposition of formic acid on molybdenum carbide:A new reaction pathway Journal of Catalysis 2010,269 (1):p.33-43.
    90 J. E. Crowell,J. G. Chen,J. J. T. Yates, A vibrational study of the adsorption and decomposition of formic acid and surface formate on Al(111) The Journal of Chemical Physics 1986,85 (5):p.3111-3122.
    91 R. J. Madix In Advances in Catalysis; D.D. Eley, H. P., Paul, B. W., Eds.; Academic Press:1980; Vol. Volume 29, p 1-53.
    92 M. R. Columbia,P. A. Thiel,The interaction of formic acid with transition metal surfaces, studied in ultrahigh vacuum Journal of Electroanalytical Chemistry 1994,369 (1-2):p. 1-14.
    93 M. R. Columbia,A. M. Crabtree,P. A. Thiel, Chemical reactions between atomic oxygen and formic acid on Pt(111) Journal of Electroanalytical Chemistry 1993,351 (1-2):p. 207-226.
    94 M. Lintuluoto,H. Nakatsuji,M. Hada et al., Theoretical study of the decomposition of HCOOH on an MgO(100) surface Surface Science 1999,429 (1-3):p.133-142.
    95 M. A. Szymanski.M. J. Gillan, The energetics of adsorption of HCOOH on the MgO(100) surface Surface Science 1996,367 (2):p.135-148.
    96 H. Nakatsuji,M. Yoshimoto,M. Hada et al., Theoretical study on the chemisorption and the surface reaction of HCOOH on a MgO(001) surface Surface Science 1995,336 (1-2):p. 232-244.
    97 K. Domen,N. Akamatsu,H. Yamamoto et al., Infrared-visible sum frequency generation study of HCOOH on an MgO(001) surface Surface Science 1993,283 (1-3):p.468-472.
    98 X. D. Peng,M. A. Barteau, Dehydration of carboxylic acids on the MgO(100) surface Catalysis Letters 1990,7 (5):p.395-402.
    99 X. D. Peng,M. A. Barteau, Spectroscopic characterization of surface species derived from HCOOH, CH3COOH, CH30H, C2H5OH, HCOOCH3, and C2H2 on MgO thin film surfaces Surface Science 1989,224 (1-3):p.327-347.
    100 R. Lindsay,S. Tomic.A. Wander et al., Low Energy Electron Diffraction Study of TiO2(110)(2×1)-[HCOO]-The Journal of Physical Chemistry C 2008,112 (36):p. 14154-14157.
    101 Y. Uemura,T. Taniike,M. Tada et al., Switchover of Reaction Mechanism for the Catalytic Decomposition of HCOOH on a TiO2(110) Surface The Journal of Physical Chemistry C 2007,111 (44):p.16379-16386.
    102 M. Aizawa,Y. Morikawa,Y. Namai et al., Oxygen Vacancy Promoting Catalytic Dehydration of Formic Acid on TiO2(110) by in Situ Scanning Tunneling Microscopic Observation The Journal of Physical Chemistry B 2005,109 (40):p.18831-18838.
    103 D. I. Sayago,M. Polcik,R. Lindsay et al., Structure Determination of Formic Acid Reaction Products on TiO2(110)? The Journal of Physical Chemistry B 2004,108 (38):p. 14316-14323.
    104 M. Bowker,P. Stone,R. Bennett et al., Formic acid adsorption and decomposition on TiO2(110) and on Pd/TiO2(110) model catalysts Surface Science 2002,511 (1-3):p.435-448.
    105 L. Q. Wang,K. F. Ferris,A. N. Shultz et al., Interactions of HCOOH with stoichiometric and defective TiO2(110) surfaces Surface Science 1997,380 (2-3):p.352-364.
    106 H. Idriss,V. S. Lusvardi,M. A. Barteau, Two routes to formaldehyde from formic acid on TiO2(001) surfaces Surface Science 1996,348 (1-2):p.39-48.
    107 H. Onishi,T. Aruga,Y. Iwasawa, Switchover of Reaction Paths in the Catalytic Decomposition of Formic Acid on TiO2(110) Surface Journal of Catalysis 1994,146 (2):p. 557-567.
    108 P. A. Dilara,J. M. Vohs, Structure sensitivity in the reaction of methanol on ZrO2 Surface Science 1994,321 (1-2):p.8-18.
    109 P. A. Dilara,J. M. Vohs, TPD and HREELS investigation of the reaction of formic acid on zirconium dioxide(100) The Journal of Physical Chemistry 1993,97 (49):p.12919-12923.
    110 A. Bandara,J. Kubota,A. Wada et al., Adsorption and decomposition of formic acid on the NiO(111)-p(2×2) surface:TPD and steady state kinetics studies Surface Science 1996,364 (2):p. L580-L586.
    111 A. W. Grant,A. Jamieson,C. T. Campbell, Adsorption of chlorine on ZnO(0001)-Zn and coadsorption with HCOOH Surface Science 2000,458 (1-3):p.71-79.
    112 M. Yoshimoto,S. Takagi,Y. Umemura et al., Theoretical Study on the Decomposition of HCOOH on a ZnO(100) Surface Journal of Catalysis 1998,173 (1):p.53-63.
    113 J. Yoshihara,C. T. Campbell, Chemisorption of formic acid and CO on Cu particles on the Zn-terminated ZnO (0001) surface Surface Science 1998,407 (1-3):p.256-267.
    114 S. Crook,H. Dhariwal,G. Thornton, HREELS study of the interaction of formic acid with ZnO(1010) and ZnO(0001)-O Surface Science 1997,382 (1-3):p.19-25.
    115 W. T. Petrie,J. M. Vohs, Reply to "comment on [Jan HREELS investigation of the adsorption and reaction of formic acid on the (0001)-Zn surface of ZnO'by J. Jupille and N. V. Richardson"Surface Science 1992,274 (1):p. L503-L503.
    116 W. T. Petrie,J. M. Vohs, An HREELS investigation of the adsorption and reaction of formic acid on the (0001)-Zn surface of ZnO Surface Science 1991,245 (3):p.315-323.
    117 J. M. Vohs,M. A. Barteau, Conversion of methanol, formaldehyde and formic acid on the polar faces of zinc oxide Surface Science 1986,176 (1-2):p.91-114.
    118 M. Sinner-Hettenbach,M. Gothelid,J. Weissenrieder et al., Oxygen-deficient SnO2(110):a STM, LEED and XPS study Surface Science 2001,477 (1):p.50-58.
    119 V. A. Gercher,D. F. Cox,J.-M. Themlin, Oxygen-vacancy-controlled chemistry on a metal oxide surface:methanol dissociation and oxidation on SnO2(110) Surface Science 1994, 306 (3):p.279-293.
    120 V. A. Gercher,D. F. Cox, Formic acid decomposition on SnO2(110) Surface Science 1994,312 (1-2):p.106-114.
    121 W. O. Gordon,Y. Xu,D. R. Mullins et al., Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111) Physical Chemistry Chemical Physics 2009,11 (47):p.11171-11183.
    122 S. D. Senanayake,D. R. Mullins, Redox Pathways for HCOOH Decomposition over CeO2 Surfaces The Journal of Physical Chemistry C 2008,112 (26):p.9744-9752.
    123 J. Stubenrauch,E. Brosha,J. M. Vohs, Reaction of carboxylic acids on CeO2(111) and CeO2(100) Catalysis Today 1996,28 (4):p.431-441.
    124 C. Li,K. Domen,K.-I. Maruya et al., Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide Journal of Catalysis 1990,125 (2):p.445-455.
    125 S. V. Chong,H. Idriss, The reactions of carboxylic acids on UO2(111) single crystal surfaces. Effect of gas-phase acidity and surface defects Surface Science 2002,504 p.145-158.
    126 W. L. Manner,J. A. Lloyd,M. T. Paffett, Reactivity of formic acid (HCOOD and DCOOH) at uranium and UO2.0surfaces Surface Science 1999,441 (1):p.117-132.
    127 W. S. Sim,P. Gardner,D. A. King, Multiple Bonding Configurations of Adsorbed Formate on Ag{111} The Journal of Physical Chemistry 1996,100 (30):p.12509-12516.
    1 Q. Fu,W.-X. Li,Y. Yao et al., Interface-Confined Ferrous Centers for Catalytic Oxidation Science 2010,328 (5982):p.1141-1144.
    2 S. Shaikhutdinov,H.-J. Freund, Ultrathin Oxide Films on Metal Supports: Structure-Reactivity Relations Annual Review of Physical Chemistry 2012,63 (1):p.619-633.
    3 C. Z. Zheng,C. K. Yeung,M. M. T. Loy et al., Step effects and coverage dependence of hydrogen atom diffusion on Pt(111) surfaces Physical Review B 2004,70 (20):p.-
    4 S. C. Badescu,K. Jacobi,Y. Wang et al., Vibrational states of a H monolayer on the Pt(111) surface Physical Review B 2003,68 (20):p.205401.
    5 K. Fukutani,A. Itoh,M. Wilde et al., Zero-Point Vibration of Hydrogen Adsorbed on Si and Pt Surfaces Physical Review Letters 2002,88 (11):p.116101.
    6 G. W. Watson,R. P. K. Wells,D. J. Willock et al., A Comparison of the Adsorption and Diffusion of Hydrogen on the{111} Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations The Journal of Physical Chemistry B 2001,105 (21):p.4889-4894.
    7 G. Kallen,G. Wahnstrom, Quantum treatment of H adsorbed on a Pt(111) surface Physical Review B 2001,65 (3):p.033406.
    8 G. Papoian,J. K. N(?)rskov,R. Hoffmann, A Comparative Theoretical Study of the Hydrogen, Methyl, and Ethyl Chemisorption on the Pt(111) Surface Journal of the American Chemical Society 2000,122 (17):p.4129-4144.
    9 K. Nobuhara,H. Nakanishi,H. Kasai et al., Interactions of atomic hydrogen with Cu(111), Pt(111), and Pd(111) Journal of Applied Physics 2000,88 (11):p.6897-6901.
    10 R. A. Olsen,G. J. Kroes,E. J. Baerends, Atomic and molecular hydrogen interacting with Pt(111) The Journal of Chemical Physics 1999,111 (24):p.11155-11163.
    11 K. Umezawa,T. Ito,M. Asada et al., Adsorption of hydrogen on the Pt(111) surface from low-energy recoil scattering Surface Science 1997,387 (1-3):p.320-327.
    12 A. P. Graham,A. MenzeI,J. P. Toennies, Quasielastic helium atom scattering measurements of microscopic diffusional dynamics of H and D on the Pt(111) surface The Journal of Chemical Physics 1999,111 (4):p.1676-1685.
    13 S. C. Gebhard,B. E. Koel, Influence of potassium on the adsorption of hydrogen on platinum(111) The Journal of Physical Chemistry 1992,96 (17):p.7056-7063.
    14 L. J. Richter,W. Ho, Vibrational spectroscopy of Hon Pt(111):Evidence for universally soft parallel modes Physical Review B 1987,36 (18):p.9797-9800.
    15 E. G. Seebauer,L. D. Schmidt, Surface diffusion of hydrogen on Pt(111):laser-induced thermal desorption studies Chemical Physics Letters 1986,123 (1-2):p.129-133.
    16 C.M. Greenlief,S. Akhter,J. M. White, Temperature-programmed desorption study of hydrogen-deuterium exchange on platinum(111) and the role of subsurface sites The Journal of Physical Chemistry 1986,90 (17):p.4080-4083.
    17 B. J. J. Koeleman,S. T. De Zwart,A. L. Boers et al., Information on Adsorbate Positions from Low-Energy Recoil Scattering:Adsorption of Hydrogen on Pt Physical Review Letters 1986,56 (11):p.1152-1155.
    18 B. Poelsema,L. S. Brown,K. Lenz et al., On the origin of the low-temperature (≈150 K) H2 desorption from Pt(111) Surface Science 1986,171 (1):p. L395-L400.
    19 P. R. Norton,J. A. Davies,T. E. Jackman, Absolute coverage and isostemc heat of adsorption of deuterium on Pt(111) studied by nuclear microanalysis Surface Science 1982,121 (1):p.103-110.
    20 K. E. Lu.R. R. Rye, Flash desorption and equilibration of H2 and D2 on single crystal surfaces of platinum Surface Science 1974,45 (2):p.677-695.
    21 K. Christmann,G. Ertl,T. Pignet, Adsorption of hydrogen on a Pt(111) surface Surface Science 1976,54(2):p.365-392.
    22 K. Christmann,G. Ertl, Interaction of hydrogen with Pt(111):The role of atomic steps Surface Science 1976,60 (2):p.365-384.
    23 B. E. Nieuwenhuys, Influence of the surface structure on the adsorption of hydrogen on platinum, as studied by field emission probe-hole microscopy Surface Science 1976,59 (2):p. 430-446.
    24 D. M. Collins,W. E. Spicer, The adsorption of CO, O2, and H2 on Pt:Ⅱ. Ultraviolet photoelectron spectroscopy studies Surface Science 1977,69 (1):p.114-132.
    25 R. W. Mccabe,L. D. Schmidt, binding states of CO and H2 on clean and oxidized (111)Pt Surface Science 1977,65 (1):p.189-209.
    26 A. M. Baro,H. Ibach,H. D. Bruchmann, Vibrational modes of hydrogen adsorbed on Pt(111):Adsorption site and excitation mechanism Surface Science 1979,88 (2-3):p.384-398.
    27 W. Eberhardt,F. Greuter,E. W. Plummer, Bonding of H to Ni, Pd, and Pt Surfaces Physical Review Letters 1981,46 (16):p.1085-1088.
    28 R. Gomer, Diffusion of adsorbates on metal surfaces Reports on Progress in Physics 1990,53 (7):p.917.
    29 A. C. Luntz,J. K. Brown,M. D. Williams, Molecular beam studies of H[sub 2] and D[sub 2] dissociative chemisorption on Pt(111) The Journal of Chemical Physics 1990,93 (7):p. 5240-5246.
    30 A. Atli,M. Alnot,J. J. Ehrhardt et al., Hydrogen chemisorption on Pt80Fe20(111) studied by TDS and UPS Surface Science 1992,269-270 (0):p.365-371.
    31 A. T. Capitano,J. L. Gland, Gas-Phase Atomic Hydrogen Induced Carbon-Carbon Bond Activation in Cyclopropane on the Pt(111) Surface The Journal of Physical Chemistry B 1998,102(14):p.2562-2568.
    32 A. T. Gee,B. E. Hayden,C. Mormiche et al., The role of steps in the dynamics of hydrogen dissociation on Pt(533) The Journal of Chemical Physics 2000,112 (17):p. 7660-7668.
    33 K. Nobuhara,H. Kasai.H. Nakanishi et al., Vibrational properties of an H atom adsorbed on Pt(111) Surface Science 2002,507-510 (0):p.82-86.
    34 S. C. Badescu,P. Salo,T. Ala-Nissila et al., Energetics and Vibrational States for Hydrogen on Pt(111) Physical Review Letters 2002,88 (13):p.136101.
    35 J. K. Vincent,R. A. Olsen,G. J. Kroes et al., Dissociative chemisorption of H2 on Pt(111):isotope effect and effects of the rotational distribution and energy dispersion Surface Science 2004,573 (3):p.433-445.
    36 A. Perrier,L. Bonnet.D. A. Liotard et al., On the dynamics of H2 desorbing from a Pt(111) surface Surface Science 2005,581 (2-3):p.189-198.
    37 S. Hong,T. S. Rahman,R. Heid et al., Insights from calculated phonon dispersion curves for an overlayer of H on Pt(111) Surface Science 2005,587 (1-2):p.41-49.
    38 C. Z. Zheng,C. K. Yeung,M. M. T. Loy et al., Quantum Diffusion of H on Pt(111):Step Effects Physical Review Letters 2006,97 (16):p.166101.
    39 B. Lang,R. W. Joyner,G. A. Somorjai, Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum Surface Science 1972,30 (2):p.454-474.
    40 T. Ma,Q. Fu,H.-Y. Su et al., Reversible Structural Modulation of Fe-Pt Bimetallic Surfaces and Its Effect on Reactivity Chemphyschem 2009,10 (7):p.1013-1016.
    41 K. M. Lui,Y. Kim,W. M. Lau et al., Adsorption site determination of light elements on heavy substrates by low-energy ion channeling Journal of Applied Physics 1999,86 (9):p. 5256-5262.
    42 F. S. Thomas,N. S. Chen,L. P. Ford et al., Vibrational/HREELS, UV/HREELS, and temperature-programmed desorption of benzene and hydrogen on (2×1)Pt(110) Surface Science 2001,486(1-2):p.1-8.
    43 P. A. Redhead, Thermal desorption of gases Vacuum 12 (4):p.203-211.
    44 D. M. Collins, W. E. Spicer, The adsorption of CO, O2, and H2 on Pt:Ⅰ. Thermal desorption spectroscopy studies Surface Science 1977,69 (1):p.85-113.
    45 G. Ertl,M. Neumann,K. M. Streit, Chemisorption of CO on the Pt(111) surface Surface Science 1977,64 (2):p.393-410.
    46 H. Steininger,S. Lehwald,H. Ibach, On the adsorption of CO on Pt(111) Surface Science 1982,123 (2-3):p.264-282.
    47 H. Krebs,H. Luth, Evidence for two different adsorption sites of CO on Pt(111) from infrared reflection spectroscopy Applied Physics A:Materials Science & Processing 1977,14 (4): p.337-342.
    48 G. Held,J. Schuler,W. Sklarek et al., Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution X-ray photoelectron spectroscopy Surface Science 1998,398 (1-2):p.154-171.
    49 L. A. Delouise,E. J. White,N. Winograd, CHaracterization of CO binding sites on Rh{111} and Rh{331} surfaces by XPS and LEED:Comparison to EELS results Surface Science 1984,147(1):p.252-262.
    50 P. R. Norton,J. W. Goodale,E. B. Selkirk, Adsorption of co on Pt(111) studied by photoemission, thermal desorption spectroscopy and high resolution dynamic measurements of work function Surface Science 1979,83 (1):p.189-227.
    51 J. Rodriguez,D. Wayne Goodman, High-pressure catalytic reactions over single-crystal metal surfaces Surface Science Reports 1991,14 (1-2):p.1-107.
    52 J. Lahtinen,J. Vaari,K. Kauraala, Adsorption and structure dependent desorption of CO on Co(0001) Surface Science 1998,418 (3):p.502-510.
    53 J. L. Gland, The interaction of water with the Pt(111) surface Surf. Sci.1980,94 p.10.
    54 P. A. Thiel,T. E. Madey, The interaction of water with solid surfaces:Fundamental aspects Surface Science Reports 1987,7 (6-8):p.211-385.
    55 A. T. Capitano,A. M. Gabelnick,J. L. Gland, Gas phase atomic hydrogen reacting with molecular and atomic oxygen to form water on the Pt(111) surface Surface Science 1999,419 (23):p.104-113.
    56 J. R. Creighton,J. M. White, A static sims study of H2O adsorption and reaction on clean and oxygen-covered Pt(111) Chemical Physics Letters 1982,92 (4):p.435-438.
    57 F. T. Wagner, T. E. Moylan, Generation of surface hydronium from water and hydrogen coadsorbed on Pt(111) Surface Science 1988,206 (1-2):p.187-202.
    58 K. Jacobi,K. Bediirftig,Y. Wang et al., From monomers to ice - new vibrational characteristics ofH20 adsorbed on Pt(111) Surface Science 2001,472 (1-2):p.9-20.
    59 J. L. Gland, Gas phase atomic hydrogen reacting with molecular and atomic oxygen to form water on the Pt(111) surface Surf. Sci.1999,419 p.10.
    60 J. R. Creighton,J. M. White, SIMS and TDS study of the reaction of water and oxygen on Pt(111) Surface Science Letters 1982,122 (3):p. L648-L652.
    61 V. Grozovski,V. Climent,E. Herrero et al., Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces Physical Chemistry Chemical Physics 2010,12 (31):p.8822-8831.
    62 A. Kuzume,Y. Mochiduki,T. Tsuchida et al., Methanol oxidation on a Pt(111)-OH/O surface Physical Chemistry Chemical Physics 2008,10(16):p.2175-2179.
    63 W. Gao,M. Zhao,Q. Jiang, Pathways for the Non-CO-Involved Oxidation of Methanol on Pt(111) ChemPhysChem 2008,9 (14):p.2092-2098.
    64 Z. Liu,T. Sawada,N. Takagi et al., Reaction intermediates in the oxidation of methanol on a Pt(111)-(2×2)O surface The Journal of Chemical Physics 2003,119 (9):p.4879-4886.
    65 M. Arenz,V. Stamenkovic,T. J. Schmidt et al., The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces Physical Chemistry Chemical Physics 2003,5 (19):p. 4242-4251.
    66 M. R. Columbia,P. A. Thiel, The stabilization of formate on Pt(111) by coadsorbed atomic oxygen Chemical Physics Letters 1994,220 (3-5):p.167-171.
    67 M. R. Columbia,P. A. Thiel, The reaction of formic acid with clean and water-covered Pt(111) Surface Science 1990,235 (1):p.53-59.
    68 M. A. Henderson,G. E. Mitchell,J. M. White, The decomposition of formaldehyde on Pt(111):A TPD and hreels study Surface Science 1987,188 (1-2):p.206-218.
    69 N. R. Avery, Adsorption of formic acid on clean and oxygen covered Pt(111) Applications of Surface Science 1982,11-12 p.774-783.
    70 N. R. Avery, Reaction of HCOOH with a Pt(111)-O surface; identification of adsorbed monodentate formate Applications of Surface Science 14 (2):p.149-156.
    71 N. Abbas,R. J. Madix, Surface reaction modification:The effect of structured overlayers of sulfur on the kinetics and mechanism of the decomposition of formic acid on Pt(111) Applications of Surface Science 16 (3-4):p.424-440.
    72 M. R. Columbia,A. M. Crabtree,P. A. Thiel, The temperature and coverage dependences of adsorbed formic acid and its conversion to formate on platinum(111) Journal of the American Chemical Society 1992,114 (4):p.1231-1237.
    73 P. Stone,S. Poulston,R. A. Bennett et al., An STM, TPD and XPS investigation of formic acid adsorption on the oxygen-precovered c(6*2) surface of Cu(110) Surface Science 1998,418(1):p.71-83.
    74 W. L. Manner,J. A. Lloyd,M. T. Paffett, Reactivity of formic acid (HCOOD and DCOOH) at uranium and UO2.0 surfaces Surface Science 1999,441 (1):p.117-132.
    75 W. Weiss,W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers Progress in Surface Science 2002,70 (1-3):p.1-151.
    76 W. X. Huang,W. Ranke, Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen Surface Science 2006,600 (4):p.793-802.
    77 C. Lemire,R. Meyer,S. K. Shaikhutdinov et al., CO adsorption on oxide supported gold:from small clusters to monolayer islands and three-dimensional nanoparticles Surface Science 2004,552 (1-3):p.27-34.
    78 C. Lemire,R. Meyer,V. E. Henrich et al., The surface structure of Fe3O4(111) films as studied by CO adsorption Surface Science 2004,572 (1):p.103-114.
    79 X. Deng,J. Lee,C. Wang et al., In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Langmuir 2011,27 (6):p.2146-2149.
    80 W. Wang,H. Zhang,W. Wang et al., Observation of water dissociation on nanometer-sized FeO islands grown on Pt(111) Chemical Physics Letters 2010,500 (1-3):p. 76-81.
    81 B. C. H. Steele,A. Heinzel, Materials for fuel-cell technologies Nature 2001,414 (6861):p.345-352.
    82 R. W. Mccabe,L. D. Schmidt, Adsorption of H2 and CO on clean and oxidized (110) Pt Surface Science 1976,60 (1):p.85-98.
    83 T. Engel,H. Kuipers, A molecular-beam investigation of the scattering, adsorption and absorption of H2 and D2 from/on/in Pd(111) Surface Science 1979,90 (1):p.162-180.
    84 G. B. Fisher,J. L. Gland, The interaction of water with the Pt(111) surface Surface Science 1980,94 (2-3):p.446-455.
    85 X. Liu,O. Korotkikh,R. Farrauto, Selective catalytic oxidation of CO in H2:structural study of Fe oxide-promoted Pt/alumina catalyst Applied Catalysis A:General 2002,226 (1-2):p. 293-303.
    86 M. Tringides,R. Gomer, Models of surface diffusion:Ⅱ. Tunneling Surface Science 1986,166 (2-3):p.440-457.
    87 D. J. Godbey,G. A. Somorjai, The adsorption and desorption of hydrogen and carbon monoxide on bimetallic Re Pt(111) surfaces Surface Science 1988,204 (3):p.301-318.
    88 W. Weiβ, Structure and composition of thin epitaxial iron oxide films grown onto Pt(111) Surface Science 1997,377-379 (0):p.943-947.
    89 T. Shido,Y. Iwasawa, Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2 Journal of Catalysis 1993,141 (1):p.71-81.
    90 P. O. Graf,D. J. M. De Vlieger,B.L. Mojet et al., New insights in reactivity ofhydroxyl groups in water gas shift reaction on Pt/ZrO2 Journal of Catalysis 2009,262 (2):p.181-187.
    91 P. Panagiotopoulou,D. I. Kondarides, Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction Journal of Catalysis 2004,225 (2):p.327-336.
    92 A. Goguet,F. Meunier,J. P. Breen et al., Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction Journal of Catalysis 2004,226 (2):p.382-392.
    93 S. H. Oh,R. M. Sinkevitch, Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation Journal of Catalysis 1993,142 (1):p.254-262.
    94 M. Kotobuki,A. Watanabe,H. Uchida et al., Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts Journal of Catalysis 2005,236 (2):p.262-269.
    95 X.-K. Gu,R. Ouyang,D. Sun et al., CO Oxidation at the Perimeters of an FeO/Pt(111) Interface and how Water Promotes the Activity:A First-Principles Study Chemsuschem 2011, ASAP

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700