可消化必需氨基酸平衡模式下不同蛋白源替代鱼粉对花鲈生长性能、生理功能及肉品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以花鲈(Lateolabrax Japonicus)为研究对象,通过对花鲈进行逐级淡水化,在中国农业科学院饲料研究所国家水产饲料安全评价基地室内循环水养殖系统中(直径80cm,,容积0.3m3)进行为期56d及112d的生长实验。研究可消化必需氨基酸平衡模式下,分别利用混合动物蛋白(鸡肉粉∶牛肉骨粉∶喷雾血球干燥粉∶水解羽毛粉= 40∶35∶2 0∶5 )和发酵豆粕部分或全部替代花鲈饲料中的鱼粉,对花鲈生长性能、肉品质及氮磷代谢的影响,并分析了混合动物蛋白及发酵豆粕在花鲈饲料中的适用比例。共进行了4个生长试验,主要研究结果如下:
     1.以混合动物蛋白(Animal protein blend, APB)分别直接替代和在补充晶体赖氨酸(Lys-H2SO4, 65%)、蛋氨酸(DL-Met)、苏氨酸(L-Thr)后替代花鲈(13.2±0.05 g)饲料中0%、50%、75%、100%的低温干燥鱼粉,研究其对花鲈生长及体组成的影响。经过8周的饲养后发现:花鲈的生长性能随替代比例的增大而降低;摄食含APB饲料的花鲈,其SR、FR、FBW、SGR、WGR、PER及饲料报酬均显著低于对照组(P<0.05)。与APB直接替代鱼粉的处理组相比,添加必需晶体氨基酸显著提高了花鲈的FBW、SGR、WGR、FR、PER及全鱼蛋白、脂肪、能量(P<0.05),显著降低了花鲈的全鱼水分、灰分,肝指数及内脏比(P<0.05)。实验结果表明:1)该混合动物蛋白替代初始体重为13.2g的花鲈饲料中低温干燥鱼粉的比例应小于50%;2)添加必需晶体氨基酸能显著提高APB在花鲈饲料中的应用潜力;3)花鲈能有效地利用晶体氨基酸。
     2.在补充Lys,Met及Thr后,以APB分别在高蛋白水平和低蛋白水平下替代初始体重为13.3 g±0.1g花鲈饲料中0%、50%、75%、100%的低温干燥鱼粉。经过8周的饲养后,同一蛋白水平下,对照组的SR、FR、FBW、SGR、WGR、PPV、EPV及饲料报酬均显著高于替代处理组(P<0.05);同一替代比例下,摄食低蛋白饲料的花鲈,其SR、SGR、PPV、EPV及饲料报酬较高蛋白水平均显著降低(P<0.05),但两个蛋白水平下,花鲈的形体指数和体成分均无显著差异(P>0.05)。实验结果表明:1)在可消化氨基酸平衡模式下,蛋白水平显著影响花鲈生长性能,提高蛋白水平对花鲈的生长有促进作用;2)混合动物蛋白替代花鲈饲料中优质低温干燥鱼粉的比例应低于50%。
     3.在补充Lys,Met及Thr后,以APB替代花鲈(76.3g±0.2g)饲料中0%、20%、40%、60%及80%的秘鲁鱼粉(Peru fish meal, PFM,400g.kg-1),或以国产鱼粉(local fish meal, LFM)完全替代PFM。经过8周的饲养后:PFM,LFM,APB20及APB40处理组的花鲈,其SR,FBW,SGR,WGR,FCR,PPV均无显著差异(P>0.05),而APB60及APB80处理组,花鲈的FBW,SGR,WGR,PPV,EPV均显著低于PFM处理组(P<0.05)。花鲈的血浆ALT活力及AST活力,花鲈生鱼片的质地和滴水损失,及60小时内的pH值变化在各处理组间均无显著差异(P>0.05)。随替代比例的升高,花鲈熟鱼片的硬度、咀嚼力、弹性、粘附性、回弹力均有上升的趋势,其中,APB80处理组显著高于其它各处理组(P<0.05)。LFM处理组的花鲈,其FR及花鲈熟鱼片质构均显著差于其它处理组(P<0.05)。实验结果表明:1)在补充晶体氨基酸基础上,该种APB能使初始体重为76.3g的花鲈饲料中PFM的用量从40%降低至24%而不影响其生长和肉品质;2);增加APB的用量,使饲料中PFM的水平从40%降低至8%不但显著影响花鲈的生长,同时也显著影响花鲈熟鱼片的质地;3)鱼粉质量影响花鲈的摄食率及肉品质,国产鱼粉价值显著低于秘鲁鱼粉,50%的国产鱼粉使用量相当于40%的秘鲁鱼粉的生产性能。
     4.在补充Lys,Met及Thr后,以FSM分别替代初始体重为13.22g±0.05g花鲈饵料中0%、25%、50%和75%的美国白鱼粉。8周后,0%、25%替代组花鲈的FBW、SR、WGR、SGR、FR、PER均显著高于50%和75%替代组,而0%和25%的SR、SGR、FI、PER及、FCR之间均无显著差异;75%处理组由于成活率低及生长迟滞而被淘汰。16周后,50%替代组表现出补偿摄食和补偿生长现象,其FR、SGR、WGR及PRR较0%及25%替代组均显著提高(P<0.05),但PPV、EPV及饲料报酬仍显著降低(P<0.05);50%替代组花鲈的肉质硬度、咀嚼力显著低于0%及25%替代组(P<0.05),而后两者之间无显著差异。结果表明:在IDAA模式下:1) FSM至少可以替代花鲈饲料中25%的低温干燥鱼粉而不影响其生长、肉质及氮排放,且能降低磷排放;2)若延长养殖周期,花鲈可通过补偿增长来弥补前期生长抑制使得FSM可替代花鲈饲料中50%的低温干燥鱼粉,但其肉品的营养价值和口感会降低,氮排泄升高。
The present study aimed to study the effects of partial or total fishmeal substitution by animal protein blend (APB, poultry by-product meal∶beef meat and bone meal∶spray dried blood meal∶hydrolyzed feather meal = 40∶35∶20∶5) or fermented soybean meal (FSM) on growth performance, flesh quality, nitrogen and phosphorus metabolism under ideal digestible amino acid profile (IDAA) in Japanese sea bass (Lateolabrax japonicus). 4 trails including in this study were conducted in recycling water system (volume, 0.3m3) of National Aqua-feed Safety Assessment Station, Feed Research Institute, CAAS. And the results were respectively summarized as follows:
     1. This growth trail was conducted to study the effect of 0%、50%、75%、100% dietary low temperature steam-dried fish meal (LT-FM)substitution by APB with or without crystallized Lys、Met、Thr supplementations on growth and body composition in Japanese sea bass (13.2±0.05 g). 8 weeks later, results showed that: growth performance of sea bass stepped down with increasingly replacing level; fish fed the control diet had significantly (P<0.05) higher SR、FR、FBW、SGR、WGR、PER、feed efficiency than those fed diets containing APB; sea bass fed diets with supplementations of crystallized amino acids showed remarkably higher FR、FBW、SGR、WGR、PER、feed efficiency and crude protein, crude lipid, gross energy but lower ash and moisture of than their counterparts in which LT-FM were replaced directly (P<0.05). Results demonstrate that 1) no more than 50% of LT-FM can be replaced by APB in diet of Japanese sea bass (13.2±0.05 g); 2) Supplementations of crystallized amino acids improve potential of APB replacing dietary LT-FM of sea bass; 3) crystallized amino acids can be efficiently utilized by sea bass.
     2. This growth trail was conducted to study the effect of 0%、50%、75%、100% dietary LT-FM substitution with crystallized Lys、Met、Thr supplementations by APB on growth and body composition at 2 digestible protein levels (DPL, 38.5% vs 35.5%) in Japanese sea bass (13.25 g±0.05 g). 8 weeks later, results showed that: 1) fish fed 0% diet had significantly (P<0.05) higher SR、FR、FBW、SGR、WGR、PPV、EPV、feed efficiency than those fed diets containing APB; 2) fish fed diets with low DPL diets displayed remarkably (P<0.05) lower FBW, WGR, ERE feed efficiency than their counterparts in high DPL group; however, no differences were found on CF、HSI、VSI and whole body composition between the 2 DPL. Results demonstrate that under IDEAAP 1) high protein level could expend application of APB in diet of Japanese sea bass (13.25 g±0.05 g); 2) no more than 50% of LT-FM can be replaced by APB in diet of Japanese sea bass (13.2±0.05 g).
     3. This growth trail was conducted to study the effect of 0%、20%、40%、60%、80% dietary Peru fish meal (PFM)substitution by APB with Lys、Met、Thr supplementations on growth and flesh quality of Japanese sea bass (76.3g±0.2g). Another diet containing 50% local fish meal (LFM) formulated according to PFM was added to test how different qualities of FM affected fish growth performance. 8 weeks later, results showed that: growth performance was decreased with higher APB inclusion level, and APB60 and APB80 showed significant lower SR、FBW、SGR、WGR、PPV、EPV and nutritional value of muscle than the other groups (p<0.05). Fish of LFM group showed significant poor FR and cooked muscle texture values than those of PFM, but did not show remarkable difference in growth profile. No differences of plasma ALT and AST activities were found between the groups. Results demonstrate that: 1) APB could reduce dietary PFM from 400mg/kg to 160mg/kg without depressing growth or affecting flesh quality of Japanese sea bass; 2) more than 240mg/kg inclusion of APB would induce poor growth and nutritional value of sea bass. 3) poor quality of fishmeal would reduce FR and flesh quality of bass, PFM is remarkablely better than LFM, 40% dietary PFM had the same breeding effect of 50% dietary PFM.
     4. This growth trail was conducted to study the effect of 0%、25%、50%、75%dietary LT-FM substitution by FSM with Lys、Met、Thr supplementations on growth、flesh quality and nitrogen and phosphorus metabolism of Japanese sea bass (13.25 g±0.05 g). 8 weeks later, results showed that: SR、FR、FBW、SGR、WGR、PER、EPV、feed efficiency、body composition and hematological parameters were not different (P>0.05) between WFM and FSM25 group, but both of them performed better than the other groups (P<0.05). Fish fed diet FSM75 showed too low growth performance in first 8w and did not continue the last 8w growth trial for this group. 16 weeks later, results showed that: Fish fed FSM50 diet showed compensatory growth in the latter 8w, which showed significant higher FR, SGR, WGR and PRR than those of WFM and FSM25 groups during this period, but still showed lower PPV、EPV and feed efficiency than those of fish fed diets WFM and FSM25 (P<0.05). Fish of FSM50 group showed lowest flesh-hardness, flesh-gumminess, flesh-chewiness. Results demonstrate that: 1) FSM fermented by distiller's yeast could replace no less than 25% of dietary LT-FM in sea bass, without influencing its growth, feed utilization and flesh quality; 2) in the long run, present FSM could replace 50% of dietary WFM in sea bass with good growth performance and feed utilization through compensatory growth, but with lower flesh quality and higher nitrogen excretion.
引文
1.蔡辉益,常碧影,常文环.饲料安全及其检测技术[M].北京:北京工业出版社, 2005: 72.
    2.蔡青芳,殷建新.水产动物摄食促进物质的研究进展[J].水产养殖, 1998, 4: 21-23.
    3.邓君明,麦康森.鱼类对晶体氨基酸利用效率的研究进展[J].云南农业大学学报, 2008, 23(14): 355-655.
    4.刁其玉.动物氨基酸营养与饲料[M].化学工业出版社, 2007: 88-100.
    5.过世东.水产饲料粒度控制要求与粒度控制技术[J].饲料与畜牧, 2006, 1: 31-33.
    6.韩斌,华雪铭,周洪琪等.玉米蛋白粉替代部分鱼粉对凡纳滨对虾抗病力及非特异性免疫力的影响[J].水产学报, 2009, 37(8): 34-37.
    7.何志刚.大黄鱼和鲈鱼苏氨酸和苯丙氨酸营养生理研究[D].硕士论文.青岛:中国海洋大学, 2008: 3-4.
    8.林利民,胡家财,洪惠馨.鲈鱼人工配合饲料中蛋白质最适含量的研究[J].厦门水产学院学报, 1994(1): 6-10.
    9.刘永坚,刘栋辉,田丽霞等.草鱼饲料中结晶和包膜赖氨酸的生物效应[J].水产学报, 1999, 23(S1): 51 - 55.
    10.罗琳,薛敏,吴秀峰等.脱酚棉籽蛋白对日本鲈的生长、体成分及营养成分表观消化率的影响[J].水产学报, 2005, 29(6):866-870
    11.麦康森,何志刚,艾庆辉.鱼类苏氨酸营养生理研究进展[J].中国海洋大学学报, 2008, 38 (2): 195-200.
    12.任泽林,方阿庆,曾虹.膨化配合饲料在水产养殖中的应用[J].水产科技情报, 2002,2: 75-76.
    13.任泽林,霍启光,曾虹等.氧化鱼油对鲤鱼生产性能和肌肉组织结构的影响[J].动物营养学报, 2001, 13(1): 59~64.
    14.盛洪建.理想蛋白模式下西伯利亚鲟日粮中混合蛋白替代鱼粉的研究[D].硕士学位论文.北京:中国农业科学院, 2009: 22-23.
    15.王冠.晶体氨基酸经微胶囊技术处理后对异育银鲫生长影响的研究[D].硕士学位论文.上海:上海水产大学, 2005, 34-36.
    16.王纪亭.复合酶制剂对草鱼生长性能、饲料养分消化率及免疫力的影响[J].大连水产学院学报, 2009, 5:418-421.
    17.王远红,吕志华,高天翔等.不同海域中国花鲈营养成分的比较研究[J].青岛海洋大学学报, 2003, 33(4): 531-536.
    18.吴秀峰,薛敏,郭利亚,等.脱酚棉籽粉替代部分鱼粉对西伯利亚鲟幼鱼生长、体成分及血清生化指标的影响[J].动物营养学报, 2009, 21(6): 9-16.
    19.许国焕,丁庆秋,王燕.几种诱食剂对大口鲶摄食效果的影响[J].水利渔业, 2000, 20 (2): 40-41.
    20.杨志敏.秘鲁和智利的鱼粉供给状况对中国鱼粉产业的影响[J].拉丁美洲研究, 2000, 3.
    21.贠彪.几种蛋白原料的消化率及替代蛋白在花鲈饲料中的应用[D].硕士学位论文.大庆:黑龙江八一农垦大学, 2009: 28-33.
    22. Abery N W, Gunasekera R M, De S S. Growth and nutrient utilization of Murray cod Maccullochella peelii peelii (Mitchell) fingerlings fed diets with varying levels of soybean meal and blood meal[J]. Aquaculture Research,2002, 33: 279-289.
    23. Adelizi P D, Rosati R R, Warner K, et al. Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss[J]. Aquaculture Nutrition, 1998, 4: 255-262.
    24. Agbebi O T, Otubusin S O, Ogunleye F O. Effect of Different Levels of Substitution of Fishmeal with Blood Meal in Pelleted Feeds on Catfish Clarias Gariepinus (Burchell, 1822) Culture in Net Cages[J]. European Journal of Scientific Research, 2009, 31(1): 6-10.
    25. Ai Q H, Mai K S, Li H T, et al. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus[J]. Aquaculture, 2004, 230: 507-516.
    26. Ai Q H, Mai K S, Tan B P, et al. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea[J]. Aquaculture,2006, 260: 255–263.
    27. Aksnes A, Hope B, Albrektsen S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. II: Flesh quality, absorption, retention and fillet levels of taurine and anserine[J]. Aquaculture, 2006, 261: 318-326.
    28. Alam M S, Teshima S, Yaniharto D, et al. Influence of different dietary amino acid patterns on growth and body composition of juvenile Japanese flounder,Paralichthys olivaceus [J]. Aquaculture, 2002, 210: 359-369.
    29. Alexis M N, Nengas I. Current state of knowledge concerning the use of soy products in the diet for feeding sea bass and sea bream needs for future research[J]. American Soybean Association, Brussels, Belgium,2001:32.
    30. Alvarez J S, ndez-Llamas A H, Galindo J, et al. Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti. Aquaculture Research, 2007, 38: 689-695.
    31. Ambardekar A A, Reigh R C, Williams M B. Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture, 2009, 291: 179-187.
    32. AOAC. Official Methods of Analysis (17th ed), Association of Official Analytical Chemists, Gaithersburg, MD.2000.
    33. Aoki H, Akimoto A, Watanabe T. Periodical changes in free amino acid levels and feed digesta in yellowtail after feeding non-fishmeal diets with or without supplemental crystalline amino acids. Fisheries Science[J]. 2001, 67: 614-618.
    34. Aoki H, Shimazu H, Fukushige T, et al. Flesh quality in red sea bream fed with diet containing a combination of different protein sources as total substitution for fish meal. [J]. Bull Fish. Res. Inst. Mie, 1996, 6: 47-54.
    35. Atema J, Holland K, Ikehara W, et al. Olfactory responses of yellow fin tuna (Thunnus albacares) to prey odors: chemical search image[J]. Journal of Chemical. Ecology, 1980, 6: 457–465.
    36. Bharadwaj A S, Brignon W R, Gould N L, et al. Evaluation of Meat and Bone Meal in Practical Diets Fed to Juvenile Hybrid Striped Bass Morone chrysops×M.saxatilis[J]. Journal of the World Aquaculture Society, 2002, 33(4): 448–457.
    37. Bidlingmeyer B A, Cohen S A, Taroin T L, et al. A new rapid, high sensitivity analysis of amino acids in food type samples[J]. Assoc. Off. Anal. Chem, 1987, 70: 241-247.
    38. Bureau D P, Harris A M, Bevan D J, et al. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets[J]. Aquaculture, 2000, 181: 281-291.
    39. Bureau D P, Harris A M, Cho C Y. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 1998, 161: 27–43.
    40. Caballero M J, López-Calero G, Socorro J, et al. Combined effect of lipid level and fish meal quality on liver histology of gilthead sea bream Sparus aurata[J]. Aquaculture, 1999, 179: 277-290.
    41. Cheng C R, Liu Y J. Application of fermented soybean meal in diet of Hybrid tilapia[J]. Feed of Guang Dong, 2004, 13: 26-27.
    42. Cheng Z J, Hardy R W, Usry J L. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion[J]. Aquaculture, 2003, 218: 553–565.
    43. Cho C Y, Bureau D P. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture[J]. Aquaculture Research, 2001, 32(1): 349-360.
    44. Choua R L, Hera B Y, Sua M S, et al. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. [J]. Aquaculture, 2004, 229: 325-333.
    45. Christie W W. Preservation of lipids[J]. Pergamon Press, New York, NY,1982,2: 96-98.
    46. Cruz-Suárez L E, Nieto-López M, Guajardo-Barbosa C, et al. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets[J]. Aquaculture, 2007,272(1-4):466-476.
    47. Dabrowski K. Digestion of protein and amino acid absorption in stomachless fish, common carp (Cyprinus carpio L.). Comparative Biochemistry and Physiology Part A: Physiology, 1983, 74(2): 409-415.
    48. Danielssen D S, Gulbrandsen K E, Hjertnes T. Fish meal quality in dry feed for turbot (Scophthalmus maximus L.)[J]. European Aquaculture Society Special Publication, 1989, 7: 83-84.
    49. Davis D A, Jirsa D, Arnold C R, et al. Evaluation of soybean proteins as replacements for menhaden fish meal in practical diets for red drum, Sciaenops ocelltus[J]. Journal of the World Aquaculture Society, 1995, 26: 48–58.
    50. Day O J, Gonzaalez P H G. Soybean protein concentrate as a protein source for turbotScophthalmus maximus L[J]. Aquaculture Nutrition, 2000, 6: 221-228.
    51. De Francesco M, Parisi G, Médale F, et al. Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2004, 236: 413-429
    52. De Francesco M., Parisi G, PéREZ-SáNCHEZ J, et al. Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits[J]. Aquaculture Nutrition, 2007, 13: 361–372.
    53. De Monbrison D, Guillaume B. Preliminary studies for DOTT Symposium - BFT impacts on local development a socio-economic approach[J]. Cahiers Options Mediterraneenes, 2003, 60: 127-138.
    54. Deng J M, Mai K S, Ai Q H, et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006, 258: 503-513.
    55. Deutsch L, Gr?slund S, Folke C, et al. Feeding aquaculture growth through globalization; exploitation of marine ecosystems for fishmeal[J]. Global Environmental Change, 2007, 17: 238-249.
    56. Emrel Y, Sevgilil H, Diler I. Replacing Fish Meal with Poultry By-Product Meal in Practical Diets for Mirror Carp (Cyprinus carpio) Fingerlingsn[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2003, 3: 81-85.
    57. Fasakin E A, Serwata R D, Davies S J. Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus Oreochromis mossambicus) diets[J]. Aquaculture, 2005, 249: 329-338.
    58. Fauconneau B, Alami-Durante H, Laroche M, et al. Growth and meat quality relations in carp[J]. Aquaculture, 1995, 129: 265-297.
    59. Feng J, Liu X, Liu Y Y, et al. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers[J]. Animal Feed Science. Technology, 2007, 134: 235-242.
    60. Folch J, Lees M, Sloane-Stanley G H, et al. A simple method for the isolation and purification of total lipids from animal tissues[J]. Biol. and Chem, 1957, 226: 497-509.
    61. Fowler L G. Feather meal as a dietary protein source during parr-smolt transformation in fall Chinook salmon[J]. Aquaculture, 1990, 89: 301-314.
    62. Francis G, Makkar P S, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish[J]. Aquaculture, 2001, 199: 197-227.
    63. Gatlin III D M, Barrows F T, Brown P, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review[J]. Aquaculture Research, 2007, 38: 551-579.
    64. Gaylord T G, Barrows F T. Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout (Oncorhynchus mykiss) feeds[J]. Aquaculture, 2009, 287: 180-184.
    65. Gaylord T G, Rawles S D. The modification of poultry by-product meal for use in hybrid stripedbass diets[J]. Journal of the World Aquaculture Society, 2005, 36(3): 365-376.
    66. Ginés R, Valdimarsdottir T, Sveinsdottir K, et al. Effects of rearing temperature and strain on sensory characteristics, texture, colour and fat of Arctic charr (Salvelinus alpinus) [J]. Food Quality and Preference, 2004, 15(2): 177-185.
    67. Giuffrida A, Pennisi L, Ziino G, et al. Influence of slaughtering method on some aspects of quality of gilthead seabream and smoked rainbow trout[J]. Veterinary. Research. Communications, 2007, 31(4): 437-446.
    68. Glencross B D, Booth M, Allan G L. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds[J]. Aquaculture Nutrition, 2007, 13: 17–34.
    69. Goda A M, El-Haroun E R, Chowdhury K M A, et al. Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks[J]. Aquaculture Research, 2007, 38: 279-287.
    70. Gómez-Requenia P, Mingarroa M, Calduch-Ginera J A, et al. Protein growth performance, amino acid utilization and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata) [J]. Aquaculture, 2004, 232: 493-510.
    71. Grigorakis K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review[J]. Aquaculture, 2007, 272: 55-75.
    72. Guo J, Wang Y, Bureau D P. Inclusion of rendered animal ingredients as fishmeal substitutes in practical diets for cuneate drum, Nibea miichthioides [J]. Aquaculture Nutrition, 2007, 13: 81-87.
    73. Halver J E. Fish Nutrition[M]. 2nd ed. New York: Academic Press, 1989: 259-329.
    74. Han B Z, Rombouts F M, Nout M J R.. A Chinese fermented soybean food[J]. Food Microbiol, 2001, 65: 1-10.
    75. Hansen A C, Rosenlund G, Karlsen ?, et al. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.)I—Effects on growth and protein retention[J]. Aquaculture, 2007, 272: 599-611.
    76. Hasimoglu A, Erteken A, Kino S, et al. Evaluation of Anchovy Meal and Soybean Meal as Dietary Protein Sources for the Black Sea Turbot, Psetta maxima[J]. The Israeli Journal of Aquaculture– Bamidgeh, 2007, 59(2): 73-80.
    77. Hatae K, Tobimatsu A, Takeyama M, et al. Contribution of the connective tissues on the texture difference of various fish species[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1986, 52: 2001-2007.
    78. Hatae K, Yoshimatsu F, Matsumoto J, et al. Role of muscle fibers in contributing firmness of cooked fish[J]. Food Science, 1990, 55: 693-696.
    79. Helland S J, Grisdale-Helland B. Replacement of fish meal with wheat gluten in diets for Atlantic halibut (Hippoglossus hippoglossus): Effect on whole-body amino acid concentrations stable[J]. Aquaculture, 2006, 261: 1363-1370.
    80. Hong K J, Lee C H, Kim S W. Aspergillus oryzae GB-107 fermentation improves nutritionalquality of food soybeans and feed soybean meals[J]. Journal of Medical Food, 2004, 7(4): 430-436.
    81. Hong S C, Layman D K. Effect of leucine on in vitro protein synthesis and degradation in rat skeletal musules[J]. Nutrition, 1984, 114: 1 204-1 212.
    82. Hu M H, Wang Y J, Wang Q, et al. Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio[J]. Aquaculture, 2008, 275: 260–265.
    83. Hui L I, Huang F, Hu B, et al. Effects of Replacement of Fish Meal with Fermented Soybean in the Diet for Channel Catfish( Ictalurus punctatus) on Growth Performance and Apparent Digestibility of Feed[J]. Freshwater Fisheries, 2007, 37: 42-44.
    84. Hung L T, Merican Z. Freshwater fish culture in Vietnam for the global white fish market[J]. Aquaculture AsiaPacific Magazine, 2006, 2: 14–16.
    85. Huss H H. Quality and Quality Changes in Fresh Fish [J]. FAO Fish Techni. Pap. 348. FAO, Rome, 1988, 195.
    86. Hutchins A M, Slavin J L, Lampe J W. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products[J]. Journal of the American Dietetic Association, 1995, 95(5): 545-551.
    87. Ikeda Y, Iki M, Morita A, et al. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese population-based osteoporosis (JPOS) study[J]. Nutrition, 2006, 136: 1323-1328.
    88. Izquierdo M S, Watanabe T, Takeuchi T, et al. Optimum EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: The Current Status of Fish Nutrition in Aquaculture (M. Takeda and T. Watanabe eds.) [J]. Tokyo University Fisheries, 1989, 221–232.
    89. Jahan P, Watanabe T, Satoh S, et al. Different combinations of protein ingredients in carp diets for reducing phosphorus loading[J]. Fisheries Science, 2002, 68(3): 595-602.
    90. Jobling M. Nutrient partitioning and the influence of feed composition on body composition[J]. Aquaculture, 2001, 181: 115-126.
    91. Johnston I A, Alderson D, Sandeham C, et al. Patterns of muscle growth in early and late maturing populations of Atlantic salmon (Salmosalar L.) [J]. Aquaculture, 2000a, 189: 307-333.
    92. Johnston I A, Alderson R, Sandham C, et al. Muscle fibre density in relation to the colour and textural of smoked Atlantic salmon (Salmo salar L) [J]. Aquaculture, 2000b, 189: 335- 349.
    93. Johnston I A, Manthri S, Bickerdike R, et al. Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes[J]. Aquaculture, 2004, 237: 281–300.
    94. Johnston I A. Muscle development and growth: potential implications for flesh quality in fish[J]. Aquaculture, 1999, 177: 99-115.
    95. Jonsson A, Sigurgisladottir S, Hafsteinsson H, et al. Textural properties of raw Atlantic salmon (Salmo salar) fillets measured by diifferent methods in comparison to expressible moisture[J]. Aquaculture Nutrition, 2001, 7: 81-89.
    96. Kataoka S. Functional Effects of Japanese Style FermentedSoy Sauce (Shoyu) and Its Components[J]. Journal of Bioscience Bioengineering, 2005, 100(3): 227-234.
    97. Kaushik S J, Covès D, Dutto G, et al. Almost total replacement of fish meal by plant protein sources in the diet ofmarine teleost, the European seabass, Dicentrachus labrax[J]. Aquaculture, 2004, 230: 391-404.
    98. Kestin S C, Warris P D. Farmed Fish Quality[M]. Fishing News Books, Cornwall, 2001, 283–297.
    99. Kiers J L, Meijer J C, Nout M J R, et al. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets[J]. Journal of Applied Microbiology, 2003, 95(3): 545-552.
    100. Kim S W, Mateo R D, Ji F. Fermented soybean meal as a protein source in nursery diets replacing dried skim milk[J]. Animal Science, 2005, 83(1): 116–119.
    101. Kissil G W, Lupatsch I, Higgs D A, et al. Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream, Sparus aurata [J]. Aquaculture Research, 2000, 31: 595–601.
    102. Lemme A, Ravindran V, Bryden W L. Ileal digestibility of amino acids in feed ingredients for broilers [J]. World's Poultry Science Journal, 2004, 60: 423-438.
    103. Leng X J, Wang W L, Li X Q. Experiment on feeding Penaeus Vannamei Boones with fermented soybean meal as partial substitute for fish meal[J]. Cer. Feed Ind, 2007, 3: 40-43.
    104. Li J, Zhang L, Mai K, et al. Estimation of dietary biotin requirement of Japanese seabass,Lateolabrax japonicus C[J]. Aquaculture Nutrition, 2009, oi:111/j.1365-2095.
    105. Li P, Gatlin III D M. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops_M. saxatilis) [J]. Aquaculture, 2003, 219: 681-692.
    106. Liang X F, Ogata H Y, Oku H. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pag rus major[J]. Comparati ve Biochemist ry & Physiology A, 2002, 132: 913-9 191.
    107. Linden G, Lorent D. Los productos delmar[M]. Bioqu?mica agroindustrial, Acribia, Zaragoza, Spain, 1996, 189-212.
    108. Lopez-Bote C J, Diez A, Corraze G, et al. Dietary protein source affects the susceptibility to lipid peroxidation of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) muscle[J]. Animal Science, 2001, 73: 443- 449.
    109. Lovell T. Nutrition and feeding of fish[J]. Van Nostrand Reinhold, NewYork, 1989: 260.
    110. Lunger A N, Craig S R, McLean E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein[J]. Aquaculture, 2006, 257: 393-399.
    111. Luo Z, Liu Y J, Mai K S, et al. Partial replacementof fish meal by soybean protein in diets for grouper Epinephelus Coioides juveniles[J]. Fish. Chin, 2004, 28: 175-181.
    112. MacKay B. Visual and flavor cues in toxicosis conditioning of codfish[J]. Behavioral Biology, 1977, 19(1): 87-97.
    113. Mai K S , Zhang L, Ai Q H. Dietary lysine requirement of juvenile Japanese sea bass, Lateolabrax japonicus[J]. Aquaculture, 2006, 258: 535–542.
    114. Mathivanan R, Selvaraj, Nanjappan. Feeding of Fermented Soybean Meal on Broiler Performance. Int[J]. Poul. Sci, 2006, 5: 868-872.
    115. McCallum I M, Higgs D A. Aspects of protein utilization in juvenile Chinook salmon (Oncorhynchus tshawytscha): nutritive value of marine protein sources considering the effects of processing conditions[J]. Aquaculture, 1989, 77: 181-200.
    116. Miguel A, Olvera N, Carlos A, et al. The use of seed of the leguminous plant Sesbania grandiflora as a partial replacement for fish meal in diets for tilapia (Oreochromis mossambicus) [J]. Aquaculture, 1988, 71(1-2): 51-60.
    117. Millamena O M, Golez N V. Evaluation of processed meat solubles as replacement for fish meal in diet for juvenile grouper Epinephelus coioides(Hamilton) [J]. Aquaculture Research, 2001, 32(1): 281-287.
    118. Milliamena O M. Replacement of fish meal by animal byproduct meals in a practical diet for grow-out culture of grouper Epinephelus coioides[J]. Aquaculture, 2002, 204: 75– 84.
    119. Moksness E, Rosenlund G, Lie O. Effect of fish meal quality on growth of juvenile wolffish, Anarhichas lupus L[J]. Aquaculture Research, 1995, 26: 109-115.
    120. Molina-Poveda C, Morales M E. Use of a mixture of barley-based fermented grains and wheat gluten as an alternative protein source in practical diets for Litopenaeus vannamei (Boone) [J]. Aquaculture Research, 2004, 35, 1158-1165.
    121. Monentcham S E, Kouam J, Chuba D, et al. Partial substitution of fish meal with soybean and cottonseed meals in diets for African bonytongue, Heterotis niloticus (Cuvier, 1829) fingerlings: effects on growth, feed efficiency and body composition[J]. Aquaculture Research, 2010, Not published.
    122. Montero T D, Robaina L, Caballero M J, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet[J]. Aquaculture, 2005, 248: 121-134.
    123. Mukhopadhyay N, Ray A K. Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings[J]. Aquaculture. Nutrition, 1999, 5: 229-236.
    124. Mundheim H, Opstvedt O. Effect of dietary level of protein and fiber on apparent protein digestibility in the rainbow trout (Oncorhynchus mykiss).and salmon (Salmon salar) and comparison of protein digestibility in mink (Mustelaíison), rainbow trout and salmon. In: Takeda, M, Watanabe, T. (Eds.). The Current Status of Fish Nutrition in Aquaculture[M]. Laboratory of Fish Nutrition, Tokyo, 1989. 195-200.
    125. Nakashima K, Yakabe Y, Ishida A, et al. Suppression of myofibrillar proteolysis in chick skeletal muscles by a-ketoisocaproate[J]. Amino Acids, 2007, 33: 499-503.
    126. Nangthu T T, Bodin N, Saeger S D, et al. Substitution of fish meal by sesame oil cake (Sesamum indicum L.) in the diet of rainbow trout (Oncorhynchus mykiss W.) [J]. Aquaculture Nutrition, 2009, (In Press).
    127. Naylor R, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies[J]. Nature, 2000, 405: 1017-1024.
    128. Nengas I, Alexis M N, Davies S J. High inclusion levels of poultry meals and related byproducts in diets for gilthead sea bream, Sparus aurata L[J]. Aquaculture, 1999, 179: 13–23.
    129. Nengas I, Alexis M N, Davies S J. Partial substitution of fishmeal with soybean meal products and derivatives in diets for the gilthead sea bream Sparus aurata[J]. Aquaculture Research, 1996, 27: 147-156.
    130. Nguyen V H. Vietnam's catfish and marine shrimp production: an example of growth and sustainability issues[J]. Aquaculture AsiaPacific Magazine, 2007, 3 (4): 36–38.
    131. Nyina-Wamwiza L , Wathelet B, Richir J, et al. Partial or total replacement of fish meal by local agricultural by-products in diets of juvenile African catfish (Clarias gariepinus): growth performance feed efficiency and digestibility[J]. Aquaculture Nutrition,2009, Not published.
    132. Palanivelu V, Vijayavel K, Balasubramanian S E, et al. Influence of insecticidal derivative (Cartap Hydrochloride) from the marine polychaete on certain enzyme systems of the fresh water fish Oreochromis mossambicus[J]. Journal of Environmental Biology, 2005, 26(2): 191-196.
    133. Peres H, Oliva-Teles A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles[J]. Aquaculture, 2009, 296: 81-86.
    134. Periago M J, Ayala M D, Lopez-Albors O, et al. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L[J]. Aquaculture, 2005, 249: 175-188
    135. Phumee P, Wei W Y, Ramachandran S, et al. Evaluation of soybean meal in the formulated diets for juvenile Pangasianodon hypophthalmus (Sauvage, 1878) [J]. Aquaculture Nutrition, 2009, (In Press).
    136. Pongmaneerat J, Watanabe T. Nutritive value of protein of feed ingredients for carp Cyprinus carpio[J]. Nippon Suisan Gakkaishi, 1991, 57(3): 503-510.
    137. Rawles S D, Riche M, Gaylord T G, et al. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chrysops♀×M. saxatilis♂) in recirculated tank production[J]. Aquaculture, 2006, 259: 377-389.
    138. Refstie S, Korsoen O J, Storebakken T, et al. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) [J]. Aquaculture, 2000, 190: 49-63.
    139. Refstie S, Sahlstr?m S, Br?then E, et al. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar) [J]. Aquaculture, 2005, 246: 331-345.
    140. Regost C, Arzel J, Kaushik S J. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima) [J]. Aquaculture, 1999, 180: 99-117.
    141. Robaina L, Moyano F J, Izquierdo M S, et al. Corn gluten and meat and bone meals as protein sources in diets for gilthead sea bream (Sparus aurata): nutrition and histological implications[J]. Aquaculture, 1997, 157: 347–359.
    142. Ronnestad I, Conceicao L E C, Aragao C, et al. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis)[J]. Journal of Nutrition, 2000, 130: 2809-2812.
    143. Rosas A, Vázquez-Duhalt R, Tinoco R, et al. Comparative intestinal absorption of amino acids in rainbow trout (Oncorhynchus mykiss), totoaba (Totoaba macdonaldi) and Pacific bluefin tuna (Thunnus orientalis)[J]. Aquaculture Nutrition, 2008, 14: 481-489.
    144. Roth B, Johansen S J S, Suontama J, et al. Seasonal variation in flesh quality, comparison between large and small Atlantic salmon (Salmo salar) transferred into seawater as 0+ or 1+ smolts[J]. Aquaculture, 2005, 250: 830-840.
    145. Russell L E, Cromwell G L, Stahly T S. Tryptophan, threonine, isoleucine and methionine supplementation of a 12% protein, lysine-supplemented, corn-soybean meal diet for growing pigs[J]. Journal of Animal Science, 1983, 56: 1 115-1 123.
    146. Samocha T M, Davis D A, Saoudc I P, et al. Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei[J]. Aquaculture, 2004, 231: 197-203.
    147. Schaart M W, Schierbeek H, van der Schoor S R D, et al. Threonine utilization is high in the intestine of piglets[J]. Journal of Nutrition, 2005, 135: 765–70.
    148. Sessler A M, Kaur N, Palta J P, et al. Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acid in 3T3-L1 adipocytes. The Journal of Biological Chemistry, 1996, 271 (47): 29854-298581.
    149. Shapawi R, Ng W K, Mustafa S. Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis[J]. Aquaculture, 2007, 273: 118-126.
    150. Shimeno S, Hashimoto A, Ando Y, et al. Improving the nutritive value of defatted soybean meal through purification and fermentation for fingerling yellowtail[J]. Suisanzoshoku, 1994, 42: 247-252.
    151. Sitjà-Bobadilla A, Pe?a-Llopis S, Gómez-Requeni P, et al. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata) [J]. Aquaculture , 2005, 249(1-4): 387-400.
    152. Skrede G, Storebakken T, Skrede A, et al. Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets[J]. Aquaculture, 2002, 210: 305-321.
    153. Sugiura S H, Hardy R W. Environmentally friendly feeds. In: R.R. Stickney (editor) [D]. Encyclopedia of Aquaculture, 2000, 299-310.
    154. Suontama J, Kiessling A, Melle W, et al.Protein from Northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) and the Arctic amphipod (Themisto libellula) can partially replace fish meal in diets to Atlantic salmon (Salmo salar) without affecting product quality[J]. Aquaculture Nutrition, 2006, 12: 1–9.
    155. Tacon A G J, Metian M. Global overview on the use of fish meal and fish oil in industriallycompounded aquafeeds: Trends and future prospects[J]. Aquaculture, 2008, 285: 146-158.
    156. Tacon A G J. Feed ingredients for warm water fish, fish meal and other processed feedstuffs[J]. FAO Fisheries Circular, 1993, 856: 64.
    157. Takagi S, Hosokawa H, Shimeno S, et al. Utilization of poultry by-product meal in a diet for red seabream Pagrus major[J]. Nippon Suisan Gakkaishi, 2000,66(3): 428-438.
    158. Thakur D P, Morioka K, Itoh Y, et al. Lipid composition and deposition of cultured yellowtail (Seriola quinqueradiata) muscle at different anatomical locations in relation to meat texture[J]. Fisheries Science, 2003, 69: 487-494.
    159. Thompson K R, Metts L S, Muzinic L A, et al. Effects of feeding practical diets containing different protein levels, with or without fish meal, on growth, survival, body composition and processing traits of male and female Australian red claw crayfish (Cherax quadricarinatus) grown in ponds[J]. Aquaculture Nutrition, 2006, 12: 227-238.
    160. Tibaldi E, Hakim Y, Uni Z, et al. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax) [J]. Aquaculture, 2006, 261: 182-193.
    161. Vaglio A, Landriscina C. Changes in Liver Enzyme Activity in the Teleost Sparus aurata in Response to Cadmium Intoxication[J]. Ecotoxicology and Environmental Safety, 1999, 43(1): 111-116.
    162. Vassallo-Agius R, Imaizumi H, Watanabe T, et al. Effect of squid meal in dry pellets on the spawning performance of striped jack Pseudocaranx dentex[J]. Fisheries Science, 2001, 67(2): 271-280.
    163. Viola S, Lahav E. Effects of lysine supplementation in practical carp feeds on total protein sparing and reduction of pollution [J]. Israeli Journal of Aquacuhuro/Bamidgeh, 1991, 43: 112–118.
    164. Viola S, Mokady S, Rappaport U, et al. Partial and complete replacement of fishmeal by soybean meal in feeds for intensive culture of carp[J]. Aquaculture, 1982, 26(3-4): 223-236.
    165. Viyakarn V, Watanabe T, Aoki H,et al. Use of soybean meal as a substitute for fishmeal in a newly developed soft-dry pellet for Yellowtail[J]. Nippon Suisan Gakkaishi,1992,58(10):1991-2000.
    166. Wang X, Qiao S Y, Yin Y L, et al. A Deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs[J]. Journal of Nutrition, 2007, 137: 1442–1446.
    167. Wang Y, Guo J L, Bureau D P,et al. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides) [J]. Aquaculture, 2006, 252: 476-483.
    168. Wang Y, Kong L J, Li C, et al. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides) [J]. Aquaculture, 2006, 261: 1307-1313.
    169. Wang Y, Kong L, Li C, et al. The potential of land animal protein ingredients to replace fish meal in diets for cuneate drum, Nibea millchthioides, is affected by dietary protein level[J]. AquacultureNutrition, 2010, 16: 36-47.
    170. Wang Y, Li K, Han H, et al. Potential of using a blend of rendered animal protein ingredients to replace fish meal in practical diets for malabar grouper (Epinephelus malabricus) [J]. Aquaculture, 2008, 281: 113-117.
    171. Watanabe T, Pongmaneerat J. Quality evaluation of some animal protein sources for rainbow trout Oncorhynchus mykiss [J].Nippon Suisan Gakkaishi, 1991, 57: 495–501.
    172. Watanabe T, Viyakarn V, Kimura H, et al. Utilization of soybean meal as a protein source in a newly developed soft-dry pellet for yellowtail[J]. Nippon Suisan Gakkaishi (Bull. Jpn. Soc. Sci. Fish.), 1992, 58(9): 1761–1773.
    173. Webster C D., Thompson K R, Morgan A M., et al. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Mornone chrysops×M. saxatilis)[J]. Aquaculure, 2000, 188:299–309.
    174. Winfree R A, Stickney R R. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea[J]. Journal of Nutrition, 1981, 111: 1 001-1 012.
    175. Xue M, Cui Y B. Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal[J]. Aquaculture, 2001, 198: 281-292.
    176. Xue M, Luo L, Wu X F, et al. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus) [J]. Aquaculture, 2006, 260: 206-214.
    177. Xue M, Xie S Q, Cui Y B. Effect of a feeding stimulant on feeding adaptation of gibel carp Carassius auratus gibelio (Bloch), fed diets with replacement of fish meal by meat and bone meal[J]. Aquaculture Research, 2004, 35: 473-482.
    178. Yamamoto T, Sugita T, Furuita H. Essential amino acid supplementation to fish meal-based diets with low protein to energy ratios improves the protein utilization in juvenile rainbow trout Oncorhynchus mykiss[J]. Aquaculture, 2005, 246: 379-391.
    179. Yang J H, Maub J L, Kob P T, et al. Antioxidant properties of fermented soybean broth[J]. Food Chemistry, 2000, 71: 249-254.
    180. Yang Y, Xie S Q, Wu L, et al. Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response of Macrobrachium nipponense[J]. Fish & Shellfish Immunology, 2004, 17: 105-114.
    181. Ylord T G, Rawles’S. The Modification of Poultry By-product Meal for Use in Hybrid Striped Bass Morone chrysops X M. saxatilis Diets[J]. Journal of the world aquaculture society, 2005, 36: 3-6.
    182. Zertuche-González J A, Sosa-Nishizaki O, Vaca Rodriguez J G, et al. Marine science assessment of capture-based tuna (Thunnus orientalis) aquaculture in Ensenada region of northern Baja California, Mexico[J]. Final Report to The David and Lucile Packard Foundation, 300 Second Street, Los Altos, California, USA, 2008, 95.
    183. Zhang S, Xie S, Zhu X, et al. Meat and bone meal replacement in diets for juvenile gibel carp(Carassius auratus gibelio): effects on growth performance, phosphorus and nitrogen loading[J]. Aquaculture Nutrition, 2006, 12: 353-362.
    184. Zhou Q C, Mai K S, Tan B P, et al. Partial replacement of fishmeal by soybean juvenile cobia (Rachycentron canadum) [J]. Aquaculture Nutrition, 2005, 11: 175-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700