芽孢杆菌(Bacillus spp.)根际接种促进辣椒(Capsicum annuum L.)生长的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国蔬菜育苗基质微生物菌群结构不合理、生物学活性低的状况,本研究以“中椒6号”辣椒(Capsicum annuum L.)为试验材料,采用根际接种芽孢杆菌的方法进行人为调节,研究了芽孢杆菌对辣椒幼苗根际生物学活性的影响、对辣椒壮苗形成及产量品质的作用以及对辣椒猝倒病的防治作用及其机理,为改善育苗基质的生物学特性、构建良好的蔬菜育苗系统提供理论依据。
     1.采用注射法将2株芽孢杆菌(地衣芽孢杆菌、多粘芽孢杆菌)及3种微生物制剂(微生物综合调理剂、可溶性内生菌根促根剂、根系菌根菌促进剂)接种至辣椒幼苗根际后,芽孢杆菌较微生物制剂更早地表现出促生效果,定植时幼苗的壮苗指数、净光合速率、叶绿素含量和根系活力都显著高于对照(P<0.05),幼苗茎叶矿质元素(N、P、Ca、Mg、Fe)含量也有不同程度的提高,其中,铁含量分别提高了27.22%和59.17%;芽孢杆菌处理还降低了初花节位,并分别增产29.40%和33.24%,同时提高了果实总糖含量、糖酸比及维生素C含量,改善了果实品质。
     2.与不接种对照相比,芽孢杆菌及其制剂(地衣芽孢杆菌、多粘芽孢杆菌、微生物综合调理剂)显著增加了辣椒幼苗根际微生物生物量碳和呼吸强度,降低了微生物代谢熵;最大使根际脲酶、蔗糖酶和过氧化氢酶活性分别提高了18.08%、126.79%和9.35%;同时,接种芽孢杆菌还显著增加了根际速效磷和速效钾含量。3种芽孢杆菌,无论速效养分含量或酶活性,都是微生物综合调理剂作用最明显。
     3.平板对峙试验结果表明,5株芽孢杆菌(BS1.1216、BS1.933、YB40、YB43、YB54)对立枯丝核菌(Rhizoctonia solani Kühn)、瓜果腐霉(Pythium aphanidermatum)和刺腐霉(Pythium spinosum)的平板抑制率分别达到63.21%~67.46%、38.86%~47.78%和41.92%~55.02%;盆栽抑制试验中,5株芽孢杆菌对辣椒猝倒病表现出很好的防治效果,对瓜果腐霉和刺腐霉抑制效果最好的分别是BS1.933和BS1.1216。
     4.枯草芽孢杆菌BS1.933和BS1.1216能够在未播种基质及辣椒幼苗根际成功定殖并持续一定时间,且都随时间延长菌量下降。BS1.1216的成功定殖,使基质微生物活性显著提高,对由刺腐霉引起的辣椒猝倒病表现出很好的防治效果,使发病率降低了9.60%~33.29%,相对防效达到32.40%~77.67%,且随BS1.1216接种浓度升高效果愈发显著,BS1.1216处理还显著提高了辣椒幼苗的株高及子叶面积。
According to the condition of unbalanced microflora and low microbial activity of soilless media,pepper (Capsicum annuum L. cv. Zhongjiao No.6) was selected as experimental material in this study to research the effects and mechanisms of inoculating Bacillus spp. in rhizosphere of seedlings on improving biological activities of rhizosphere,promoting pepper growth and development,fruit yield and quality,control efficiency to pepper damping-off. The aim was to improve biological characters of soilless media and to provide the theoretical basis of constructing well culture system of vegetable seedling.
     1. 2 strains of Bacillus spp.(Bacillus licheniformis and Bacillus polymyxa) and 3 kinds of microbial agents(MPX,ERS and MRS) were inoculated into soilless media by suspensions injection method. Bacillus spp. exerted promoting-growth effects earlier than microbial agents. Seedling index, net photosynthetic rate,chlorophyll content and root vigor increased distinctly compared to control seedlings (P<0.05). Contents of mineral elements such as N,P,Ca,Mg and Fe were raised in various degree within Bacillus spp. treated seedlings. Contents of Fe were raised by 27.22% and 59.17%. In contrast with non-inoculated control,Bacillus spp. inoculation lowered first flowering node and increased fruit yield by 29.40% and 33.24%. At the same time,total sugar,sugar-acid ratio and Vc of fruit were increased. Fruit quality was improved.
     2. Compared to non-inoculated control,Bacillus spp. and its microbial agents(Bacillus licheniformis,Bacillus polymyxa and MPX) significantly increased the microbial biomass carbon and respiratory intensity,reduced microbial metabolic quotient in rhizosphere of pepper seedlings. Urease,sucrase and catalase activity were greatest improved by 18.08%,126.79% and 9.35%,respectively. The treatments with Bacillus spp. inoculation obviously increased the contents of available N,P and K in rhizosphere of pepper seedlings. In regard to the available nutrient contents and enzyme activities, MPX obtained the best effect.
     3. 5 strains of Bacillus spp.(BS1.1216,BS1.933,YB40,YB43 and YB54)displayed a broad antifungal spectrum in dual cultures with pathogens. Inhibitory rates to Rhizoctonia solani Kühn,Pythium aphanidermatum and Pythium spinosum in plates were up to 63.21%~67.46% ,38.86%~47.78% and 41.92%~55.02%,respectively. Good control effect had achieved for Bacillus spp. to pepper damping-off caused by Pythium aphanidermatum and Pythium spinosum,BS1.933 and BS1.1216 had the best effect,respectively.
     4. Bacillus subtilis BS1.933 and BS1.1216 could colonize in soilless media without sowing and rhizosphere of pepper seedlings and maintain for some time. The live bacterial numbers declined with the time. Successful colonization of BS1.1216 made the microbial activity of soilless media raise significantly, incidence of damping-off reduce by 9.60%~33.29% , control efficacy be up to 32.40%~77.67%. The effectiveness went up with the initial inoculum densities. At the same time,the treatments with BS1.1216 inoculation obviously increased plant height and cotyledon size of pepper seedlings.
引文
1.白宝璋,王景安,孙玉霞.植物生理学(Ⅱ)——测试技术.中国科学技术出版社,1993:114.
    2.柏建玲,王平,胡正嘉.利用发光酶基因标记技术跟踪棉花根圈中的绿针假单胞菌PL9L.微生物学报,1999,39(1):43-48.
    3.陈健初,董绍华,叶兴乾,苏平.芹菜汁叶绿素及色泽稳定性的研究.浙江农业大学学报,1997,23(3):301-304.
    4.陈廷伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力.微生物,1960,(3):21.
    5.陈廷伟.解磷巨大芽孢杆菌分类名称、形态特征及解磷性能述评.土壤肥料,2005(1):7-9.
    6.陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展.微生物学杂志,2000,20(1):38-41,44.
    7.陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97-103.
    8.崔秀敏,王秀峰.蔬菜育苗基质及其研究进展.天津农业科学,2001,7(1):37-42.
    9.杜立新,冯书亮,曹克强,王容燕,冉红凡.枯草芽孢杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,2004,27(6):78-82.
    10.杜社妮,梁银丽,徐福利,陈志杰.日光温室不同水分条件下盆栽黄瓜产量和土壤微生物数量.干旱地区农业研究,2005,23(3):49-53.
    11.杜伟文,欧阳中万.土壤酶研究进展.湖南林业科技,2005,32(5):6-79,82.
    12.樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究,2003,10(1): 85-87.
    13.方中达.植病研究方法.北京:中国农业出版社,1998:123-124.
    14.高克祥,王淑红,刘晓光.木霉菌株T88对7种病原真菌的拮抗作用.河北林果研究,1999,14(2):160-163.
    15.葛红莲,赵红六,郭坚华.植物土传病害微生物农药的研究开发进展.安徽农业科学,2004,32(1):153-155.
    16.耿三省,陈斌,张晓芬.我国甜辣椒品种市场需求的变化趋势.中国蔬菜,2006(10):35-36.
    17.关佩聪,陈玉娣.氮钾营养与花椰菜氮素代谢和产量的初步研究.华南农业大学学报,1994,15(1):85-90.
    18.郭志英,薛泉宏,张晓鹿,杨斌,许英俊,周永强.生防菌苗床接种对辣椒根域微生态及产量的影响.西北农林科技大学学报(自然科学版),2008,36(4):159-165,170.
    19.韩莉莉.松苗猝倒病生防细菌活性物质及抑病效果研究. [硕士学位论文].湖北武汉:华中农业大学,2008.
    20.胡元森,吴坤,刘娜,陈红歌,贾新成.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,2004,37(10):1521-1526.
    21.黄昌华,夏文胜,郭崇明,邱玉兰,刘晟. B-HCH菌株的培养及代谢产物的初步研究.中国生物防治,1996,12(1):11-14.
    22.黄明勇,杨剑芳,路福平,王怀锋.海湾泥、碱渣和粉煤灰作为园林种植基质的微生物学特性研究.农业环境科学学报,2007,26(3):1159-1163.
    23.黄晓东,季尚宁,Bernard Click,Bruce Greenberg,卢林纲.植物促生菌及其促生机理(续).现代化农业,2002(7):13-15.
    24.李东坡,武志杰,陈利军.有机农业施肥方式对土壤微生物活性的影响研究.中国生态农业学报,2005,13(2):99-101.
    25.李阜棣.土壤微生物学.北京:中国农业出版社,1996.
    26.李华,陈万仁,王光龙.新型胶冻样芽孢杆菌及其突变株的诱变选育.土壤,2003,35(1):73-75.
    27.李元芳.硅酸盐细菌肥料的特性和作用.土壤肥料,1994,(2):48-49.
    28.李志辉,李跃林,杨民胜,朱日光,李前华.桉树人工林地土壤微生物类群的生态分布规律.中南林学院学报,2000,20(3):24-28.
    29.梁建根,张炳欣,喻景权.植物根围促生细菌(PGPR)对黄瓜生长及生理生化特性的影响.浙江大学学报(农业与生命科学版),2007,33(2):202-206.
    30.梁建根.黄瓜根围病原菌与拮抗菌的生态学及PGPR诱导抗性机制的研究. [博士学位论文].浙江杭州:浙江大学,2005.
    31.梁军锋.辣椒疫病生防菌的防病促生效应、作用机制及应用研究. [硕士学位论文].陕西杨凌:西北农林科技大学,2006.
    32.林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177.
    33.林福呈,张炳欣.枯草芽孢杆菌产生的拮抗物质对西瓜枯萎病菌孢子萌发的影响.浙江农业大学学报,1990,16(增刊2):235-240.
    34.林启美,饶正华,孙焱鑫.一株胶质芽孢杆菌RGBc13的解磷解钾作用.华北农学报,2000,15(4):116-119.
    35.刘国红,林乃铨,林营志,刘波.芽孢杆菌分类与应用研究进展.福建农业学报,2008,23(1):92-99.
    36.刘海芳,马军辉,金辽,陆琴,严蔚东,王校常.水稻土FDA水解酶活性的测定方法及应用.土壤学报,2009,46(2):365-367.
    37.刘连妹,钱雯霞,屈海泳.哈茨木霉孢子悬浮液对番茄幼苗生长及抗氧化酶活性的影响.江苏农业科学,2007(4):96-98.
    38.刘维红,闫淑珍,杨启银,温晓娟. ACC脱氨酶活性细菌筛选及其对番茄初生苗生长的影响.江苏农业科学,2006(2):80-84.
    39.刘永军,郭守华,杨晓玲.植物生理生化实验.中国农业科技出版社,2002:126-128.
    40.刘云龙,何永宏,张旭东.哈茨木霉对辣椒生长的影响.云南农业大学学报,2002,17(4):345-346.
    41.楼兵干,张炳欣,Maarten Ryde.铜绿假单胞菌株CR56在黄瓜和番茄根围的定殖能力.浙江大学学报(农业与生命科学版),2001,27(2):183-186.
    42.陆宁海,吴利民,田雪亮,郎剑锋,徐瑞富.哈茨木霉RT-12对黄瓜幼苗促生作用的机理.江苏农业学报,2007,23(3):254-25.
    43.陆宁海,吴利民,田雪亮,徐瑞富.哈茨木霉对番茄幼苗促生作用机理的初步研究.西北农业学报,2007,16(6):192-194.
    44.马常耕.世界容器育苗研究、生产现状和我国发展对策.世界林业研究,1994(5):33-41.
    45.祈之秋,李兴海,王英姿,魏松红,谷祖敏,纪明山.黄瓜枯萎病拮抗芽孢杆菌B67在土壤及黄瓜根际的定殖.中国蔬菜,2009(8):63-66.
    46.曲文章,蔡伯岩,高妙真,徐金星.氮素水平对甜菜光合效率的影响.中国甜菜糖业,1999(4):1-4.
    47.曲再红,杜相革.土壤添加物、土壤微生物和番茄苗期生长相互关系的研究.有机农业与食品科学,2004,20(4):84-86.
    48.任欣正,张建华,方中达.无致病力产细菌素拮抗菌nOE-104在番茄植株定殖能力研究.植物病理学报,1987,17(3):129-133.
    49.苏永春,勾影波,张忠恒,张崇邦.东北高寒地区土壤动物和微生物的生态特征研究.生态学报,2001,21(10):1613-1619.
    50.孙启利,陈夕军,童蕴慧.地衣芽孢杆菌W10抗菌蛋白对油菜菌核病菌的抑制作用及防病效果.扬州大学学报(农业与生命科学版),2007,28(3):83-86.
    51.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410.
    52.孙焱鑫,姚军,刑礼军.解钾菌与解磷菌及固氮菌的相互作用.生态学杂志,2002,21(2):71-73.
    53.谭祖国,钟炳辉,刘新波.脐橙氮、磷矿质营养的运转分配规律和座果机制的研究.湛江师范学院学报,1998,19(1):53-57.
    54.唐丽娟,纪兆林,徐敬友,陈夕军,童蕴慧.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质.中国生物防治,2005,21(3):203-205.
    55.陶晶.滴灌条件下加工番茄促生生防菌的筛选及其抑菌促生机理的初步研究. [硕士学位论文].新疆石河子:石河子大学,2006.
    56.滕晓慧,曹成有,富瑶,崔振波,高恩亮,高菲菲,等.不同年龄小叶锦鸡儿固沙群落土壤酶活性及微生物生物量的变化.生态环境,2007,16(3):1030-1034.
    57.田淑慧.黄瓜立枯病拮抗木霉菌筛选机主要生防机理研究. [硕士学位论文].山东泰安:山东农业大学,2006.
    58.童蕴慧,郭桂萍,徐敬友,纪兆林,陈夕军.拮抗细菌诱导番茄植株抗灰霉病机理研究.植物病理学报,2004,34:507-511.
    59.涂璇,薛泉宏,张宁燕,牛晓磊.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响.西北农林科技大学学报:自然科学版,2007,35 (6):141-146.
    60.汪娟,蔡立群,毕冬梅,王新建,张仁陟.保护性耕作对麦-豆轮作土壤有机碳全氮及微生物量碳氮的影响.农业环境科学学报,2009,28(7):1516-1521.
    61.王海英,宫渊波,龚伟.不同林分土壤微生物、酶活性与土壤肥力的关系研究综述.四川林勘设计,2005(3):9-14.
    62.王素芳,王占武,李洪涛,张翠绵,赵宝华.土壤因子对链霉菌S506定殖和促生功能的影响.中国生态农业学报,2009,17(2):335-338.
    63.王延军,宗良纲,李锐,杨永岗,肖兴基,卢东,等.不同肥料对有机栽培番茄生长和土壤酶及微生物量的影响.南京农业大学学报,2007,30(3):83-87.
    64.韦泽秀,梁银丽,山田智.不同水肥条件下番茄土壤微生物群落多样性及其与产量品质的关系.植物生态学报,2009,33(3):580-586.
    65.文景芝,李刚,张齐凤,吴凤芝.施肥对大棚黄瓜根际微生物群落结构和数量消长的影响.中国蔬菜,2007(12):11-14.
    66.吴凤芝,王学征.黄瓜与小麦和大豆轮作对土壤微生物群落物种多样性的影响.园艺学报,2007,34(6):1543-1546.
    67.肖春玲,邹小明,李文芳,曾建忠.大棚辣椒和小白菜根际土壤微生物的研究.江苏农业科学,2008(1):223-224.
    68.辛树权,何正飚,赵骥民,章有知,王贵.促生菌对番茄产量影响和氮肥替代效应的研究.北方园艺,2008(1):39-41.
    69.许齐放,黄秀梨,陈廷伟.八株芽孢杆菌菌株的分类及固氮活性的测定.微生物学通报,1998,25(5):253-258.
    70.薛冬,姚槐应,黄昌勇.植茶年龄对茶园土壤微生物特性及酶活性的影响.水土保持学报,2005,19(2):84-87.
    71.闫沛迎.枯草芽胞杆菌B2发酵条件、种衣剂及田间定殖动态研究. [硕士学位论文].甘肃兰州:甘肃农业大学,2007.
    72.杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业科技,2001,22(3):41-44.
    73.姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术.北京:科学出版社,2006.
    74.姚槐应.不同利用年限茶园土壤的化学及微生物生态特征研究.浙江农业科学,2002(3):129-131.
    75.叶小梅,常志州,季国军.番茄拮抗内生细菌102菌株的分离及其防病促生作用.江苏农业学报,2005,21(4):294-297.
    76.尹敬芳,张文华,李健强.辣椒疫病生防菌的筛选及其抑菌机制初探.植物病理学报,2007,37(1):88-94.
    77.曾路生,崔德杰,李俊良,金圣爱,赵秀芬.寿光大棚菜地土壤呼吸强度、酶活性、pH与EC的变化研究.植物营养与肥料学报,2009,15(4):865-870.
    78.张桂荣,李敏.牧草的不同利用方式对果—草人工生态系统土壤理化及生物学性状的影响.土壤,2007,39(5):806-812.
    79.张历,杨森,魏惠军,杜胜利,杨文博.蔬菜根际微生物分析.天津农业科学,1996,2(4):16-18.
    80.张西露,毛亦卉,向拉蛟.国内外辣椒产业研究开发的现状分析.辣椒杂志,2008(1):1-5.
    81.张宪政,陈凤玉,王荣富.植物生理学实验技术.辽宁科学技术出版社,1994:66-69,146-147.
    82.张亚平,刘日明.根际微生物与地膜甜菜生长发育关系的研究.石河子大学学报(自然科学版),1999,3(3):183-186.
    83.赵伟,涂艳丽,王飞.土壤微生物活菌数与生物量的关系研究.安徽农业科学,2005,33(12):2285.
    84.甄雪冰.土传病害生防菌株的筛选鉴定及防治效果研究. [硕士学位论文].江苏南京:南京农业大学,2009.
    85.郑勇,高勇生,张丽梅,何园球,贺纪正.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,2008,14(2):316-321.
    86.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1983:272-401.
    87.朱世东,徐文娟,赵国荣.多功能营养型蔬菜无土栽培基质的特性研究.应用生态学报,2002,13(4):425-428.
    88.庄岩.轮套作对黄瓜土壤微生物多样性及产量品质的影响. [硕士学位论文].黑龙江哈尔滨:东北农业大学,2007.
    89.宗兆锋,乔宏萍,何杞真. 2株重寄生菌的分离和对靶标菌的抑制作用.西北农业学报,2002,11(4):1-3.
    90. Adam G.,& Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Bio1ogy and Biochemistry,2001,33: 943 -951.
    91. Albiach R.,Canet R.,Pomares F.,& Ingelmo F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology,2000,75: 43-48.
    92. Ali S.,Hamid N.,Nagina N.,& Malik K. A. Screening of Phosphate Solublizing Microorganisms Using Different Original and Modified Culture Media. Biologia,1998,44(102): 110-122.
    93. Anderson A. J.,& Guerra D. Response of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology,1985,75: 992-995.
    94. Anderson A. J.,Habibzadegah-Tari P.,& Tepper C. S. Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Applied and Environmental Microbiology,1988,54: 375-380.
    95. Anderson T. H.,& Domsch K. H. Application of ecophysiological quotients(qCO2 and qD)on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry,1990,22: 251-255.
    96. Anderson T. H.,& Domsch K. H. Carbon assimilation and microbial activity in soil. Zeitschrift fur Pflanzenernahrung und Bodenkunde,1986,149: 457-486.
    97. Barazani O.,& Friedman J. Is IAA the major root growth factor secreted from plant growth-mediating bacteria? Journal of Chemical Ecology,1999,25(10): 2397-2406.
    98. Bertrand H.,Nalin R.,Bally R.,& Cleyet-Marel J. C. Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola(Brassica napus). Biology and Fertility of Soils,2001,33(2): 152-156.
    99. Boehm M. J.,& Hoitink H. A. J. Sustenance of microbial activity in potting mixes and its impacton severity of Pythium root rot of poinsettia. Phytopathology,1992,82: 259-264.
    100. Bowen C. T.,& Rovira A. D. The rhizosphere and its management to improve plant growth. Advances in Agronomy,1999,66: 1-102.
    101. Broad bend M. E. Effect of Bacillus spp. on increased growth of seedling in steamed and in nontreated soil. Phytopathology,1977,67: 1027-1034.
    102. Bull C. T.,Weller D. M.,& Thomashow L. S. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology,1991,81: 954-959.
    103. Burr T. J.,Schroth M. N.,& Suslow T. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology,1978,68: 1377-1383.
    104. Carlile W. R.,& Wilson D. P. Microbial activity in growing media-a brief review. Acta Horticulturae,1991,294: 197-206.
    105. Chen W. Factors affecting suppression of Pythium damping-off in cantainer media amended with compost. Phytopathology,1987,77: 755-760.
    106. Chen W.,Hoitink H. A. J.,& Madden L. V. Microbial activity and biomass in container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Ecology and Epidemiology,1988,78: 1447-1450.
    107. Chet I.,& Baker R. Introduction of suppressiveness to Rhizoclonia solani in soil. Phytopathology,1980,70: 994-998.
    108. Clark R. B. Arbuscular mycorrhizal adaptation,spore germination,root colonization,and host plant growth and mineral acquisition at low pH. Plant and Soil,1997,192(1): 15-22.
    109. Clemensson-Lindell A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: applications and limitations. Plant and Soil,1994,159:297-300.
    110. Cohen Y.,& Reuveni M. Occurrence of metalaxyl-resistant isolates of Phytophthora infestans in potato fields in Korea. Korean Journal of Plant Pathology,1983,8: 34-40.
    111. Cook R. J. Making greater use of introduced microorganisms for biological control of plant pathogenes. Annual Review of Phytopahology,1993,31: 53-80.
    112. Cook R. J.,Tomashow L. S.,Weller D. M.,Fujimoto D.,Mazzola M.,Bangera G.,et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proceedings of The National Academy of Sciences,USA,1995,92: 4197-4201.
    113. Dick R. P. Soil enzyme activities as indicators of soil quality. In: Doran J. V.,Coleman D. C.,et a1. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America. Society of Agriculture,Madison,1994: 107-124.
    114. Dileep Kumar B. S. Disease suppression and crop improvement through fluorescent pseudomonads isolated from cultivated soils. World Journal of Microbiology and Biotechnology,1998,14: 735-741.
    115. Domenech J.,Reddy M. S.,Kloepper J. W.,Ramos B.,& Gutierrez-manero J. Combinedapplication of the biological product LS213 with Bacillus,Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biological Control,2006(51): 245-258.
    116. Dughri M. H.,& Bottomley P. J. Soil acidity and the composition of an indigenous population of Rhizobium trifolii in nodules of different cultivars of Trifolium subterraneum L. Soil Bio1ogy and Biochemistry,1984,16: 405-411.
    117. Dumontet S. & Mathur S. P. Evaluation of respiration based methods for measuring microbial biomass in metal contaminated acidic mineral and organic Soils. Soil Biology and Biochemistry,1989,21: 431-436.
    118. Egner H.,Riehm H. & Domingo W. R. Untersuchungen uber die chemische Boden-Analyse als Grundlage fur die Beurteilung des Nahrstoffzustandes der Boden. Kungl. Lantbrukshogskolans Annaler,1960,26: 199-215.
    119. Elad Y. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology,1987,77: 755-760.
    120. Emmert E. A.,& Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiology Letters,1999,171: 1-9.
    121. Faull F. Ultrastructure of the interaction between the take-all fungus and agonistic bacteria. Canadian Journal of Botany,1979,57: 1800-1808.
    122. Frommel M. I.,Nowak J.,& Lazarovitis G. Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant and Soil,1993,150: 51-60.
    123. GagnéS.,Dehbi L.,Le QuéréD.,Cayer F.,Morin J.,Lemay R.,& Fournier N. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria(PGPR)inoculated into the peat-based growing media. Soil Bio1ogy and Biochemistry,1993,25: 269-272.
    124. Geels F. P.,Lamers J. G.,Hoekstra O.,& Schippers B. Potato plant response to seed tuber bacterization in the field in various rotations. Netherlands Journal of Plant Pathology,1986,92: 257-272.
    125. Gil-Jae Joo,Young-Mog Kim,In-Jung Lee,Kyung-Sik Song,& In-Koo Rhee. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus,Bacillus macroides and Bacillus pumilus. Biotechnology Letters,2004,26: 487-491.
    126. Glick B. R. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology,1995,41: 109-117.
    127. Glick B. R.,Karaturovic D. M.,& Newell P. C. A novel procedure for rapid isolation of plant growth-promoting pseudomonads. Canadian Journal of Microbiology,1995,41: 533-536.
    128. Grego S.,& Kennedy A. Y. Effect of ammo-nitrate stabilized farmyard manure on microbial biomass and metabolic quotient of soil under Zeamay. Agriculture in Mediterranea,1989,128: 132-137.
    129. Gupta A. M.,Gopal K. V. B.,& Tilak R. Mechanism of plant growth promotion by rhizobacteria.Indian Journal of Experimental Biology,2000,38: 856-862.
    130. Gutiérrez Ma?ero F. J.,Ramos B.,Probanza A.,Mehouachi J.,Tadeo F. R.,& Talón M. The plant growth-promoting rhizobacteria Bacillus pumillus and Bacillus licheniformis produce high amounts of physiological active gibberellins. Physiology Plantarum,2001,111: 206-211.
    131. Hafeez F. Y.,& Malik K. A. Manual on Biofertilizer Technology. NIBGE,Pakistan,2000: 35-37.
    132. Hall J. A.,Peirson D.,Ghosh S.,& Glick B. R. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Israel Journal of Plant Sciences,1996,44: 37-42.
    133. Hallman J.,Quadt-Hallman A.,Mahafee W. F.,& Kloepper J. W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology,1997,43: 895-914.
    134. Han J. S.,Cheng J. H.,Yoon T. M.,Song J.,Rajkarnikar A.,Kim W. G.,et al. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology,2005,99: 213-221.
    135. Hernandez T.,Garcia C.,& Reinhardt I. Short - term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and Fertility of Soils,1997,25: 109-116.
    136. Hoffmann-Hergarten S.,Gulati M. K.,& Sikora R. A. Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. Journal of Plant Diseases and Protection,1998,105: 349-358.
    137. Howell C. R. Suppression of Pythium ultimum induced damping-off cotton seedlings by Fluorescent pseudomonas and its antibiotic,pyoluteorin. Phytopathology,1980,70: 712-715.
    138. Howie W. J.,& Echandi E. Rhizobacteria: Influence of cultivar and soil type on plant growth and yield of potato. Soil Bio1ogy and Biochemistry,1983,15: 127-132.
    139. Howie W. J.,& Suslow T. V. Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions,1991,4: 393-399.
    140. http://www.foodmate.net/lesson/423/
    141. Huang P. M.,Bollag J. M.,& Senesi N. Interactions Between Soil Particles and Microorganisms - Impact on the Terrestrial Ecosystem. Marcel Dekker,New York,2002: 307-379.
    142. Ikeda K.,Toyota K.,& Kimura K. Effects of bacterial colonization of tomato roots on subsequent colonization by Pseudomonas fluorescens MeIRC2Rif. Canadian Journal of Microbiology,1998,44(7): 630-636.
    143. Jjemba P. K.,& Alexander M. Possible determinants of rhizosphere competence of bacteria. Soil Bio1ogy and Biochemistry,1999,31: 623-632.
    144. Joo G. J.,Kim Y. M.,Lee I. J.,Song K. S.,& Rhee I. K. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus,Bacillus macroides and Bacillus pumilus. Biotechnology Letters,2004,26: 487-491.
    145. Kandeler E.,& Gerber H. Short-term assay of soil urease activity using colorimetric determinationof ammonium. Biology and Fertility of Soils,1988,6: 58-72.
    146. Kennydy A. C.,& Smith K. L. Soil microbial diversity index and the sustainability of agricultural soils. Plant and Soil,1995,170: 75-86.
    147. Kerr A. Biological control of crown gall: Seed inoculation. Journal of Applied Bacteriology,1972,35: 493-497.
    148. Kilian M.,Steiner U.,Krebs B.,Junge H.,Schmiedeknecht G.,& Hain R. FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 2000,1: 72-93.
    149. Kloepper J. W. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature,1980,286: 885-886.
    150. Kloepper J. W. Plant-growth Promoting rhizobacteria(PGPR)on canola(rapeseed). Plant Disease,1986,72: 42-46.
    151. Kloepper J. W.,& Beauchamp C. J. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology,1992,38(6): 667-672.
    152. Kloepper J. W.,& Kuc J. A. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology,1981,71(6): 642-644.
    153. Kloepper J. W.,Lifshitz R.,& Zablotowicz R. M. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology,1989,7: 39-43.
    154. Kloepper J. W.,Reddy M. S. & Rodríguez-Kabana R. Application for Rhizobacteria in Transplant Production and Yield Enhancement. Acta Horticulturae,ISHS 631,2004: 217-229.
    155. Kloepper J. W.,Schoth M. N.,& Miller T. D. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology,1980,70: 1078-1082.
    156. Kokalis-Burelle N.,Kloepper J. W.,& Reddy M. S. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology,2006,31: 91-100.
    157. Kokalis-Burelle N.,Vavrina C. S.,Rosskopf E. N.,& Shelby R. A. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil,2002,238: 257-266.
    158. Lam S. T.,Ellis D. M.,& Ligon J. M. Genetic approaches for studying rhizosphere colonization. Plant and Soil,1990(129): 11-18.
    159. Leibinger W.,Beukker B.,& Hahn M. Control of postharvest pathogens and colonization of fluorescent pseudomonas spp. and root-colonizing fungi. European Journal of Plant Pathology,1997,102: 21-31.
    160. Lifshitz R.,Simonson C.,Scher F.M.,Kloepper J. W.,Rodrick-Semple C.,& Zaleska I. Effect of rhizobacteria on the severity of phytophthora root rot of soybean. Canadian Journal of Plant Pathology,1986,8(1): 102-106.
    161. Liu L.,Kloepper J. W.,& Tuzun S. Induction of systemic resistance in cucumber against bacterialangular leaf spot by plant growth-promoting rhizobactoria. Phytopathology,1995,85(8): 843-847.
    162. Loper J. E.,Haack C.,& Schroth M. N. Population dynamics of soil pseudomonads in rhizosphere of potato(Solanum tuberosum L.). Applied and Environmental Microbiology,1985,49: 416-422.
    163. Lucas Garcia J. A.,Probanza A.,Ramos B.,& Gutierrez Manero F. J. Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and nonsterilized peats. Archives of Agronomy and Soil Science,2003,49: 119-127.
    164. Lynch J. M. The Rhizosphere. JOI-LEI WILEY&SONS Press,1990.
    165. Malik K. A.,& Rakhshanda B. Association of Nitrogen-Fixing Plant Growth Promoting Rhizobacteria(PGPR)with Kallar Grass and Rice. Plant and Soil,1997,194: 37-44.
    166. Malin Hultberg. Rhizobacterial Glutathione Levels as Affected by Starvation and Cadmium Exposure. Current Microbiology,1998,37(5): 301-305.
    167. Marcial Gomes N. C.,Fagbola O.,Costa R.,Rumjanek N. G.,Buchner A.,Mendona-hagler L.,& Smalla K. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology,2003,69(7): 3758-3766.
    168. Marcote I.,Hernandez T.,Garcia C.,& Polo A. Alfredo polo influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresource Technology,2001,79: 147-154.
    169. Marjan de Boer,Ientse van der Sluis,Leendert C. van Loon,& Peter A. H. M. Bakker. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. European Journal of Plant Pathology,1999,105: 201-210.
    170. Marschner H.,& Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil,1994,159: 89-102.
    171. Marten P.,Smalla K.,& Berg G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology,2000,89: 463-471.
    172. Masalha J.,Kosegarten H.,& Elmaci O. The central role of microbial activity for iron acquisition in maize and sunflower. Biology and Fertility of Soils,2000,30(5-6): 433-439.
    173. Matsubara Y.,Suzumura E.,& Fukui H. Application of arbuscular mycorrhizal fungi to plug seedling system in welsh onion. Journal of Japanese Society for Horticultural Science,2002,71: 203-207.
    174. Mayak S.,Tirosh T.,& Glick B. R. Stimulation of the growth of tomato,pepper and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3. Biology Agriculture and Horticulture,2001,19: 261-274.
    175. McCullagh M.,Utkhede R.,Menzies J. G.,Punja Z. K.,& Paulits T. C. Evaluation of plant growth promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. European Journal of Plant Pathology,1996,102: 747-755.
    176. Meshram S. V. The importance of rhizobacteria mobility in biocontrol of bacterial wilt of tomato. Soil Bio1ogy and Biochemistry,1992,24: 287-293.
    177. Mew T. W.,& Rosales A. M. Bacterization of rice plants for control sheath blight caused byRhizoctonia solani. Phytopathology,1986,76: 1260-1264.
    178. Mishustin E. N.,& Naumova A. N. Bacterial fertilizers,their effectiveness and mode of action. Microbiologia,1962,31: 543–555.
    179. Moore L. W. Agrobacterium Radiobacter Strain 84 and biological control of crown gall. Annual Review of Pthytopathology,1979,17: 163-179.
    180. Nesrin Yildiz,Nuray Bilgin,& Kenan Barik. Determination of Plant Available Nitrogen of Erzurum Plain Soils. Asian Journal of Chemistry,2008,20(4): 3049-3056.
    181. O’Gara F.,Dowling D. N.,& Boesten B. Molecular Ecology of Rhizosphere Microorganisms. Weihein New York,Basel Cambridge,1994,Tokyo VCH: CRC press. 29-47.
    182. O’Sullivan D. J.,& O’Cara F. Trait of Fluorescent Pseudomonas spp. Involved in suppression of plant root pathogen. Microbiology and Molecular Biology Reviews,1992,56(4): 662-675.
    183. Okon Y.,& Kapulink Y. Establishment of inoculate Azospirillum spp. In the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil,1986,90: 1-3.
    184. Ovreas L.,& Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology,l998,36(3): 303-315.
    185. Paulitz T. C.,& Belanger R. R. Biological control in greenhouse systems. Annual Review of Pthytopathology,2001,39: 103-133.
    186. Perucci P.,Bonciarelli U.,& Bianchi A. A. Effect of rotation,nitrogen fertility and management of crop residues on some chemical,microbiological and biochemical activity of soils under cultivation. Biology and Fertility of Soils,1997,13: 242-247.
    187. Polyanskaya L. M.,Vedina O. T.,Lysak L. V.,& Zvyagintev D. G. The growth-promoting effect of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiology,2000,71: 109-115.
    188. Porra R. J.,Thompson W. A.,& Kriedemann P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta,1989,975: 384-394.
    189. Probanza A.,Lucas Gar?a J. A.,Ruiz Palomino M.,Ramos B.,& Gutiérrez Ma?ero F. J. Pinus pinea L. seedling growth and bacterial rhizosphere structureafter inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology,2002,20: 75–84.
    190. Raupach G. S.,& Kloepper J. W. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology,1998,88: 1158-1164.
    191. Reddy M. S.,& Rahe J. E. Growth effects associated with seed bacterization not correlated with populations of Bacillus subtilis inoculant in onion seedling rhizospheres. Soil Bio1ogy and Biochemistry,1989,21: 373-378.
    192. Rodriguez-Kabana R.,& Truelove B. The determination of soil catalase activity. Enzymologia,1970,31: 217-236.
    193. Ryder M. H.,& McClure N. C. Antibiosis in relation to other mechanisms in biocontrol by rhizobacteria. In: Plant Growth-promoting Rhizobacteria: Present Status and Future Prospects Proceedings of the Fourth International Workshop on Plant Growth-promoting Rhizobacteria,Japan-OECD Joint Workshop,Sapporo,Japan,1997,10: 5-10.
    194. Salvarore M. M.,Andrea B.,& Maurizio P. Chemical and microbiological aspects of soil amended with citrus pulp. Journal of Sustainable Agriculture,2007,30(4): 53-66.
    195. Sanders P. L. Failure of Metalaxyl to control of Pythium blight on turfgrass in Pennsylvania. Plant Disease,1984,68: 764-766.
    196. Schnurer J.,& Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology,1982,43: 1256-1261.
    197. Schroth M. N.,& Becker J. O. Concept of ecological and physiological activities of rhizobacteria related to biological control and plant growth promotion. Biological Control of Soil-borne Plant Pathogens,1990: 389-415.
    198. Schutter M.,Sandeno J.,& Dick R. Seasonal,soil type,alternative management influences on microbial communities of vegetable cropping systems. Biology and Fertility of Soils,2001,34: 397-410.
    199. Shangguan Z. P.,& Shao M. A. Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Plant Physiology,2000,56: 46-51.
    200. Sharma V. K.,& Nowak J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro coculture of seedlings with a plant growth-promoting rhizobacterium (Pseudomonas sp. strain PsJN). Canadian Journal of Microbiology,1998,44: 528-536.
    201. Sid A.,Ezziyyani M.,Egea-Gilabert C.,& Candela M. E. Selecting bacterial strains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria altemata in sweet pepper plants. Blologia Plantarum,2003,47(4): 569-574.
    202. Silverira E. B.,& Rodrigues V. J. L .B. Coconut coir fiber as a potting media for tomato seedling production. Horticultura Brasileira,2002,20(2): 211-216.
    203. Sneh B. Chlamydospore germination of Fusarium oxysporum f.sp. Cucumerium as affected by fluorescent and lytic bacteria from Fusarium-suppreeive soil. Phytopathology,1984,74: 1115-1124.
    204. Sparling G. P. Soil microbial biomass,activity and nutrient cycling as indicators of soil health. In Pankhurst C E,Doube B M,Gupta V V S R. Biological Indicators of Soil Health. CABINTERNATIONAL. 1997: 97-119.
    205. Swisher R.,& Carroll G. C. Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces. Microbial Ecology,1980,6(3): 217-226.
    206. Tang W. H. Advances in biological control of plant diseases: proceeding of the international workshop on biological control of plant diseases. Beijing: China Agricultural University Press,1996.
    207. Tjalsma H.,Antelmann H.,Jongbloed J. D. H.,Braun P. G.,Darmon E.,Dorenbos R.,et al.Proteomics of protein secretion by Bacillus subtilis: separating the‘‘secrets’’of the secretome. Microbiology and Molecular Biology Reviews,2004,68: 207-233.
    208. Troch P.,& Vanderleyden J. Surface Properties and Motility of Rhizobium and Azospirillum in Relation to Plant Root Attachment. Microbial Ecology,1996,32(2): 149-169.
    209. Uthede R. S.,Koch C. A.,& Menzies J. G. Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. The Canadian Journal of Plant Pathology,1999,21: 265-271.
    210. van Elsas J. D.,van Overbeek L. S.,Feldmann A. M.,Dullemans A. M.,& de Leeuw O. Survival of genetically engineered Pseudomonas fluorescens in soil in competition with the parent strain. FEMS Microbiology Ecology,1991,85: 53-64.
    211. Van Peer R. & Schippers B. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Canadian Journal of Microbiology,1988,35: 456-463.
    212. Vance E. D.,Brookes P. C.,& Jenkinson D. S. An extraction method for measuring microbial biomass C. Soil Bio1ogy and Biochemistry,1987,19: 703-707.
    213. Vedder-Weiss D.,Jurkevitch E.,Burdman S.,Weiss D.,& Okon Y. Root growth,respiration and beta-glucosidase activity in maize(Zea mays)and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense. Symbiosis,1999,26: 363-377.
    214. Wei G.,Kloepper J. W.,& Tuzun S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology,1991,81(12): 1508-1512.
    215. Weller D. M. Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,1998,26: 397-407.
    216. Weller D. M.,& Cook R. J. Increased growth of wheat by seed treatments with Fluorescent pseudomonas and implication of Pythium control. The Canadian Journal of Plant Pathology,1986,8: 324-328.
    217. Weller D. M.,Raaijmakers J. M.,Gardener B. B.,& Tomashow L. S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology,2002,40: 309-318.
    218. Whipps J. M. Microbial interaction and biocontrol in the rhizosphere. Journal of Experimental Botany,2001,52: 487-511.
    219. White J. G.,Stanghelini M. E.,& Ayoubi L. M. Variation in the sensitivity to Metalaxyl of Pythium spp. isolated from carrot and other sources. Annals of Applied Biology,1998,113: 269-277.
    220. Xu G. W.,& Gross D. C. Field evaluations of the interactions among fluorescent Pseudomonads,Erwinia carotovora,and potato yields. Phytopathology,1986,76: 423-430.
    221. Yan Z. N.,Reddy M. S.,& Kloepper J. W. Survival and colonization of rhizobacteria in a tomato transplant system. Canadian Journal of Microbiology,2003,49: 383-389.
    222. Yong C. J.,Ju C. S.,Cho-J I.,& Chung S. J. Rhizosphere microorganism of hydroponically growthcherry tomato and melon plant in substrate culture. Journal of the Korean Society for Horticulture science,1997,38(5): 468-473.
    223. Young C. S.,& Burns R. G. Detection,survival,and activity of bacteria added to soil. Soil Biochemistry,1993: 1-63.
    224. Yuen G. Y. Inhibition of Fusarium oxysporum f.sp.dianthi by iron competition with an Alcaligenes sp. Phrtopathology,1986,76: 171-176.
    225. Zehnder G. W.,Murphy J. F.,Sikora E. J.,& Kloepper J. W. Application of rhizobacteria for induced resistance. European Journal of Plant Pathology,2001,107: 39-50.
    226. Zhan X. H.,Jiang T. H.,Xu Y. C.,& Zong L. G. Advance in researches on mechanism of microbial inoculants on promoting plant growth. Plant Nutrition and Fertilizer Science,1999,5(2): 97-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700