植物ADH基因家族的生物信息学分析及棉花Zn结合脱氢酶的克隆与原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本研究中,我们用生物信息学的方法分析了玉米等物种ADH的保守功能域、蛋白二级结构和进化关系。分析证实,植物ADH通常含有3个保守功能域,它们是具有GroES结构的ADH_N结构域,Rossmann折叠NAD(P)(+)结合蛋白和锌结合位点,这3个保守结构在各个物种中具有相当的保守性。二级结构的分析表明,在我们研究的物种中,每个物种的两个ADH同工酶折叠情况大体相同,物种间蛋白二级结构也趋向一致。通过构建系统进化树,分析了供试物种中ADH以及ADH两个同工酶间的进化关系。初步显示,在进化上,单、双子叶植物源自不同的ADH祖先。双子叶植物ADH在物种间具有差异;而在单子叶植物不同物种其ADH同工酶出现分化。
     我们对一个百脉根的匿名序列(序列编号为CAG3057 9.1)进行了保守结构域预测、二级结构以及进化关系分析,初步推定该匿名序列为百脉根乙醇脱氢酶基因的未知同源基因LcADH(t)。保守结构域预测LcADH(t)含有ADH_N、NADB_Rossmann和锌结合位点这3个典型的ADH结构域。LcADH(t)的二级结构显示出与其他ADH极高的相似性,尤其体现在3个保守结构区。同时,在核苷酸和氨基酸序列上,与LcADH1又存在着一定的差别,这意味着LcADH(t)与LcADH1并非同一基因,且这种差别也非同一基因的种间差别。从进化关系分析上可知LcADH(t)与LcADH1之间在同一类的两个不同分支,据此,我们推断,LcADH(t)可能发挥着LcADH2的功能,值得期待进一步的功能验证。
     我们通过对陆地棉的一个409bp的cDNA片段进行解析,in silico拼接出一条完整的开放阅读框(Open Reading Frame, ORF)。我们推定这条ORF在陆地棉中真实存在,并在阅读框的两端设计了扩增引物,PCR扩增正向引物为:5—CACCACTAGATCACAAGAATAATAATGG—3,反向引物为:5—AAAAGGAGAAGCAATTTACATTATCTC—3.以陆地棉总RNA进行反转录合成的cDNA为模板进行PCR扩增,获得全长基因序列。ORF分析表明,序列中包含一个1305bp的ORF,编码434个氨基酸。通过BLAST和多重序列比对,我们克隆的序列可能是一个锌结合脱氢酶家族蛋白的同源蛋白,将其命名为棉花锌结合脱氢酶蛋白(cotton zinc-binding dehydrogenase family protein),将该基因命名为GhZBDH。保守结构域分析表明,从氨基酸链的63位至433位,是进行能量制造与转化的第三类锌结合乙醇脱氢酶AdhC结构域,87至221位是ADH_N结构域,269至394位是NAD (P)结合蛋白结构域。结构域预测的结果进一步暗示,这个蛋白质在一级结构上具有与其他物种ADH类似的构成状况,可能发挥着ADH功能。
     我们成功的将棉花锌结合脱氢酶基因构建到PQE-30载体之中,重组载体命名为pQE30-GhV3。然后应用热激转化法将pQE30-GhV3重组载体转化入表达菌株M15中,进行诱导表达。表达研究证明,这个蛋白表达的最适合温度为37℃,最适IPTG浓度为0.1mmol/L,最适诱导时间为3小时。我们在37℃、0.1mmol/L浓度的IPTG条件下,诱导3小时,使用Ni-NTA凝胶亲和层析柱进行层析,电泳分离纯化产物。结果显示,GhZBDH表达蛋白量很大,且其大小与预测的完全一致,初步表明,我们获得了大量的且高纯度的变性蛋白,为下一步的蛋白复性以开展定性实验准备了条件。
In this study, we used bioinformatics method analyzed the conservative function domains, protein secondary structure and evolutionary relationship of ADH in Maize and other species. The results confirmed that plant ADH usually contained three conservative domains, they were GroES structure ADH_N domain, Rossmann fold NAD(P)(+) binding protein and zinc site, and they are considerable conservation in all species. Secondary structure analysis showed that the folding of tow ADH Isozymes are similar in testes species. We analyzed evolutionary relationship between two ADH Isozymes in tested species by constructing phylogenetic trees. The results showed that ADH in Dicotyledon and Monocotyledon were derived from different ancestors. ADH in Dicotyledon were different. However, in Monocotyledon, the ADH isozyme were divided.
     We predicted conservative domain, secondary structure and analyzed the evolutionary relationship to a Lotus corniculatus anonymous sequence, and we presumed that this sequence was the homologous gene of ADH---LcADH(t). LcADH(t) contained ADH_N, NADB_Rossmann and zinc site structure. Secondary structure of LcADH(t) showed that it had high similarity with other ADH, especially in the conservative domains, but it was different in nucleotide with LcADH1.This indicated that they were not the same gene. Revolutionary relationship showed that LcADH(t) and LcADHl were in different branches, So, we inferred that LcADH(t) might play a same role with LcADH2. Worth looking forward to further functional verification.
     We analyzed a 409bp cDNA sequence fragment from upland cotton, in silico splicing a complete open reading frame(ORF). We presumed that this ORF was real in upland cotton, so we designed amplification primers in both ends of this ORF, the forward primer was 5—CACCACTAGATCACAAGAATAATAA TGG—3, and the reverse primer was 5—AAAAGGAGA AGCA ATTTACATTATCTC—3. Synthesize cDNA with total RNA, and PCR amplification with cDNA template. We obtained the full-length gene sequence. Sequence analyzed showed that this sequence contained a 1305bp ORF and encoded 434 amino acids. Blast and multiple sequence alignment showed that this gene might be a zinc-binding dehydrogenase family homolog. So, we named it as cotton zinc-binding dehydrogenase family protein and named this gene as GhZBDH. Domain analyzed showed that from the amino acid chain 63-433 position was the third type of zinc binding alcohol dehydrogenase domain ADH_C that manufactured and conversed energy,87-221 position was the ADH_N domain,269-394 position was the NAD(P) binding protein. Domain predict result further suggested that this protein was similar with other ADH in primary structure, and it might play ADH function.
     We constructed this gene into pQE-30 vector, and named this recombinant vector as pQE30-GhV3. And then we carried out the inducible expression by transformed pQE30-GhV3 into M15 strain. The result showed that the most suitable expression temperature was 37℃, the optimal concentration of IPTG was 0.1mmol/L and the optimal induction time were 3 hours. We induced this protein 3 hours at 37℃and 0.1mmol/L IPTG concentration, and used Ni-NTA affinity chromatography column gel chromatography total protein, and separation purification products by electrophoresis. The result showed that the expression amount of GhZBDH was very large, and the size is fully consistent with the projected. We have obtained a large number and high-purity denatured protein.
引文
[1].常平安,杨召军,温镭等.陆地棉锌指蛋白(GZFP)的原核表达.西南大学学报,2007,29(3):130-133.
    [2].陈书强,郑桂萍,李金峰等.水分胁迫条件下水稻生理生化响应研究进展.黑龙江八一农垦大学学报.2005,17(1):31-36.
    [3].陈雄文.不同环境条件下水稻叶片中叶绿体内碳酸酐酶活性的变化.湖北师范学院学报.2000,20(4):40-42.
    [4].戴新宾,翟虎渠,张红生等.土壤干旱对水稻叶片光合速率和碳酸酐酶活性的影响.植物生理学报,2000,26(2):133-136.
    [5].董文轩,沈隽,孟繁静.锌铜处理对苹果属植物叶内碳酸酐酶活性的影响.果树科学,1995,12(1):10-14.
    [6].范志金,刘秀峰,刘凤丽等.水杨酸在诱导系统获得抗性中的信号传导作用[J].农药,2004,43(6):257-260.
    [7].方宣钧,吴为人等.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [8].顾本康.中国棉花抗病育种[M].南京:江苏科学技术出版社,1996.6-15.
    [9].管清美,马峰旺,梁冬,等.苹果山梨醇脱氢酶(NAD-SDH)基因的克隆及其反义表达载体对农杆菌的转化.农业生物技术学报,2006,14(3):440-441.
    [10].郭敏亮,高煜珠.植物的碳酸酐酶.植物生理学通讯.1989,(3):75-80.
    [11].侯夫云,黄骥,陆驹飞,等.水稻质体葡萄糖-6-磷酸脱氢酶基因的克隆与表达研究.遗传学报,2006,33(5):115-120.
    [12].胡根海,喻树迅,范术丽等.编码棉花胞质铜锌超氧物歧化酶基因的克隆与表达分析.中国农业科学.2007,40(8):1602-1609.
    [13].胡根海,喻树迅,范术丽等.陆地棉超氧化物歧化酶基因的克隆与烟草转化.西北植物学报,2007,27(11):2169-2174.
    [14].孔庆科,殷复伟等.茄子感染萎病菌前后酶活性的动态反应和同工酶变化[J].山东农业大学学报:自然科学版,2001,32(3):271-274.
    [15].郎印海,聂俊华,曹正梅.逆境条件下作物基因表达更替的研究进展[J].生物技术通报,1999,(2):9~12.
    [16].李海,饶丽娟.超氧化物歧化酶的研究现状.塔里木农垦大学学报.1998,10(1):213-220.
    [17].李家瑞,马峰旺.蔷薇科果树山梨醇的研究.果树科学,1988,8(2):111-115.
    [18].林启冰,周志钦,赵宣等.基于Adh基因家族序列的牡丹组种间关系.园艺学
    报,2004,3](5):627-632.
    [19].凌庆枝.超氧化物歧化酶的功能,性质及临床意义.生物学通报,1997,32(12):145-149.
    [20].刘晓忠,高煜珠.涝渍逆境下玉米根系乙醇脱氢酶活性与耐涝性的关系.江苏农业学报,1991,7(4):191-196.
    [21].毛树春,邢金松等.棉花抗氧化系统对黄萎病的反应.棉花学报,1996,8(2):55-59.
    [22].孟艳玲,韩振海,闫建河,等.干旱胁迫下平邑甜茶各器官中山梨醇的累积.植物生理学通讯2007,43(6):112-117.
    [23].沈法富,尹承佾.盐胁迫对棉花幼苗子叶超氧化物歧化酶活性的影响.棉花学报,1993,5(1):39-44.
    [24].沈其益.棉花病害基础研究与防治[M].北京:科学出版社,1992.242-248.
    [25].汤章成.现代植物生理学实验指南[M].北京:科学出版社,1999.303-305.
    [26].王晨阳.干旱胁迫对冬小麦根系活性氧代谢的影响[J].华北农学报,1997,18(4):31-36.
    [27].王莉梅,石磊岩.北方棉花黄萎病菌菌落叶型菌系鉴定[J].植物病理学报,1999,29(2):181-189.
    [28].王力华,戴小枫,方宣均等.大丽轮枝菌毒素诱导表达陆地棉cDNA序列的克隆与定位.中国农业科学,2004,37(10):1474-1480.
    [29].王世全,李平,翟文学等.长片段水稻细菌人工染色体DNA的亚克隆文库的构建[J].四川农业大学学报,2000,18(3):197-200.
    [30].王晓萍温玉琴郭东林.植物抗病基因研究进展[J].黑龙江农业科学,2003,(4):42-45.
    [31].王有年,杜方,于同泉,等.水分胁迫对桃叶片碳水化合物及其相关酶活性的影响.JOURNAL OF BEIJ ING AGRICUL TURAL COLL EGE.2001,16(4):11-16.
    [32].肖栓锁,王钩.水稻中超氧诱导与稻瘟菌抗性及苯丙氨酸解氨酶、几丁质酶、β—1,3—葡聚糖酶活性诱导的关系[J].中国水稻科学,1997,11(2):93-102.
    [33].杨万年,林志福,任国领,等.暗诱导油菜子叶衰老过程G-6-P脱氢酶和乙醇脱氢酶活性的变化.中国油料作物学报,2003,25(3):42-45.
    [34].余叔文,汤章城.植物生理与分子生物学[M].北京.科学出版社.1998。
    [35].张春霆.生物信息学的现状与展望.世界科技研究与发展,2000,22(6):113-115.
    [36]. 张蓬,李学军.碳酸酐酶的生物学研究进展.生理科学进展,1997,38(4):359-361.
    [37]. 张晓霞,韩培红.马来酸桂哌齐特的药理作用及临床应用研究.药学.2007,7(2):121-126.
    [38].郑伟尉,臧运祥.水杨酸(SA)与植物抗病性关系的研究进展[J].河北果树,2005,(1):1-3.
    [39].周庭辉,戴小枫.棉花抗黄萎病生理与生化机制研究.分子植物育种,2006,4(4):112-115.
    [40].朱荷琴,宋晓轩.棉化叶片过氧化物同工酶等电聚焦电泳分析.棉花学
    报,1994,6(4):256-261.
    [41].卓仁英,陈益泰。木本植物抗涝性研究进展。林业科学研究,2001,14(2):215-222.
    [42].Abbas HK,Duke SO,Tanaka T. Phytotoxicity of fumonisins and related compo u nds.J.Toxicol.Toxin.1993,Rev.12:225-251.
    [43]. Abbas HK,Tanaka T,Duke SO,Porter JK,Wray EM,Hodges L et al. Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases.Plant Physiol.1994,106:1085-1093.
    [44].Adams S.S.,Rouse D.I.,and Bowden R.L. Performance of alternative versions of potw il:a computer model that simulates the seasonal growth of Verticillium-infected potato,Am.Potato J.1987,64:429-435.
    [45].Alchannati I.,Patel J.A.A.,Liu J.,Benedict R.C.,Stipanovic R.D.,Bell A.A.,Cui Y.,and Magill C.W. The enzymatic cyclization of nerolidyl diphosphate by 8-cadinene synthase from cotton stele tissue infected with Verticillium dhaliae,Phytochemistry,1998,47:955-961.
    [46].Alstrom S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae, J.Phyto pathol.2001,149(2):57-64.
    [47].Assche F V, Cardinaels C, Clijisters H. Induction of enzyme capacity in plants as a result of heavy metal toxicity:dose-response in Phaseolus vulgaris L. treated with zinc and cadmium. Environ Pollut,1988,52:103-115.
    [48].Audran C, Borel C, Frey A, et al. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol,1998,118:1021-1028.
    [49].Averill R H, Bailey-serres J, Krger N J. Co-operation between cytosolic and plastidic oxidative pentose phosphate pathways revealed by 6-pho sphogluconate dehydrogenase-deficient genotypes of maize. The Plant J,,1998,14:449-457.
    [50].Bailey-serres J, Tom J, Freeling M. Expression and distribution of cytosolic 6-phosphogluconate dehydrogenase isozymes in maize. Biochem Genet,,1992,30:233-246.
    [51].Baker B. Zambryski P.,Staskawicz B.J. and Dinesh-Kumar S.P. Signaling in plant-microbe interactions,Sci.1997,276:726-733.
    [52].BANTOG N A. Gene expression of NAD+-dependent sorbitol dehydrogenase and NADP-dependent sorbito 1-6-phosphate dehydrogenase during development of loquet fruit [J]. J. Jap. Soc. Hort. Sci.,2000,69 (3):231-236.
    [53].Bell A.A. Formation of gossypol in infected or chemically irritated tissues of Gossypium spp.,Phytopathology,1967,57:759-764.
    [54].Ben-Bassat D, Anderson L E. Light-induced release of bound glucose-6-phosphate dehydrogenase to the stroma in pea chloroplasts. Plant Physiol,1981,68:279-283.
    [55].Benjamin Klein, Robert G. Crawford, and Armen A. Alchian. Vertical Integration, Appropriable Rents, and the Competitive Contracting Process. The Journal of Law and Economics,1978,21:86-92.
    [56].Brindley DN,English D,Pilquil C,Buri K,Ling ZC. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphing olipi ds.Biochim.Biophys.Acta,2002,1582:33-44.
    [57].C Chang and E M Meyerowitz Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene PNAS March 1,1986 vol.83 no.5 1408-1412)
    [58].Changqing Wang, Margherita Eufemi, Carlo Turano, et al. Influence of the Carbohydrate Moiety on the Stability of Glycoproteins. Biochemistry,1996,10:7299-7307.
    [59].Cheng I,Zhao C,Amolins A,Galazka M,Doneski L.A hypothesis for the in vivo antioxidant action of salicylic acid[J].BioMetals,1996,(9):285-290.
    [60].Clough SJ, Bent AF. Floraldip:A simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana.Plant J.1998,16:735-743.
    [61].Coupe SA, Watson LM, Ryan DJ, et al. Molecular analysis of program med cell death during senescence in Arabidopsis thaliana and Brassica oleracea:Cloning broccoli LSD1,Bax inhibitor and serine paimitoyl transferase homologues. J.Exp.Bot.2004,55:59-68.
    [62].Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:a method for generating differentially regulated ortissue- specific cDNA probes and libraries. Proc Natl Acad Sci. USA,1996,93,6025-6030.
    [63].Downton, RO Slatyer. Temperature dependence of photosynthesis in cotton. Plant Physiology.1972,50:518-522.
    [64].E.S. Dennis, M.M. Sachsl, W.L. Gerlach, E.J. Finnegan and W.J. Peacock Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize Nucleic Acids Research, 1985, Vol.13, No.3 727-743)
    [65].Fahrendorf T, Ni W, Shorrosh B S. Stress responses in alfalfa(Medicago sativa L.)XIX. transcriptional activative pentose phosphate pathway genes at the onset of the isoflavonoid
    phytoalexin response. Plant Mol Biol,1995,28:885~900.
    [66].Fox G G, Rateliffe R G, Robisom S A, et al. Evidence for deamnation by glutamate dehydrogenase in higher plant. Can J Bat,1995,73:1112-1115.
    [67].FREY A, AUDRAN C, MARIN E, et al. Engineering seed domancy by the modidication of zeaxanthin epoxidase gene expression[J].Plant Mol Biol,1999,39:1267-1274.
    [68]. G. L. de Bruxelles, W. J. Peacock, E. S. Dennis,et al. Abscisic Acid Induces the Alcohol Dehydrogenase Gene in Arabidopsis. PLANT PHYSIOLOGY,1996,111(2):381-391.
    [69].Gao M,Tao R,Miura K,Dandekar A M and Sugiura A.Transformation of Jap anese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase(J).Plant Science,2001,160(5):837~845.
    [70].Giraudat J, Hauge B, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning [J]. Plant Cell,1992,4:1251-1261.
    [71]. Grace S C, BA Logan. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions of the Royal Society B,1990,7:118-124.
    [72].GRAEVE M, KATTNER G,HAGEN W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods:experimental evidence of trophic markers. Journal of experimental marine biology and ecology,1994,182(1):97-110.
    [73].Guang Van Zhong and Jacqueline K. Burns. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Molecular Biology,2003, Volume 53:117-131.
    [74].Hauschild R, Von Schaewen A. Differential regulation of glucose-6-phosp hate dehydrogenase isoenzyme activities in potato. Plant Physiol,2003,133(1):47-62.
    [75].Hill M.K., Lyon KJ, Lyon BR. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Molecular Biology,1999,40(2):289-296.
    [76].Hitoshi Sakakibaral, Kazutoshi.Fujii2 and Tatsuo Sugiyama Isolation and Characterization of a cDNA That Encodes Maize Glutamate Dehydrogenase. Plant and Cell Physiology,1995, Vol.36, No.5:789-797.
    [77].HouYL,ZhangKC,WuLp,et al.New methods for total RNA extraction in fruit trees[J].沈阳农 业大学学报,2002,33(2):122~125.
    [78].HUANG Ji, WANG Jian-Fei, ZHANG Hong-Sheng. Advances on plant pentose phosphate pathway and its key enzymes. Chinese Bull Bot,2004,21(2):139-145
    [79].Hubank M,Schatz D G. Identifying differences in mRNA expressionby representational difference analysis of cDNA. Nucleic Acids Research,1994,22(25):5640-5648.
    [80].Hutcheson SW. Current concept o active defense in plant. Annual Review Phytopathology, 1998,31:59-90
    [81].James JT, Dubery IA. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry,2001,57(2):149-156.
    [82].Joost O, Bianchini G, Bell AA, Benedict CR, Magill CW. Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with Verticillium dahliae. Molecular Plant-Microbe Interact,1995,8(6):880-885.
    [83]. Jose Antonio Jarillo, Juan Capel, Antonio Leyva, et al. Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Molecular Biology,1994,25(4):693-704.
    [84].Kalliopi M. Syntichaki, Konstantinos A. Loulakakis and Kalliopi A. Roubelakis-Angelakis. The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its.stress-related function. Gene,1996,168(1):87-92.
    [85].Kameswara Rao Kottapalli,Kouji Satoh,Randeep Rakwal,Junko Shibato,Koji Doi,Toshifumi Nagata,and Shoshi Kikuchi. Combining in silico mapping and arraying:an approach to identifying common candidate genes for submergence tolerance and resistance to bacterial leaf blight in rice. Mol.cells,2007,vol.24,No.3,pp.394-408
    [86].KAMESWARA RAO,KOTTAPALLI, SARLA N,KIKUCHI Shoshi. In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge. Biotechnology advances.2006, vol.24, No.6, pp.561-589.
    [87].Kanaynma Y,Mori H.Imaseki H,and Yamaki S.Nucieotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple (J).Plant Physiology,1992, 100:1607~1608.
    [88].Kanematsu, K Shirabe, T Sonoda. Decreased morbidity and mortality rates in surgical patients with hepatocellular carcinoma. British Journal of Surgery.1990,77:221-229.
    [89].Kang D,France L R,Su Z Z, et al. Reciprocal subtraction differential RNA display (RSDD):an
    efficient and rapid procedure for isolating different tially expressed gene sequences. Proc Natl Acad Sci. USA,1998,95:13788-13793.
    [90].Kerstin Graeve, Antje von Schaewen, Renate Scheibe. Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solatium tuberosum L.). The Plant Journal,2004,5(3):353-361.
    [91].Koji Hukushima, Koji Nemoto. Exchange Monte Carlo Method and Application to Spin Glass Simulations. Condensed Matter,1995,9(2):123-134.
    [92].Kombrink E, Somssich IE. Defence responses of plants to pathogens. Advance in Botanical Research,1995,21:1-34.
    [93].L..D.Gottlieb.Conservation and Duplication of Isozymes in Plant.Sience,1982,vol.216,373-380.
    [94]. Levitt. Responses of plants to environmental stresses. Bibliografia, 1980,569-665.
    [95].Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257 (14):967-971.
    [96]. Lin Yuan-zhen ,Lin Shan-zhi,Zhang Wei,et al. Cloning and sequence ana lysis of a glucose-6-phosphate dehydrogenase gene PsG6PDH from freezing -tolerant Populus suaveolens. Forestry Studies in China,2005,7(1):1008-1321.
    [97]. Liu CJ, Heinstein P, Chen XY. Expression pattern of genes encoding farnesyl diphsphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Molecular Plant-Microbe Interact,1999,12 (12):1095-1104.
    [98].Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-delta-cadinene-8- hydroxylase, a cytochrome P450 mono- oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant Journal,2001,28(1):95-104.
    [99].Melo Oliveria R, Cunha Oliveria I, Coruzzi G M. Arabidopsis mutant analysis and gene regulation define a role for glutamate dehydrogenase gene for protein with different affinities. Plant Molecular Biology,1996,37:243-263.
    [100]. Mozo T, Dewar K, Dunn P, et al. A complete BAC - based physical map of the Arabidopsis thaliana genome [J]. Nat Genet,1999,22:271-275.
    [101]. N Gutterson, TL Reuber. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current opinion in plant biology,2004,7(4):465-471.
    [102]. Neal Gutterson and T Lynne Reuber. Regulation of disease resistance pathways by
    AP2/ERF transcription factors. Current Opinion in Plant Biology, Volume 7, Issue 4, August 2004, Pages 465-471.
    [103]. Nemoto Y, Sasakuma T. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Biochemistry,2000,36 (3): 220-231.
    [104]. Oaks A. Evidengce for deamination by glutamate dehydrogenase in higher plant. Can J Bat,1995,73:1112-1115.
    [105]. Page T, Grifliths G, Buchanan Wollaston V. Molecular and biochemical characterization of postharvest senescence in broccoli[J]. Plant Physiol,2001,125:718-727.
    [106]. QIN X, ZEEVAART J A D. Overexpression a of 9-cis-epoxycarotenoid dioxygenase gene in nicotiana plumbaginifolia, ncreases abscisic acid and phaseic acid levels and enhances brought tolerance [J]. Plant Physiol,2002,128:544-551.
    [107]. Quirino B F, Nob Y S, Himelblau, et al. Molecular aspects of leaf sense cence [J]. Trends in Plant Science,2000,5 (7):278-282.
    [108]. RODRIGO M J,ALQUEZAR B, Zacarias L. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange(Citrus sinensis L.Osbeck)[J] J Exp Bot,2006,57(3):633-643.
    [109]. Schnarrenberger C, Oeser A, Tolbert N E. Two isozymes each of glucose-6-phosphate dehydroenase and 6-phosphogluconate dehydroge nase in spinach leaves. Arch Biochem Biophys,1973,154(1):438-448.
    [110]. Sechley K A,Yamaya T,Oaks A. Compartmentation of nitrogen assimulation in higher plant. Int Rev Cytol,1992,134:85-163.
    [111]. SEONGW P. Molecular cloning and characterization of four cDNAs encoding the isoform s of NAD-dependent sorbitol dehydrogenase from the Fuji apple[J]. Plant Sci. 2002,162:513-519.
    [112]. Setsuko Wakao, Carl Andre and Christoph Benning. Functional Analyses of Cytosolic Glucose-6-Phosphate Dehydrogenases and Their Contribu tion to Seed Oil Accumulation in Arabidopsis. Plant Physiology,2007,146:277-288.
    [113]. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones. JD Molecular genetics of plant
    disease resistance. Science,1995,268 (5211):661-667.
    [114]. T Sang, MJ Donoghue and D Zhang.Evolution of alcohol dehydrogenase genes in peonies (Paeonia):phylogenetic relationships of putative nonhybrid species. Molecular Biology and Evolution,1997, Vol 14,994-1007.
    [115]. T. TOOJINDA*,1, M. SIANGLIW2, S. TRAGOONRUNG3 and A. VANAVICHIT4. Molecular Genetics of Submergence Tolerance in Rice:QTL Analysis of Key Traits. Annals of Botany,2003,91:243-253.
    [116]. Tao Q, Zhao H, Qiu L, et al. Construction of a full bacterial artificial chromosome (BAC) library of Oryza sativa genome[J]. Cell Res,1994,4:127-133.
    [117]. Tao R,Uratsu S L and Dandekar A M.Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phos- phate dehydrogenase(J).Plant Cell Physiology,1995,36(3):525-532.
    [118]. V. S. Thakerl, V. S. Rabadial and Y. D. Singh. Physiological and biochemical changes associated with cotton fibre development. Acta Physiologiae Plantarum,1999,21(1):57-61.
    [119]. Van Zhong,JK Burns.Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis.Plant molecular biology,2003,(53):117-131.
    [120]. Velculescu V E,Zhang L,Zhou W,et al. Characterization of the yeast transcriptome.Cell,1997,88(2):243-251.
    [121]. VERSLUESL P E, ZHU J K. Plant signalling from genes to biochemistry[J]. Biochemical Society Transactions,2005,33(2):375-379.
    [122]. W. L. Gerlach, A. J. Pryor, E. S. Dennis, R. J. Ferl*, M. M. Sachs, and W. J. Peacock cDNA cloning and induction of the alcohol dehydrogenase gene (Adhl) of maize PNAS May 1,1982 vol.79 no.9 2981-2985)
    [123]. Wakao S, Benning C. Genome-wide analysis of glucose-6-phosphate dehydrogenase in Arabidopsis. Plant J,2004,41(2):243-256.
    [124]. WAN X, LI L.Molecular cloning and characterization of a dehydration- inducible cDNA encoding a putative 9-eis-epoxycarotenoid dioxygenase in Arachis hygogaea L[J].DNA Seq,2005,16(3):217-223.
    [125]. Wendt U K, Hauschild R, Lange C, Pietersma M,Wenderoth I, von Schaewen A. Evidence for functional convergence of redox regulation in G6PDH isoform of cyanobacteria and higher plants. Plant Mol Biol,1999,40(3):487-494.
    [126]. YAMADA K. Cloning of NAD-dependent sorbitol dehydrogenase from apple fruit and gene expression[J]. Plant Cell Physiol,1998,39(12):1375-1379.
    [127]. YAMAGUCH I H, KANAYAMA Y. Change in the amounts of NAD+-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit [J]. J. Amer. Soc. Hort. Sci.,1996,121 (5):848-852.
    [128]. Zacheo G,Zacheo T B.Involvement of superoxide diutase and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack[J].Physid Mol Plant Pathol,1988, (32):313-322.
    [129]. Zhang H B, Choi S, Woo S S, et al. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population[J]. Mol Breeding,1996,2:11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700