口腔DDR系统的应用失真率及固定修复金属材料对MRI成像影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在根管内植入预成金属桩,然后使用复合树脂形成桩核,再进行全冠修复,是进行残根残冠保存修复的重要手段。它减少了患者的诊疗次数、节省了诊疗时间、降低了根折的风险。
     预成金属桩根内桩长与根长的比例在适当的范围内(即2/3~3/4),对确保桩-核冠的固位和牙根的抗折力有重要的意义。初次植入预成桩后用口腔直接数字成像系统(Direct Digital Radiography,DDR)拍摄X线数字牙片(Digital Radiography),观测根内桩长与根长的比例,并对桩植入的深度加以校正,以达到最佳的植入深度、位置,从而可以获得理想的修复效果。
     由于直接数字成像系统受到多种因素的影响,在临床中影像常被放大或缩小,影响对金属桩植入的判断。如何准确判断成像误差,成为需要关注的问题。本研究通过用测量软件在X线数字牙片上测量预成金属桩的长度,与实际长度比较,计算并考查口腔直接数字成像系统在预成金属桩植入应用中的失真率,以便为临床医生准确判读X线数字牙片及放射科改进拍摄技术提供参考。
     研究结果表明:在临床预成金属桩植入中,通过现有常用方法获得的口腔直接数字成像根尖片具有很大的失真率,尚不能为预成金属桩的植入提供精确的指引,需要通过采取规范放射技师的拍摄技术等相应措施减小失真率以适合临床应用的需要,以期充分发挥口腔直接数字成像系统的优势。
     MRI(Magnetic Resonance Imaging)是目前头颈部疾病最常用的影像学诊断设备之一,由于其多功能、多序列、多参数、多平面成像以及较高的软组织分辨力而被广泛应用于临床疾病的诊断与治疗。但由于其成像过程复杂而易产生伪影。
     随着口腔修复技术、工艺的发展和人们经济条件的改善及口腔保健意识的提高,口腔临床上采用固定义齿修复的病例日益增多。然而由于固定义齿修复后口腔内金属材料的存在,在日后接受头颈部MRI检查时会使图像上产生磁敏感性伪影,干扰正常解剖结构和病变组织的显示,影响疾病的诊断。
     目前临床常用的固定修复金属材料包括镍铬合金、钴铬合金、钛合金、纯钛、贵金属合金等;常用的金属固定修复体包括全冠、桩核、固定桥等。本文通过对目前临床常用的不同材料的金属全冠、不同材料的桩核、临床常用的两种金属材料的不同单位(长度)的固定修复体对MRI成像的影响进行调查研究,从而综合评价目前常用的不同材料的金属修复体、不同设计的金属修复体对MRI成像的影响,为今后临床修复设计及MRI检测的改进提供参考依据。
     研究结果表明:
     1.在T1加权GRE序列及相同的参数下,在金属固定修复体的外形大小、在人体口腔内的位置、定位方向均相同的情况下,金属固定修复体所产生的伪影的大小与其所采用的金属材料的种类相关,即与金属材料的组成有关,高贵金属产生的伪影较小,而钴铬合金则能产生很大的伪影。
     2.在T1加权GRE序列及相同的参数下,金属固定修复体伪影的产生受到修复体在口腔内的位置、形状和金属的量的影响。
     3.从MRI伪影的形成方面而言,预成钛桩树脂核是临床进行残根残冠修复的较好选择,但临床实际应用中,桩核外的最终修复体的选择也会对伪影的形成产生影响,需综合分析。
Preformed metal post and resin core are widely applied in the restoration of residual crowns and roots, which can simplify the process of restoration, reduce the incidence of dental root fracture and ensure adequate retention for the prosthesis in dental practice.
     The proportion between the length of the post in the root and the root length plays an important role in the retention of post and core and in the avoidance of dental root fracture. Direct digital radiography helps ensure a perfect restoration by making the post in the optimal position of the root.
     However, the images may be larger or smaller than the actual objects, which disturbs the precise placement of preformed metal posts, since direct digital radiography system can be influenced by many factors. In this study, the lengths of the preformed metal posts in the digital images were measured with software. Through comparing the measured length with the actual value, the distortion rate was calculated, which can provide valuable information to improve the clinical application of driect digital radiography.
     The result is that the distortion rate of direct digital radiography in placement of preformed metal posts is high, and counter measures should be taken to minimize the distortion rate to reach the need for clinical applications.
     MRI is one of the most valuable diagnostic tools for the examination of the head and neck regions in radiology and diagnostic sciences. However, in patients with metallic dental devices, artifacts due to misregistration at MR imaging can obscure normal anatomy or pathologic conditions and degrade the assessment quality of regions of interest near the devices.
     The metallic materials widely used in dental practice include Nickel- chromium alloy, Cobalt-chromium alloy, Titanium, gold alloy, etc. The popular fixed prothesises consist of crown, post and core, fixed bridge and so on. This study was attempted to evaluate the artifacts caused by metallic materials of the fixed prothesis in MR imaging. Crowns and post-and-cores made of different metals, fixed prothesises with various units made of two types of metallic materials most popularly used in dental practice were imaged by means of 1.5T MRI apparatus in specific conditions.
     This investigation could provide valuable information which conforms to the practice more than that of the previous studies concerning the artifacts caused by metallic dental devices in current use.
     The main results are as follows:
     1. With the use of T1-WI GRE pulse sequence, the artifacts caused by metallic dental devices were dependent on the types of metals of metallic devices. High noble metal alloys produce small artifacts, however, Cobalt-chromium alloys produce large artifacts.
     2. With the use of T1-WI GRE pulse sequence, the artifacts caused by metallic dental devices were dependent on the size, on the shape, on the position in the oral cavity and on the amounts of the metals of metallic devices.
     3. In the selection of the materials of fixed prothesis, in terms of the generation of the artifacts, preformed Titanium post resin core could be chosen to restore residual roots and crowns as one of the optimal materials, however, the effect of the fixed prothesises covering the post-and-core on MRI should be taken into account in dental practice.
引文
1.曹厚德口内X线片直接数字化摄影技术的临床应用[J].中国医学计算机成像杂志,2003,9(1):61~63
    2. Mouyen F , Benz C , Sonnabend E, et al. Presentation and physical evaluation of radiovisiography[J]. Oral Surg Oral Med Oral Pathol, 1989 , 68(2) :238~242
    3. Horner K, Shearer AC, Wilson NHF. Radiovisiography: an initial evaluation[J]. Br Dent J,1990,168(6):244~248
    4. Versteeg CH, Sanderink GC, van der Stelt PF. Efficacy of digital intraoral radiography in clinical dentistry[J]. J Dent,1997,25(3):215~224.
    5. Almeida SM,Oliveira AEF, Ferreira R I, Bóscolo FN. Image Quality in Digital Radiographic Systems [J]. B raz Dent J, 2003, 14(2) : 136 - 141
    6. Nelving P, Wing K, Welander U, et al . Sens-A-Ray a new system for direct digital intraoral radiography[J]. Oral Surg Oral Med Oral Pathol, 1992, 74(6):818~823
    7. Molteni R. Direct digital dental X-ray imaging with visualix/ VIXA [J]. Oral Surg Oral Med Oral Pathol,1993,76(2):235-243.
    8.肖玲.数字化牙片X线摄影技术及其临床应用[J].放射学实践,2004,19(11);801~802
    9. McNitt Gray MF, Pietka E, Huang HK. Image preprocessing for a picture archiving and communication system[J]. Invest Radiol. 1992 ;27 :529
    10. Okaniwa H, Tsuneyoshi H, Kabata , et al. Hospital-wide PACS with a digital image intensifier TV system[J]. Comput Methods Programs Biomed. 1994 ; 43 :75
    11. Honeyman JC, Frost MM, Huda W, et al. Picture archiving and communications systems(PACS)[J]. Curr Probl Diagn Radiol. 1994;23:101
    12.胡冰.计算机X线摄影技术在口腔医学中的应用[J].北京口腔医学2000,8 (1):47
    13. Naoum HJ, Chandler NP, Love RM. Conventional versus storage phosphor - plate digital images to visualize the root canal system contrasted with a radiopaque medium [J]. J Endod, 2003, 29(5): 349– 352
    14. Velders XL, Sanderink GC, van der Stelt PF. Dose reduction of two digital sensor systems measuring file lengths[J]. Oral Surg Oral Med Oral Pathol ,1996 ,81 (5): 607~612.
    15. Berkhout WE, Beuger DA, Sanderink GC, et al. The dynamic range of digital radiographic systems: dose reduction or risk of overexposure? [J] Dentomaxillofac Radiol, 2004,33(1): 1~5
    16. B Kullendorff, M Nillsson, M Rohlin. Diagnostic accuracy of direct digital dental radiography for the detection of periap ical bone lesions: overall comparison between conventional and digital radiology [J]. Oral surg OralMed Oral PatholOral Radio Endod, 1996, 82 (3): 344-350.
    17. KKUp richard, BJ Potter, CM Russell, et al. Compparison of direct digital and conventional radiography for the detection of proximal surface caries in the mixed dentition [J]. Dentomaxillofacial Radiology, 2004, 33(2): 233~235.
    18.郑广宁,孙晓霞,黄定明.RVG数字成像系统失真率的初步研究[J].现代口腔医学杂志,2007,21(2):126~128
    19.胡冰.计算机X线摄影技术在口腔医学中的应用[J].北京口腔医学,2000,8(1):47~50
    20.马轩祥主编.口腔修复学[M].第5版.北京:人民卫生出版社,2003年:95~96
    21.赵信义.复合树脂的种类、选择及应用[J].实用口腔医学杂志,2008,24(5):760~762
    22.张翼,马轩祥.不同预成桩钉在离体牙根内的固位力比较[J].实用口腔医学杂志,2003,19(4):384~385
    23.马轩祥.残冠残根保存修复的概况与进展[J].中华口腔医学杂志,2006,41(6):333~335
    24.樊明文主编。牙体牙髓病学.第3版,北京:人民卫生出版社,2007年:271
    25.赵燕平,吴运堂,张铁军等.根尖片数字成像系统在牙长度测量中的应用[J].现代口腔医学杂志,1999,13(1):55~56
    26.张芳.口腔数字成像系统在根管测量与充填中的应用[J].上海口腔医学,2003,12(6):413
    27.洪亮,谭红,胡涛.数字成像技术及其在口腔医学研究中的应用和评价[J].现代口腔医学杂志,2001,15(1):67~68
    28.王丽君,运新跃,赵梦明等.数字化根尖片在邻面龋诊断中的应用研究[J].天津医科大学学报, 2007 ,13 (1):81~82
    29.王光耀,王生,何帅等.数字化牙片系统在老年人磨牙保存治疗中的应用[J].中华老年口腔医学杂志,2006,4(3):141~142
    30.王光耀,王生,王正钱等.数字化牙片在磨牙根管治疗术中的应用[J].牙体牙髓牙周病学杂志,2005,15(3):152~153
    31.马良,田慧颖,姚军等.应用口腔数字成像系统诊断牙齿及牙周疾病的研究[J].中国医学影像学杂志,1999,7(2):99~101
    32.胡涛,谭红,洪亮等.直接数字成像技术在龋病诊断中的应用研究[J].华西口腔医学杂志,2000,18(3):171~173
    33. Brown MA, Semelka RC (2003). MRI: basic principles and applications[M].3nd ed. New York: Wiley-Liss,2003, 1-19, 113-139..
    34.岛原正司,姜晓钟.口腔颌面疾患的MRI诊断学[M].上海:复旦大学出版社,2004,1-2.
    35.胡丽丽,夏黎明,曾仁端.MRI伪影探讨与分析(一)[J].放射学实践,2001,16(6):434-436
    36. Fache JS, Price C, Hswbolt EB, et al. MR imaging artifacts produced by dental materials[J].AJNR,1987,8:837-840.
    37. Czerionke LF, Daniels DL, Wehrh FW, et al. Magnetic susceptibility artifacts in gradient recall echo MR imaging[J]. ANJR,1988,9: 1149-1155
    38.胡家灯. MRI对人体健康的影响[J].医疗设备,2000,13(1): 15-16.
    39. New PF, Rosen BR, Brady TJ et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging[J]. Radiology 1983,147: 139-148.
    40.赵铱民.口腔修复学(第6版)[M].北京:人民卫生出版社,2008,29-179.
    41. American Society for Testing and Materials (ASTM). F2119-01: standard test method for evaluation of MR image artifacts from passive implants. West Conshohocken, PA: ASTM International, 2001.
    42. Shafiei F, Honda E, Takahashi H, Sasaki T Artifacts from dental casting alloys in magnetic resonance imaging [J]. J Dent Res ,2003,82(8):602–606.
    43. DestineD, Hiroshi M, Yoshimasa I. Metallic artifacts in MRI caused by dental alloys and magnetic keeper [J]. J Jpn Prosthodont Soc 52:205-210.
    44. Eggers G, Rieker M, Bodo K.Artefacts in magnetic resonance imaging caused by dental material [J]. MAGMA,2005,18: 103-111.
    45.刘玉华,孙樱琳.固定义齿修复材料对MRI图像的影响.现代口腔医学杂志,2005,l9(6):588-589.
    46.解春,俞立英,林江等.常用口腔金属修复材料在不同场强MRI上的伪影检测与比较[J].复旦学报(医学版),2007,34(6):915-917.
    47.赵海涛,陆军,魏梦琦等.口腔金属材料磁共振成像伪影的实验研究[J].医疗卫生装备,2003,6:3-5.
    48.施生根,金真,包博等.镍铬合金铸造冠对磁共振成像影响的研究[J].口腔颌面修复学杂志,2002,3(4):205-207.
    49.胡艳艳,魏斌.固定修复体引起磁共振伪影的研究进展[J].上海口腔医学,2008,17(4):441-443
    50. Alanen A, Bondestam S, Komu M. Artifacts in MR imaging caused by small quantities of powdered iron fJ]. Acta Radiol,1995,36(1):92-95
    51.包博,施生根,崔三哲等.金合金、镍络合金铸造冠对磁共振成像检查的影响[J].牙体牙髓牙周病学杂志2003,13(9):506-508
    52.赖寿伟,杨花岳.金属固定假牙对头部MR图像的影响研究[J].实用医技杂志.2005,12(2A):350-352 1. 53.. Rudisch A, Kremser C, Peer S, et al. Metallic artifacts in magnetic resonance imaging of patient with spinal fusion. A comparison of implant materials and imaging sequences [J]. Spine, 1998,23:692-699.
    53. Suh JS, Jeong EK, Shin KH, et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies [J]. AJR Am J Roentgenol, 1998,171: 1207-1213.
    54. Teitelbaum GP, Bradley WG Jr, Klein BD. MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents, and coils [J]. Radiology, 1988, 166: 657-664.
    55. Takashi K,Manabu M,Hugh D,et a1.Dental bur fragments causing metal artifacts On MR images[J].AFNR Am J Neuroradiol, 1998,19: 317-319.
    56. Starcukova J, Starcuk Jr, Hubalkova H, et al. Magnetic susceptibility andelectrical conductivity of metallic dental materials and their impact on MR imaging artifacts[J]. Dental Materials, 2008, 24:715-723.
    57.王威,陈新,姜波等.镍铬合金对3.0T与1.5T磁共振成像的影响[J].中国医药导报,2007,4(7):124-125
    58. Hinshaw DB Jr, Holshouser BA, Engstrom HI et al. Dental material artifacts on MR images[J]. Radiology 1988, 166: 777-779.
    59. Lissac M, Coudert JL, Briguet A, et al. Disturbances caused by dental materials in magnetic resonance imaging [J]. Int Dent J 1992, 42(4):229–33.
    60. Shellock FG, Kanal E. Aneurysm clips: Evaluation of MR imaging artifacts at 1.5 T[J]. Radiology 1998, 209: 563-566.
    61. Nitatori T,Hanaoka H,Hachiya J.MRI artifacts of metallic stents derived from imaging sequencing and the ferromagnetic nature of materials [J]. Radiat Med,1999, 17(4):329-337.
    62. Frahm C, Gehl HB, Melchert UH, et al. Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla [J]. Cardiorasc Interven Radio, 1996, 19(9): 506-508.
    63. Laakman RW, aufman B, Han JS, et al. MR imaging in patients with metallic implants [J]. Radiology, 1985, 157: 711-714
    64. Port JP, Pomper MG. Quantification and minimization of magnetic susceptibility artifacts on GRE images [J]. J Comput Assist Tomogr,2000, 24:958-964.
    65. Kazuyuki M, et a1. A Method of Reducing Susceptibility: Artifacts in MRI of the Head and Neck Region [J]. Oral Rsdiol,1996, 13(1):45-49.
    66. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds [J]. Med Phys 1996, 23: 815–50.
    67. Ludeke KM, Aoschmann P, Tischler A. Susceptibility artifacts in NMR imaging [J]. Magn Reson Imag 1985, 3: 329–343.
    68. Bartels LW, Smits HFM, Bakker CJG, Viergever MA. MR Imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents [J]. J Vasc Interv Radiol 2001, 12: 365–371.
    69. Camacho CR, Plewes DB, Henkelman RM. Nonsusceptibility artifacts due to metallic objects in MR imaging [J]. J Magn Reson Imag 1995, 5:75–88.
    70. Graf H, Steidle G, Martirosian P, et al. Metal artifacts caused by gradient switching[J]. Magn Reson Med 2005, 54(1): 231–234.
    71. Beuf O, Lissac M, Cremillieux Y, et al. Correlation between magnetic resonance imaging disturbances and the magnetic susceptibility of dental materials [J]. Dent Mater 1994, 10: 265–268.
    72. Starcuk Z, Bartusek K, Hubalkova H, et al. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use [J]. Meas Sci Rev 2006, 6(2): 24–27.
    73. Vikhoff B, Ribbelin S, Kohler B, et al. Artefacts caused by dental filling materials in MR imaging [J]. Acta Radiol 1995, 36(3): 323–325.
    74. Starcuk Z, Hubalkova H, Krupa P, et al. Assessment of MR compatibility of selected dental alloys [J]. Proc Int Soc Mag Reson Med 2005, 13: 2276.
    75. Marques JP, Bowtell R. Numerical simulations of the DQC signal in inhomogeneous solutions Assessment of MR compatibility of selected dental alloys [J]. Proc Int Magn Reson Med 2003, 11: 1020.
    76. Weglarz WP, Tanasiewicz M, Kupka T, et al. 3D MR imaging of dental cavities—an in vitro study [J]. Solid State Nucl Magn Reson 2004, 25: 84–87.
    77. Olt S, Jakob PM. Contrast-enhanced dental MRI for visualization of theteeth and jaw [J]. Magn Reson Med 2004, 52: 174–176.
    78. Beuf O, Seurin MJ, Briguet A, Lissac M. Magnetic resonance imaging of rodent teeth [J]. Magn Reson Mater Phys Biol Med 1999, 8: 83–6.
    79. Davis PL, Crooks L, Arakawa M, et al. Potential hazards in NMR imaging: heating effects of changing magnetic fields and RF fields on small metallic implants [J]. AJR 1981, 137: 857–860.
    80. Hopper TAJ, Vasilic B, Pope JM, et al. Experimental and computational analyses of the effects of slice distortion from a metallic sphere in an MRI phantom [J]. Magn Reson Imag 2006, 24:1077–1085.
    81. Allen F, Smith DG. An assessment of the accuracy of ridge-mapping in planning implant therapy for the anterior maxilla [J]. Clin Oral Implants Res, 2000, 11: 34–38
    82. Mupparapu M, Singer SR. Implant imaging for the dentist [J]. J Can Dent Assoc, 2004, 70: 32–32
    83. Fiala TG, Novelline RA, Yaremchuk MJ. Comparison of CT imaging artifacts from craniomaxillofacial internal fixation devices [J]. Plast Reconstr Surg, 1993, 92: 1227–1232
    84. Kaneda T, Minami M, Curtin HD, et al. Dental burr fragments causing metal artifacts on MR images [J]. AJNR Am J Neuroradiol, 1998, 19: 317–319.
    85. Abbaszadeh K, Heffez LB, Mafee MF. Effect of interference of metallic objects on interpretation of T1-weighted magnetic resonance images in the maxillofacial region. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89: 759–765.
    86. Graf H, Klemm T, Lauer UA, et al. Systematics of imaging artifacts in MRIcaused by metallic vascular implants (stents). Rofo, 2003, 175: 1711–1719
    87. Gray CF, Redpath TW, Smith FW, et al. Advanced imaging: magnetic resonance imaging in implant dentistry. Clin Oral Implants Res, 2003, 14: 18–27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700