医学影像显示介质的图像质量对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技和临床医学的发展,医学影像技术也在不断发展与更新。目前,医学影像学科是大型医院现代化的主要标志,是进行医学研究、临床诊断和治疗的重要方法。其新技术的应用对临床医学诊疗工作发挥着越来越普遍及重要的作用。
     在影像学图像输出方面,一种新型图像输出系统——纸介质打印系统产生。本研究拟通过两部分实验,从图像质量的物理参数和其在临床疾病的影像诊断价值两方面论证纸介质打印图像在临床诊断中的应用价值。
     目的:
     1、通过对比纸介质图像与胶片图像显示效果的物理参数,分析两者的异同。
     2、通过对比纸介质图像与胶片图像对常见病病灶显示的差异,分析数码医疗影像纸介质打印系统打印图像在影像医学诊断方面的临床应用价值。
     材料与方法:
     1、分别通过数码医疗影像纸介质打印机和干式激光打印机打印SMPTE RP-133格式图,用Adobe Photoshop从SMPTE RP-133格式图扫描图图像中切取局部得到分析图片,用JMicro Vision图像分析工具包对所得图片沿Y轴方向对色值积分进行x轴图像统计,将所得密度积分。通过计算,生成图像对应的空间——密度曲线图,从曲线形态分析图像显示结果的差异。
     2、分别通过数码医疗影像纸介质打印机和干式激光打印机打印X线扫描线对、CT和MR扫描水模的图像,主观观察两者显示结果的差异。
     3、回顾性分析我院2007年10月—2008年5月患者(年龄、性别不限)的诊影像诊断结果。实验分三组(各组100例):第一组为健康体检人群的X线胸部正位片;第二组为CT检查确诊为头颅外伤患者的CT检查结果;第三组为经MR检查确诊为腔隙性脑梗塞患者的MR检查结果。将上述三组结果分别通过数码医疗影像纸介质打印机打印纸介质图像、干式激光打印机打印胶片图像,请3名放射科具有5年以上阅片经验的医师结合影像工作站的软阅读参与评估,分析三种临床常见病的结构与观察征象,对比两者显示结果的差异。
     结果:
     1、分析纸介质图像和胶片图像打印SMPTE RP-133测试图所生成的空间—密度曲线图:高反差部分图像显示,纸介质图像与胶片图像生成的曲线相比,其波形更接近于理想图像所生成的曲线(近似方波,振幅均匀);低反差部分图像显示,纸介质图像生成的曲线呈毛刺状(为抖动算法引入的噪声波形),胶片图像生成的曲线相对平滑,但振幅均匀程度差;理想图像所生成的图像为振幅均匀的方波形态。两种介质图像绘制的曲线形态与理解结果均存在差距。
     2、主观观察X线扫描线对、CT和MR扫描水模的显示结果,纸介质图像和胶片图像打印结果,没有明显差别。
     3、经统计学分析放射科医师评阅胸部X线正位片、头颅外伤CT、腔隙性脑梗塞MR所打印的胶片与纸介质图像,在主要结构与观察征象的显示方面,p≥0.05结果无统计学差异,但对少部分细微结构的显示方面,p<0.05,说明纸介质图像的清晰度与胶片有差别,根据统计分析结果表面,纸介质图像显示清晰度稍差于胶片。
     结论
     1、通过对SMPTE RP-133打印测试图的空间—密度曲线分析结果,在高反差图像部分,纸介质图像的曲线接近理想曲线所形成的方波,且振幅均匀,说明其质量高于胶片图像,输出密度值更准确;在低反差图像部分,纸介质图像虽然振幅较均匀,但曲线呈毛刺状,而胶片曲线虽然不如纸介质曲线振幅表现均匀,但曲线形态较平滑,说明在低反差部分,纸介质图像噪声相对较高。这种差别主要体现在图像细节表现方面,纸介质图像的显示结果会稍差于胶片。
     2、主观观察两者对X线线对、CT和MR水模的扫描结果,没有明显差别。
     3、在两类图像的临床使用方面结果比较,胸部X线正位片,头颅外伤CT、腔隙性脑梗塞MR的诊断统计学结果分析,纸介质图像在对于此三类常见病的主要结构和征象显示方面与胶片无明显差异,但对于少部分细节的表现能力稍差。当结合影像工作站的软阅读后,纸介质图像可以满足临床诊断的需求。
     4、通过对于两种设备的综合比较,纸介质打印系统作为一种新型医学影像图像的显示方式,还具有操作简便、经济环保、存储便捷等优点,可以在一定范围内应用于医学影像图像的显示。
Objective:
     1. To compare the physical parameters of film and paper media in order to analyze the difference image quality between the two media.
     2. To compare the number of the focus of common disease displayed in film and paper media, and explore the clinical value of paper media system in medical imaging.
     Material and method:
     1. A comparative study of image quality of dry laser printer and film printer using Medical Diagnostic Imaging Test Pattern SMPTE RP-133. Use Adobe Photoshop software to obtain the picture derived from the SMPTE RP-133 test scan results. To use JMicro Vision Image Analysis Toolkit to do x-axis image statistical computation, the density of points would derive from calculus. The space - density curves would be got through computation, and the results of display would be analyzed through the image curve.
     2. Imaging results were reviewed from 2007-10 to 2008-5 . Three hundred cases were recruited and divided into 3 groups including Group 1: 100 cases of normal thoracic X-ray film, Group 2: 100 cases of CT film which were diagnosed as injury of brain, Group 3: 100 cases of MR film which were diagnosed as lacunar infarction. All the images were printed in film and paper media in use of laserjet and digital medical imaging paper media printer system. Three radiologists with 5 years of professional experience evaluated the image quality of the two media and compared the demonstration of the common disease between film and paper media.
     Results:
     1. Analysis of the space - density curve generated by SMPTE RP-133 test showed that: the part of the high-contrast images showed that the curve of the paper media images compared with that of film images was closer to its ideal form images generated curve (similar to square wave, uniform amplitude); low-contrast image part display that, the image generated by the paper media image was burr-shaped curve (for the noise waveform). The curve generated by film images was a relatively smooth curve, but the uniformity of the amplitude was poor. The curve generated by ideal images was uniform in amplitude and square wave shape. The curves generated by two types of media images were not as good as the ideal results.
     2. No significant difference of image demonstration was found between the film and paper media in the main structure among the thoracic X-ray, the head trauma CT and lacunar infarction MR. However, there was significant difference in some aspects of details of the performance(P<0.05). When combined with the soft image workstation reading, the paper media image can meet the needs of the clinical diagnosis.
     Conclusion:
     1. Analyzing the output results of SMPTE RP-133 test pattern of both printers. In high-contrast patterns, the output of dry laser printer resembled the original image better, the curve is more square-shaped and the amplitude is more consistent, means that more high-frequency signal is preserved and more accurate density of high-contrast patterns in the output of dry laser printer. In low-contrast patterns, the output of dry laser printer shows major amount of high-frequency noise, albeit the amplitude is consistent. The output of film printer shows less consistent amplitude but the curve is much smoother, means that the dry laser printer has higher noise and lower signal to noise ratio in low-contrast patterns, resulting in inferior image quality in subtle low-contrast fine details.
     2. There is no significant difference of the two types of images for this common disease in the main structure and signs in the clinical use of chest X-ray films, head trauma CT, lacunar infarction MR. However, the paper media image is poor in some details of the performance. When combined with the soft image workstation reading, the paper media image is qualified for the needs of the clinical diagnosis.
     3. As a result of the comprehensive comparison of these two categories of equipment, the paper media printing system as a new type of displaying method of medical imaging is simple, economic, good to environmental protection, easy to store. So it can be used in a certain range of medical imaging to display images.
引文
[1]. Gunderman RB, Kang YP, Fraley RE, et al. Instructional technology and radiologic education. Radiology, 2001, 221:1-5.
    [2]. Scott, Jr., W.W., Bluemke, D.A., Mysko, W.K., et al. Interpretation of Emergency Department Radiographs by Radiologists and Emergency Medicine Physicians: Teleradiology Workstation versus Radiograph Readings. Radiology 1995, 195: 223-225.
    [3]. MJ Combs, J Snell, WS Cail. The gray-scale ink-jet printer: value in making hard copies of digital images. DA Buck - American Journal of Roentgenology, 1995 - Am Roentgen Ray Soc.
    [4]. Halpern, E.J., Esser, P.D. An Improved Phantom for Quality Control of Laser Scanner Digitizers in Picture Archival and Communications Systems. Journal of Digital Imaging 1991, 4: 241-247 .
    [5].陶勇浩,缪竞陶.影像存档与通讯网络结构设计和优化因素.中华放射学杂志, 2001, 35: 171-173.
    [6]. American College of Radiology. ACR Standard for Teleradiology. Res. 35 - 1998.
    [7]. Image presentation in digital radiology: perspectives on the emerging DICOM display function. Radiographics, 1997– RSNA .
    [8].刘虹,Cathy Lau, DICOM纸质医疗影像输出方案的应用前景及效益分析[J],医学综述2007, 13: 150-153.
    [9]. Le Pape, S, Macphee, A, Hey, Density. measurement of shock compressed foam using two-dimensional x-ray radiography. Rev Sci Instrum[J], 2008, 79: 104-106.
    [10]. Andre G, Soren Kreuzer, Susanne Schick, et al. Dry versus conventional laser imagers: film properties and image quality. [J]. Radiology, 1999, 210:871-875.
    [11]. Krupinski EA, Radvany M, Lervy A, et al. Enhanced visuslization processing: effect on workflow. Acad Radiol, 2001, 8: 1127-1133.
    [12]. Ibbott GS, Zhang Y, Mohiuddin M, et al. Reproduction of radiologic images on plain paper [J]. Radiographics 1998, 18:755-760.
    [13]. McEvoy, F. J, Svalastoga, E. Security of patient and study data associated with DICOM images when transferred using compact disc media. Digit Imaging[J], 2007, 22: 65-70.
    [14]. IEC 1223-2-6. Constancy tests X-ray equipment for computed tomography.1994, 14:11-37.
    [15]. Gerd Schueller, Elisabeth Raindl, Wolfgang K, et al. Image qualith of a wet laser printer versus a paper printer for Full-Field Digital Mammograms. [J].
    [16]. Halpern, E.J., Newhouse, J.H., Amis, E.S., et al. Evaluation of Teleradiology for Interpretation of Intravenous Urograms. Journal of Digital Imaging 1992, 5: 101-106.
    [17].张里仁.医学影像设备学[M].北京:人民卫生出版社, 2000.
    [18]. Gray, J.E., Lisk, K.G., Haddick, D.H., et al. Test Pattern for Video Displays and Hard-copy Cameras. Radiology 1985, 154: 519-527.
    [19].石明国,李雪梅等.数字化干式打印成像技术原理及应用[J].实用放射学杂志, 2002, 18: 1101-1103.
    [20]. Esser, P.D., Halpern, E.J.,, Amis, E.S. Quality Assurance of Picture Archiving Communication Systems with Laser Film Digitizers. Journal of Digital Imaging 1991, 4: 248-250.
    [21]. Gale, M.E., Vincent, M.E., Robbins, A.H. Teleradiology for Remote Diagnosis : A Prospective Multi-year Evaluation. Journal of Digital Imaging1997, 10: 47-50.
    [22]. AJR, 2006,186: 38-43.Merobic D W, Levski R A, Straugban K, et al, Investigation of slice characteristics in nuclear magnetic, Phys Med Bioi, 1986, 31: 613-626..
    [23]. Langer, S. Issues surrounding PACS archiving to external, third-party DICOM archives. J Digit Imaging[J], 2009, 22: 48-52.
    [24]. Maldjian, J. A, Baer, A. H, Kraft, R. A, er al. Fully automated processing of fMRI data in SPM: from MRI scanner to PACS. Neuroinformatics. Rofo [J], 2009, 7: 57-72.
    [25]. Laprise, N. K, Hanusik, R, Fitzgerald, T. J, et al. Developing a multi-institutional PACS archive and designing processes to manage the shift from a film to a digital-based archive. J Digit Imaging[J], 2009, 22:15-24.
    [26]. Gray, J.E. Use of the SMPTE Test Pattern in Picture Archiving and Communication Systems. Journal of Digital Imaging 1992, 5: 54-58..
    [27]. Lien, C. Y, Hsiao, C. H, Huang, L. C, et al. Applying a Presentation Content Manifest for Signing Clinical Documents. J Digit Imaging[J], 2009.
    [28]. Loose, R, Braunschweig, R, Kotter, E, et al. Compression of digital images in radiology - results of a consensus conference[J]. 2009, 181: 7-32.
    [29]. Jervis, S. E, Brettle, D. S. A practical approach to soft-copy display consistency for PC-based review workstations. Br J Radiol[J], 2003, 76: 648-52.
    [30]. Sonobe, F, Toyooka, K, Abe, S, et al. Fundamental study on stability of dry-processing imager system. Igaku Butsuri[J], 2002, 22: 173-82.
    [31]. Evaluation of Teleradiology Image Quality Using a SMPTE Test Pattern.
    [32]. Society of Motion Pictures and Television Engineers (SMPTE). Specifications for Medical Diagnostic Imaging Test Pattern for TelevisionMonitors and Hard-copy Recording Cameras. Recommended Practice RP 133-1986. SMPTE Journal 1986; 95: 693-695.
    [33]. Chen, T. J, Chuang, K. S, Chiang, Y. C, et al. A statistical method for evaluation quality of medical images: a case study in bit discarding and image compression. Comput Med Imaging Graph[J], 2004, 28: 167-75.
    [34]. Kobayashi, L. O, Furuie, S. S. Proposal for DICOM multiframe medical image integrity and authenticity. J Digit Imaging[J], 2009, 22: 71-83.
    [35]. Kallman, H. E, Halsius, E, Olsson, M, et al. DICOM Metadata repository for technical information in digital medical images. Acta Oncol[J], 2009, 48: 5-8.
    [36]. Kobayashi, L, Furuie, S, Barreto, P. Providing Integrity and Authenticity in DICOM Images: a Novel Approach. IEEE Trans Inf Technol Biomed[J], 2009.Erdelyi, M, Lajko, M, Kakonyi, R, et al. Measurement of the x-ray tube anodes' surface profile and its effects on the x-ray spectra. Med Phys[J], 2009, 36: 87-93.
    [37]. Tsalafoutas, I. A, Tsapaki, V, Koulentianos, E, et al. Quality control of a laser camera with the SMPTE test pattern: optical density variations with printing format and frame position. Br J Radiol[J], 2004, 77: 52-6
    [38].高元桂,蔡幼铨,蔡祖龙.磁共振成像诊断学[M].北京:人民军医出版社, 2004.
    [39]. Faccioli, N, Perandini, S, Comai, A, et al. Proper use of common image file formats in handling radiological images. Radiol Med[J], 2009..
    [40]. Tsalafoutas, I. A, Papoutsis, G. V, Maniatis, P,et al. N. Optical density variations in CT films and their effect on image quality. Br J Radiol[J],2006, 79: 25-31.
    [41]. Aldrich, J. E, Rutledge, J. D. Assessment of PACS display systems. JDigit Imaging[J], 2005, 18: 87—95.
    [42]. Wade, C, Brennan, P. C. Assessment of monitor conditions for the display of radiological diagnostic images and ambient lighting. Br J Radiol[J], 2004, 77: 465-71.
    [43]. Yamaguchi, M, Fujita, H, Uemura, M, et al. Development and evaluation of a new gray-scale test pattern to adjust gradients of thoracic CT imaging. Eur Radiol[J], 2004, 14: 2357-61.
    [44]. Yemisci, M, Sinici, I, Ozkara, H. A, et al. Protective role of 27bp repeat polymorphism in intron 4 of eNOS gene in lacunar infarction. Free Radic Res[J], 2009, 43: 272-9.
    [45]. Covel M M, Hearshen D O, Carson P L, et al, Automated analysis of multiple performance characteristics in magnetic resonance imaging systems. Med Phys, 1986, 13, 815-823.
    [46]. Ohta, Y, Takamatsu, K, Fukushima, T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Intern Med[J], 2009, 48: 593-6.
    [47]. Notsu, Y, Nabika, T, Bokura, H, et al. Evaluation of asymmetric dimethylarginine and homocysteine in microangiopathy-related cerebral damage. Am J Hypertens[J], 2009, 22: 257-62.
    [48]. Koga, H, Takashima, Y, Murakawa, R, et al. Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwell. J Stroke Cerebrovasc Dis[J], 2009, 18: 32-7.
    [49]. Valadka, A. B, Robertson, C. S. Surgery of cerebral trauma and associated critical care. Neurosurgery[J], 2007, 61: 203-220.
    [50].许尚文陈金雄.医学图像存档与通讯系统的临床应用[J].实用放射学杂志, 2002, 18: 531-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700