崇明东滩围垦区湿地水位与土壤对芦苇生长和繁殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是维系湿地生态系统稳定和健康的决定性因子,其中水位梯度是湿地生态系统中重要的环境梯度之一,水位波动是控制湿地特征的关键因子,是湿地典型的扰动特征之一。湿地土壤也是湿地生态系统的重要组成部分,它既是湿地获取化学物质的最初场所,又是湿地发生化学变化的中介,还是湿地植物的直接支撑者。湿地的水分条件、水位变化及湿地土壤的类型、结构和肥力状况会影响到湿地生态系统植物群落的分布及其生产量、群落的稳定性、物种多样性和群落的演替。因此,研究湿地优势建群种对湿地水位波动和土壤环境因子变化的响应具有重大的现实意义。
     崇明岛是上海市最主要的土地战略储备区,滩涂围垦形成了崇明现在岛域面积的43.7%。在各次围垦过程中,人为的排水脱盐行为使围垦区湿地的无机环境发生了改变,植物群落构成也发生了相应的变化。本研究的地点位于崇明东滩围垦区的湿地修复示范区,区内对主要河道的水位进行人工控制。采用样方法记录区内不同河道边芦苇的生长过程,从水位波动和土壤环境角度来解释芦苇生长和繁殖的差异,进而量化水位和土壤环境因子与芦苇生长和繁殖之间的关系,为进一步可持续利用中芦苇群落的保育与修复提供基础数据,同时为滨海围垦湿地的恢复和重建提供科学依据。
     主要研究结果和结论如下:
     1.研究区域样地间的水位存在差异,且该区域水位有如下特点:春季以地表淹水为主,夏秋季节以地下水位为主,三样地水位在秋季处于最低值(样地1平均水位-46.81±23.40cm,样地2为-23.62±15.81cm,样地3为-15.50±8.94cm)。
     2.随着季节的更替,各样地土壤的容重和有机质呈“V”字变化(夏季最低),全氮含量逐渐下降。样地内的土壤容重总体上高于正常范围,即:1.1~1.4g/cm3,有机质和全氮含量偏低。各样地不同季节的土壤容重和有机质不存在差异,三样地秋季时的土壤全氮间存在差异。各季节三样地土壤含水量随着垂直深度的增加而增大,且各层(0-20cm、20-40cm、40-60cm)土壤含水量都与水位密切相关。三个季节中,春季的表层(0-20cm)土壤含水量是最大的:样地1为306.1±16.4 g/kg,样地2为362.4±9.7 g/kg,样地3为408.4±20.7g/kg;夏季,三样地的表层(0-20cm)土壤含水量存在差异;秋季,三样地20cm以下的土壤含水量存在差异。
     3.三样地芦苇种群在密度、株高、基径、单株叶数和叶面积、地上生物量方面的生长动态记录如下:密度最大值出现在夏季的2号样地(152±13棵/m2);基径最大值出现在春季的1号样地(7.35±0.31mm),单株叶面积最大值是夏季的3号样地(547.69±16.67cm2),株高、单株叶数和地上生物量的最大值出现在秋季的3号样地。该区域芦苇地上生物量主要由株高和基径决定,而且株高对地上生物量的贡献比基径大。秋季,芦苇繁殖状况各指标(开花率、花数、种子数量)的最高值均出现在3号样地,且各指标样地间均存在差异。
     4.通过分析水位、土壤环境因子与芦苇生长和繁殖的关系,可得出:当水位高于地表时,芦苇的生长状况直接与水位有关;当水位低于地表时,芦苇的生长状况和繁殖状况与不同层次土壤含水量有关,同时土壤容重和全氮含量也决定了芦苇株高、花数与种子数量。总之,低土壤含水量、低全氮含量和高容重的环境不利于芦苇的生长和繁殖。
Water is the decisive factor to keep the wetland ecosystem stable and healthy, and water level gradient is an important environmental gradient in wetland ecosystem. The fluctuation of water level is not only the key factor which controlled the wetland characteristics but also one of the typical disturbance characteristics of the wetland. Wetland soil is an important part of wetland ecosystem, it is the first place for wetland to obtain chemical substances, and wetland soil is also the intermediary of chemical changes and the direct supporter of wetland plants. The water condition and the fluctuation of water level and soil type, structure and fertility in wetland will affect wetland plant's community distribution and production, community stability, species diversity and community succession. Therefore, it has a great practical significance to research the wetland constructive species in response to fluctuation of water level and soil environmental factors.
     Shanghai Chongming Island is the most important strategic reserve of land area, the 43.7% of whose area is formed by beach reclamation. During the process of beach reclamation, artificial reclaimed water desalination changes the inorganic wetland environment, and the corresponding plant community composition also changes. The study site is located in the wetland restoration demonstration area of reclaimed land area and the water level of major rivers is controlled. Growth of Phragmites australis in different channels is recorded by sampling method and the reason of differences in Phragmites australis growth and reproduction is explained from water level fluctuations and soil aspects. Based on the research above, we can quantify the relationships between water level, soil environmental factors and growth, reproduction of Phragmites australis, and further to provide basic data for the sustainable use of conservation and restoration of Phragmites australis community, and also to provide a scientific basis for restoration and reconstruction of reclaimed wetland. The main findings and conclusions are as follows:
     1. The plots in study area has differences in water level, and the water level of the region in spring is mainly surface flooding, summer and autumn is mainly underground water level, the water level in three plots is the lowest in autumn:the average water level of plot 1 is -46.81±23.40 cm, plot 2 is -23.62±15.81cm, plot 3 is-15.50±8.94cm.
     2. Soil bulk density and organic matter of the plots change with the season as "V" trend, and lowest in summer, soil total nitrogen content decreased with seasonal variation; soil bulk density of plots is above the normal range of 1.1~1.4g/cm3; soil organic matter and total nitrogen are on the low side. Soil bulk density and organic matter are not different between the various seasons in each plot, but soil total nitrogen has differences among the plots only in the fall. In each season, soil water content of three plots increase along with the vertical depths, and the soil water contents of each layer (0-20cm、20-40cm、40-60cm) are closely related with water level. In spring, soil water content of surface layer (0-20cm) is the maximum of three seasons:plot 1 is 306.1±16.4g/kg, plot 2 is 362.4±9.7g/kg, plot 3 is 408.4±20.7g/kg; in summer, soil water content of surface layer (0-20cm) are different between the three plots; in autumn, soil water content of the layer below 20cm varies between the three plots.
     3. The growth dynamics of the Phragmites australis population density, plant height, basal diameter, leaf number and leaf area per plant, aboveground biomass in the three plots are recorded:the density maximum appears in the summer in plot 2, 152±13N/m2; base diameter maximum is in the spring of plot 1:7.35±0.31mm, the maximum leaf area per plant is in summer in plot 3:547.69±16.67cm2, the maximums of stem length, leaf number per plant and aboveground biomass are in plot 3 in the fall. While the aboveground biomass of Phragmites australis in this region major decision by plant height and basal diameter, and plant height on the contribution of biomass larger than base diameter. The reproduction conditions indexes of Phragmites australis (flowering rate、the number of flowers and seeds) in plot 3 are at the highest values, and each index is different between plots in autumn.
     4. From the analysis of the relationship between water level、soil environmental factors and growth and reproduction of Phragmites australis, we can get:when the water level is above the surface, the reed's growth status is directly related to the water level; when the water level is below the surface, the Phragmites australis growth status and reproduction condition are related with the different levels of soil water content, meanwhile soil bulk density and total nitrogen content also determine the reed plant height, the number of flowers and seeds. Above all, the environment of low soil water content, low soil total nitrogen content and high soil bulk density is not conducive to the growth and reproduction of Phragmites australis.
引文
1. Benoit F., Ceustermans N.. Polyurethane ether foam (PUR) an ecological substrate ofr soilless growing. Polymer Recycling,1996,2:109-116.
    2. Boar R. R.. Responses of a fringing Cyperus papyrus L. swamp to changes in water level. Aquat. Bot,2006,84:85-92.
    3. Bounheng Southichak, Kazunori Nakano, Munehiro Nomura, et al.. Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution Water Research,2006,40:2295-2302.
    4. Bray E. A.. Molecular Responses to Water Deficit. Plant Physiology,1993,103: 1035-1040.
    5. Brian M. Deegan, Sean D. White, George G. Ganf. The influence of water level fluctuations on the growth of four emergent macrophyte species. A quatic Botany,2007,86:309-315.
    6. Bryan D. W.. Water and plants in freshwater wetlands. In Baird A.J., eds. Ecohydrology. London:Routledge,1999,128-157.
    7. Casanova M. T., Brock M. A.. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol.,2000, 147:237-250.
    8. Chanton J. P., Crill P. M., Bartlett K. B., et al.. Amazon Capims:A source of 13C enriched methane to the tropo sphere. Geophys Res Lett,1989,16:799-802.
    9. Clevering O.A.. An investigation into the effects of nitrogen on growth and morphology of stable and dieback populations of Phragmites australis. Aquat. Bot.,1998,60:11-25.
    10. Costanza R., d'Arge R., Groot R.. The Value of the World's Ecosystem Services and Natural Cap ital. Nature,1997,387:253-260.
    11. Gorham E., Pearsall W.H.. Production ecologylll. Shoot production in Phragmites in relation to habitat. Oikos,1956,7:206-214.
    12. Graneli W.. Reed Phragmites australis(Cav.)Trin.ex Steudel as an energy source in Sweden. Bioass,1984,4:183-208.
    13. Hellings S. E., Gallagher J. L.. The Effects of Salinity and Flooding on Phragmites australis. Journal of Applied Ecology,1992,29:41-49.
    14. Hugo C., Fred W. B., van den Brink, et al. Growth and morphological response of four helophyte species in an experimental water depth gradient. A quat. Bot. 1996,54:11-24.
    15. J.B.Adama'G.C.Bate.. Growth and photosynthetic performance of Phragmites australis in estuarine waters:a field and experimental evaluation. Aquatic Botany, 1999,64:359-367.
    16. Jacques Brisson, Etienne Paradis, Marie-Eve Bellavance. Evidence of Sexual Reproduction in the Invasive Common Reed (Phragmites australis subsp. australis; Poaceae) in Eastern Canada Rhodora.2008,110:225-230.
    17. Jeannine M.Lessmann, Vaclav Bauer. Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquatic Botany,2001,69:109-126.
    18. Jonathan L. H.. Physiological response to groundwater depth waries among species and with river flow regulation. Ecological Applicaions,2001,11: 1046-1059.
    19. Josiane Seghieri, Sylvie Galle. Run-on contribution to a Sahelian two-phasemosaic system:Soil water regime and vegetation life cycles. Acta Oecologica,1999,20,3:209-217
    20. Keddy P. A., Ellis T. H.. Seeding recruitment off wetland plants species along a water level gradient:Shared or distinct response? Can. J. Bot.,1995,63: 1876-1879.
    21. Kennedy M. P., Milne J. M., Murphy K. J.. Experimental growth responses to groundwater level variation and competition in five British wetland plant species. Wetl. Ecol. Manage,2003,11:383-396.
    22. Lentz K. A., Dunson W. A.. Water level affects growth of endangered northeastern bulrush Sci rpus ancist rochaet us Schuyler. A quat. Bot.,1998,60: 213-219.
    23. Lessen J P M, Menting B J, van der Putten W H. Effect of sedment type and water level on biomass production of wetland plant species. Aquatic Botany,1999,64: 151-165.
    24. Li Y. S.. Effects of forest on water circle on the loess ptanteau. Natural Resources,2001,16:427-432.
    25. Lisamarie Windham, Laura A.Meyerson. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S. Estuaries and Coasts,2003,26:452-464.
    26. Mauchamp A., S.Blanch, P.Grillas..Effect of submergence on the growth of Phragmites austrialis seeding. Aquatic Botany,2001,69:147-164.
    27. Mc Cartney M. P., Stratford C., Neal C., et al.. Seasonality and water quality trends in a maturing recreated reed bed. Sci. Total Environ,2003,314-316、 233-254.
    28. Miao S.L., Newman S., Sklar F.H.. Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. A quat. Bot.,2000,68:297-311.
    29. Mitsch W. J., Gosselink J. G.. wetlands. John Wiley and Sons, Inc.,2000:18-19.
    30. Pearcy R.W., Ustin S.L.. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia,1984,62:68-73.
    31. Pezeshk S.R.. Wetland plant responses to soil flooding Environmental and Experimental. Botany,2001,46:299-312.
    32. Rea N., Ganf G. G.. The role of sexual reproduction and water regime in shaping the distribution patterns of clonal emergent aquatic plants. Aust. J. Mar. Freshwater Res,1994,45:1469-1479.
    33. Richardson J. L., Vepvascas M. J.. Wetland soil:Genesis,Hydrology, Landscapes and Classification.2001, Boca Raton.Fla., Lewis Publishers.
    34. Rollleschek H., Hartzendorf T.. Effects of salinity and convective rhizome ventilation on amino acid and carbohydrate patterns of Phragmites austrialis populations in the Neusiedler Sea region of Austria and Hungary. New Phyol, 2000,146:95-106.
    35. Rollleschek H., Rolletschek A., Kuhl H., Kohl J.G.. Clone specific differences in a Phragmites austrialis stand a.Seasonal development of morphological and physiological characteristics at the natural site and after transplantation. Aquat. Bot.,1999,64:247-260.
    36. S.Fogli'R., Marchesini'R.. Gerdol Effects of salinity on the growth of Phragmites australis. Aquatic Botany,1997,55:247-260.
    37. Sheng Y. M., Wang H., Zeng H.. Characteristics of halophyte and associated soil a long agradational muddy coasts in J iangsu Province. ActaEcologica Sinica, 2005,25:1-6.
    38. Shiplfy B.. Net assimilation rate, specific leaf area and leaf mass ratio:which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology,2006,20:565-574.
    39. Vasilas L. M., Vasilas B. L.. Wetland Restoration and Creation Design to Restore Wetland Functions. USA:ASCE,2005.
    40. Viveka Vretara, Stenfan E.B.Weisner, John A. Strand, et al. Phenotypic plasticity in Phragmites austrialis as a functional response to water depth. Aquatic Botany, 2001,69:127-145.
    41. Weither E., Keddy P. A.. The assembly of experimental wetland plant communities. Oikos,1995,73:323-335.
    42. Willian J.Mitsch, James G.Gesselink. Wetlands. WILEY press,2000:107-105.
    43.曹秋玉.北固山湿地芦苇和虉草种群的生长规律及其生态功能的研究.2006,硕士论文(江苏大学)
    44.陈敏,陈亚宁,李卫红,等.不同地下水埋深柽柳、芦苇的生理响应.干旱区地理,2009,32:72-80.
    45.陈默君,贾慎修.中国饲用植物.北京:中国农业出版社,2002,253-255.
    46.陈伟烈.中国湿地植被类型、分布及其保护.中国湿地研究.长春:吉林科学出版社,1995,55-61.
    47.陈玉成.污染环境生物修复工程.北京:化学工业出版社,2003,30-52.
    48.陈治勋,蔡欣恬,丁澈士,等.湿地水文之研究一以屏东科技大学静思湖为例.第二届资源工程研讨会论文集.台北:国立屏东科技大学,2005,111.
    49.成小平.人工湿地废水处理系统的生物学基础研究进展.湖泊科学,1996,8:265-273.
    50.崔保山,赵欣胜,杨志峰,等.黄河三角洲芦苇种群特征对水深环境梯度的响应.生态学报,2006,26:1533-1541.
    51.丁成,王世和.杨春生草浆废水灌溉对海涂湿地土壤及芦苇生长的影响.生态环境,2005,14:21-25.
    52.段俊英,何秀良,戴祥鹏.不同生态条件下芦苇(Phragmites communis Trin.)根际微生物及其生物学活性的调查研究.生态学杂志,1985,2:13-16、23.
    53.段晓男,王效科,欧阳志云,等.乌梁素海野生芦苇群落生物量及影响因子分析.植物生态学报,2004,28:246-251.
    54.樊贵盛,郑秀清,潘光.在地下水埋深对冻融土壤水分入渗特性影响的试验研究.水利学报,1999,3:21-26.
    55.樊金拴,陈原国,李凯荣,等.土壤水分状况对核桃生长和发育的影响.林业科学,2006,42:39-46.
    56.冯大兰,刘芸,黄建国.三峡库区消落带土壤不同含水量条件下芦苇的氮素与生物量动态变化.环境科学学报,2009,29:2003-2009.
    57.冯利华,鲍毅新.滩涂围垦的负面影响与可持续发展战略.海洋科学,2004,28(4):76-77.
    58.干凤林.论三江平原芦苇资源及生产优势.国土与自然资源研究,1989,3:66-68.
    59.高宇,赵斌.人类围垦活动对上海崇明东滩滩涂发育的影响.中国农学通报,2006,22:475-479.
    60.巩晋楠,王开运,张超,等.围垦滩涂湿地旱生耐盐植物的入侵和影响.应用生态学报,2009,20:33-39.
    61.关于特别是作为水禽栖息地的国际重要湿地公约.拉姆萨尔:国际湿地公约组织,1971.
    62.国家林业局.全国湿地资源调查总报告.2003.
    63.韩广,张桂芳.洞庭湖区芦苇和荻的饲用潜力及开发利用.长江流域资源与环境,1998,3:232-236.
    64.何军,许兴,李树华,等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响.西北植物学报,2004,24:1594-1598.
    65.黄海,罗友丰,陈志英,等.SPSS10.0 for Windows统计分析(第一版).北京:人民邮电出版社,2001,66-83.
    66.贾庆宇,周莉,谢艳兵,等.盘锦湿地芦苇群落生物量动态特征研究.气象与环境学报,2006,22:25-29.
    67.姜汉侨,段昌群,杨树华,等.植物生态学.北京:高等教育出版社,2004,213-295.
    68.姜明,吕宪国,杨青.湿地土壤及其环境功能评价体系.湿地科学,2006,4:168-173.
    69.蒋跃平,葛滢,岳春雷.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,24:1718-1723.
    70.解晶,王卿,贾昕,等.崇明东滩芦苇(Phragmites australis)群落中昆虫群落季节动态的初步研究.复旦学报,2008,47:633-638.
    71.靖元孝,程惠青,彭建宗,等.水翁(Cleistocalyx operculatus)幼苗对淹水的反应初报.生态学报,2001,21:810-813.
    72.郎惠卿.中国湿地植被.北京:科学出版社,1999,109-114.
    73.李方满,李佩殉,于学衡.鹤类保护与芦苇水生态的关系.哈尔滨师范大学自然科穿学报,1989,5:104-107.
    74.李枫,杨红军.扎龙芦苇沼泽繁殖鸟类群落多样性研究.东北林业大学学报,1998,26:68-72.
    75.李贵宝,周怀东,刘芳.水陆交错带芦苇根孔及其净化污水的初步研究.中国水利,2003,3:66-68.
    76.李国景,F.Benoit, N.Ceustermans,等.芦苇作为环保型有机基质的可能性研究.浙江农业学报,2002,12:87-94.
    77.李红丽,智颖飙,雷光春,等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局.生态学报,2009,29:3525-3531.
    78.李红丽,智颖飙,雷光春等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局.生态学报,2009,29:3525-3531.
    79.李禄康.保护湿地就是保护人类生存环境.世界林业研究,2001,14:22-27.
    80.李修仓,胡顺军,李岳坦,等.干旱区旱生芦苇根系分布及土壤水分动态.草业学报,2008,17:97-101.
    81.李英华,崔保山,杨志峰.白洋淀水文特征变化对湿地生态环境的影响.自然资源学报,2004,19:62-68.
    82.刘金祥,王铭铭.淹水胁迫对香根草生长及光合生理的影响.草业科学,2005,122:71-73.
    83.刘佩勇,杨允菲.松嫩平原碱化草甸朝鲜碱茅种群地上生物量与密度关系的定量分析.东北师大学报(自然科学版),2000,32:60-66.
    84.刘树,梁漱玉.芦苇湿地土壤有机质含量对芦苇产能的影响研究.现代农业 科技,2008,7:232-234.
    85.刘晚苟,山仑.不同土壤水分条件下容重对玉米生长的影响.应用生态学报,2003,14:1906-1910.
    86.刘文杰,唐建维,白坤甲.西双版纳片断化望天树林小气候边缘效应比较研究.植物生态学报,2001,;25:616-622.
    87.刘玉,王国祥,潘国权.地下水位对芦苇叶片生理特征的影响.生态与农村环境学报,2008,24:53-56、62.
    88.刘玉,王国祥,潘国权.地下水位深度对芦苇生长与叶绿素荧光参数的影响.南京师大学报(自然科学版),2008,31:91-95.
    89.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000,106-108.
    90.陆健健.河口生态学.北京:海洋出版社,2003,23-45.
    91.罗纨,王文焰等.对湿地定义和湿地水文特征的探讨.水土保持学报,2001,15:117-120.
    92.马金妍,石冰,王开运,等.崇明东滩湿地围垦区芦苇物量影响因素初探.生态与农村环境学报,2009,25:100-102.
    93.马小伟,胡东,华振铃,等.土壤水分、盐分对野鸭湖湿地植物群落演替的影响.首都师范大学学报(自然科学版),2008,29:50-54.
    94.南志标,赵红洋,聂斌.黄土高原土壤紧实度对蚕豆生长的影响.应用生态学报,2002,13:935-938.
    95.潘瑞炽.植物生理学.北京:高等教育出版社,2004,252-256.
    96.曲建升,孙成权,赵转军.湿地功能参数评价及其在湿地研究中的应用—以CH4为例.国土与自然资源研究,2001,4:42-44.
    97.上海农林局.上海湿地资源调查报告.上海:上海农林局,2001,52-74.
    98.盛海燕,李伟成,常杰.伞形科两种植物幼苗生长对光照强度的可塑性响应.生态学报,2006,26:1854-1861.
    99.谭学界,赵欣胜.水深梯度下湿地植被空间分布与生态适应.生态学杂志,2006,25:1460-1464.
    100.陶思明.湿地生态与保护.北京:中国环境科学出版社,2003,117-129.
    101.田迅,兆君,杨允菲,等.松嫩平原湿地植被对生境干湿交替的响应.湿地科学,2004,2:122-127.
    102.田应兵,宋光煜,艾天成.湿地土壤及其生态功能.生态学杂志,2002,21: 36-39.
    103.王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望.地球科学进展,2001,16:314-323.
    104.王海洋,陈家宽,周进.水位梯度对湿地植物生长、繁殖和生物量分配的影响.植物生态学报,1999,23:269-274.
    105.王亮,张彤.崇明东滩15年动态发展变化研究.上海地质,2005,2:8-15.
    106.王庆改,白军红,张勇,等.湿地植物对土壤生态系统中氮含量变化的响应.水土保持研究,2007,14:164-167.
    107.王书秀,王燕平,陈玉英,等.芦苇对氰化物净化功能的研究.化工环保,1988,8:8-12.
    108.王嵩,冯平,李建柱.地下水生态环境控制指标问题的研究现状.干旱区资源与环境,2005,19:98-103.
    109.王智晨,张亦默,潘晓云,等.冬季火烧与收割对互花米草地上部分生长与繁殖的影响.生物多样性,2006,14:275-283.
    110.谢成章,张友德,徐冠军.荻和芦的生物学.北京:科学出版社,1993,21-93.
    111.谢东风,范代读,高抒.崇明岛东滩潮沟体系及其沉积动力学.海洋地质与第四纪地质,2006,26:9-16.
    112.谢涛,杨志峰.水分胁迫对黄河三角洲河口湿地芦苇光合参数的影响.应用生态学报,2009,20:562-568.
    113.徐志国,何岩,闫百兴,等.营养物及水位变化对湿地植物的影响.生态学杂志,2006,25:87-92.
    114.许世远.长江三角洲地区风暴沉积研究.北京:科学出版社,1997,24-42.
    115.闫芊.崇明东滩湿地植被的生态演替.2006,硕士论文(华东师范大学)
    116.杨帆,邓伟,杨建锋,等.土壤含水量和导电率对芦苇生长和种群分布的影响.水土保持学报,2006,20:199-201.
    117.杨桂山,施雅风,张琛.江苏海滨潮滩湿地对潮位变化的生态响应.地理学报,2002,57:325-3321.
    118.杨青,刘吉平,吕宪国,等.三江平原典型环型湿地土壤-植被-动物系统的结构及功能研究.生态学杂志,2004,23:72-77.
    119.杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,2:111-120.
    120.杨允菲,李建东.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析.应用生态学报,2003,14:30-34.
    121.于舜章,陈雨海,李全起,等.冬小麦2夏玉米两熟农田节水效应的可行性.生态学报,2006,26:2523-2531.
    122.张继义,赵哈林.植被(植物群落)稳定性研究评述.生态学杂志,2003,22:42-48.
    123.张士萍,张文佺,李艳丽,等.崇明东滩湿地土壤生物活性差异性及环境效应分析.农业环境科学学报,2009,28:112-118.
    124.张淑萍,王仁卿,张治国,等.黄河下游湿地芦苇形态变异研究.植物生态学报,2003,27:78-85.
    125.张文辉,卢涛,马克明,等.岷江上游干旱河谷植物群落分布的环境与空间因素分析.生态学报,2004,24:552-559.
    126.张晓敏.施肥和苇田耕翻对芦苇产量的影响.安徽农业科学.2008,36:8091-8092、8242.
    127.张长春,邵景力,李慈君,等.地下水位生态环境效应及生态环境指标.水文地质工程地质,2003,3:6-10.
    128.赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较.生态学报,2005,25:1604-1611.
    129.赵魁义,孙广友,杨永兴,等.中国沼泽志.北京:科学出版社,1999,1-28.
    130.赵魁义.地球之肾—湿地.北京:化学工业出版社,2002,57-86.
    131.赵学敏.湿地:人与自然和谐共存的家园—中国湿地保护.北京:中国林业出版社,2005,212-213.
    132.周学峰,赵睿,李媛媛,等.围垦后不同土地利用方式对长江口滩地土壤粒径分布的影响.生态学报,2009,29:5544-5551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700