浙江天童微地形上优势树种的种子萌发、出苗和幼苗早期建立研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子萌发、出苗和幼苗建立是森林更新的最初阶段,对植被格局的形成和发展起着重要作用。地形结构导致环境因子的差异性对于幼苗的建立和随后的树木生长起着决定作用。地形上幼苗动态的研究对于解释幼苗建立阶段在形成地形植被格局中的作用,进而深入理解小尺度空间植被格局的形成以及对植被恢复的作用都有重要的理论和实际意义。本研究在植被调查的基础上,选择了7种微地形优势种,通过室内种子萌发试验结合室外种子直播和幼苗监测的方法探究了不同微地形上种子萌发、出苗以及幼苗早期建立的过程,揭示了幼苗早期建立阶段对这些树种在现有微地形上占据优势地位中的作用,主要结论如下:
     (1)室内萌发实验表明,7种种子具有休眠或持续低萌的萌发策略。云山青冈、长叶石栎、栲树和南酸枣的种子含水量超过30%;雷公鹅耳枥、木荷和西川朴的含水量在10%~20%之间。雷公鹅耳枥和南酸枣的萌发率为0,具有休眠特性,而其他种子的萌发率都小于60%,云山青冈最高为56.50±7.14%,栲树最低为6.00±1.42%。
     (2)微地形、光照环境之间总空隙度存在极显著的差异(p<0.01)。上部坡面的总空隙度都要大于下部坡面。各微地形随着海拔高度的逐渐增加,总空隙度呈现逐渐上升的趋势。微地形和光照环境对土壤侵蚀影响不显著(p>0.05)。土壤含水量在微地形之间存在极显著的差异(p<0.001),林内和林窗无显著差异(p=0.067)。上部坡面的土壤含水量明显大于下部坡面。在各个月份中,呈现出上部坡面土壤含水量总是大于下部坡面的趋势。
     (3)7种种子在微地形上表现出不同的出苗策略。A组的雷公鹅耳枥和木荷出苗时间最早,B组西川朴和南酸枣出苗时间次之,A组的云山青冈、长叶石栎和栲树的出苗时间最迟。雷公鹅耳枥和木荷,以及西川朴在早期(4月)幼苗数达到最大值,但具有高的死亡率,而南酸枣在5、6月(CS3在7、8月)达到最大幼苗数,死亡率平缓。栲树、云山青冈和长叶石栎在第1个生长季末才达到最大幼苗数,但存活率较高。
     (4)出苗率受一个或多个环境因子的影响,在微地形上的差异性并不明显。除长叶石栎和西川朴的出苗率与土壤水分、总空隙度和土壤侵蚀无显著的相关性外,其他树种的出苗率至少与其中一个因子相关。林内和林窗的出苗率并无显著差异(除南酸枣在下部坡面,p<0.001)。上下坡面对树种的出苗率影响不大(除南酸枣在林内,p=0.048)。雷公鹅耳枥和栲树的出苗率在各微地形上不存在显著的差异。木荷、云山青冈、长叶石栎、西川朴和南酸枣的出苗率除了在少数几个微地形上表现出显著差异外,在各微地形上差异性也非常小,说明出苗率在微地形单元尺度上并不存在较为明显的分异。
     (5)不同树种的幼苗存活率和死亡率存在着较大的差异性,且受环境和生物因子的影响。云山青冈、长叶石栎、栲树的存活率较高,长叶石栎和栲树在一些微地形上的存活率可达到100%,雷公鹅耳枥的存活率相对较低。除雷公鹅耳枥外,所有树种的幼苗存活率都随着土壤含水量的增加而降低。总空隙度的增加显著提高雷公鹅耳枥、木荷、云山青冈、栲树的幼苗存活率。雷公鹅耳枥、木荷和云山青冈的幼苗存活率随着土壤的增加而降低。就所能观察到的死亡个体中,枯萎是雷公鹅耳枥、木荷、西川朴和南酸枣幼苗死亡最主要的原因,而云山青冈和长叶石栎的主要死亡原因是物理损伤。
     (6)所研究树种的幼苗在各微地形中的建立总体差异不大,仅在个别微地形之间表现出一定的差异性,且与成体在微地形上的分布格局无关。这些不能很好地解释所研究树种的成年植物个体在本研究地的微地形上分异的现象。种子萌发、出苗和幼苗建立是种子生物学特性和生境因子综合作用的结果,该阶段并不是引起天童地区微地形上现有植被分布的主要原因。现有植被在地形上的分异极有可能是体现在各树种种子散布的差异性上,或者幼树(sapling)以及小树(small tree)阶段,甚至是大树(adult tree)阶段对土壤、气候等因素不同的适应能力上。
Seed germination, seedling emergence and seedling establishment as early stages of forest regeneration are critical in the formation and development of vegetation patterns. Topographical structures induce environmental factors'differences, which determine the seedling establishment and consequent tree growth. Studies on seedling dynamics in various topographical positions are important to explain the role of seedling establishment stage in the formation of vegetation patterns and be critical for understanding small-scale vegetation pattern and regeneration of degraded forests. Based on former vegetation investigations,7 micro-landform dominant tree species were selected, and through indoor seed germination experiment, outdoor direct seeding and seedling monitoring we investigated seed germination, seedling emergence and seedling establishment on various micro-landform units. The role of seedling establishment stage for the formation of present vegetation pattern was discussed, results are:
     (1) Indoor experiment indicated that 7 kinds of seeds were either dormant or had low continuous germination rates. Water contents of Cyclobalanopsis nubium and Lithocarpus harlandii, Castanopsis fargesii and Choerospondias axiliaris were higher than 30%; water contents of Carpinus viminea, Schima superba and Celtis vandervoetiana were between 10%~20%. Germination rates of Carpinus viminea and Choerospondias axiliaris were 0, and others were lower than 60%. Cyclobalanopsis nubium had the highest germination rate (56.50±7.14%) while Castanopsis fargesii the lowest(6.00±1.42%).
     (2) There was no significant difference among the micro-landform units and light conditions (p<0.01). Total gap fraction on the upper slope was larger than that of lower slope. Total gap fraction had a trend of increasing with the increase of altitude. Soil erosions were not significantly related with micro-landform units and light conditions (p>0.05).Soil moistures were significantly different among micro-landform units (p<0.001), and not significant between light conditions (p=0.067). Soil moisture was obviously higher than that of lower slope. In each month there was a trend that soil moisture on upper slope was higher than that of lower slope.
     (3) 7 kinds of seeds had different germination strategies. Carpinus viminea and Schima superba of group A geminated the first, Choerospondias axiliaris and Celtis vandervoetiana of group B the second, and Castanopsis fargesii, Cyclobalanopsis nubium and Lithocarpus harlandii of group A the latest. Schima superba, Carpinus viminea and Celtis vandervoetiana had the largest seedling numbers in April, and had high mortality rates. Choerospondias axiliaris had the largest number in May and June among the micro-landform units and had relatively low mortality rate. Castanopsis fargesii, Cyclobalanopsis nubium and Lithocarpus harlandii reached the largest amounts at the end of the 1st growing season and had high survival rate.
     (4) Seedling emergence rate was influenced by one or a number of environmental factors, and was not significantly different among the micro-landform units. Seedling emergence was at least correlated with one of the environmental factors, namely soil moisture, total gap fraction and soil erosion, except for Lithocarpus harlandii and Celtis vandervoetiana. Seedling emergence was not significantly different between the light conditions (except for Choerospondias axiliaris on lower hillslope area, P<0.001) and slopes (except for Choerospondias axiliaris under canopy,P=0.048). Seedling emergences of Carpinus viminea and Castanopsis fargesii were not significantly different among the micro-landform units. Seedling emergences of Schima superba, Cyclobalanopsis nubium, Lithocarpus harlandii, Choerospondias axiliaris, and Celtis vandervoetiana had little differences except for some micro-landform units, which indicated that seedling emergences at a micro-landform unit scale were not significantly different.
     (5) Seedling survival rates and seedling mortality rates varied among species, and were affected by environmental and biological factors. Seedling survival rates of Castanopsis fargesii, Cyclobalanopsis nubium and Lithocarpus harlandii were obviously higher than other species and seedling survival rates of Castanopsis fargesii and Lithocarpus harlandii at some micro-landform units could reach 100%. Carpinus viminea had relatively lower seedling survival rate. Seedling survival rates of all tree seedlings except for Carpinus viminea decreased with the increase of soil moisture. The increase of total gap fraction significantly increased the seedling survival rates of Carpinus viminea, Schima superba, Castanopsis fargesii and Cyclobalanopsis nubium. Seedling survival rates of Carpinus viminea, Schima superba, and Cyclobalanopsis nubium decreased with the increase of soil. Withering was the main cause of mortality of Carpinus viminea, Schima superba and Choerospondias axiliaris. The main cause of Cyclobalanopsis nubium and Lithocarpus harlandii was physical damage.
     (6) Seedling establishments varied not significantly among the micro-landform units, except for some units which were not correlated with the pattern of the adult trees. These results do not fit the former observed vegetation pattern on various micro-landforms. Seed germination, seedling emergence and seedling establishment of the studied species are the results of the synthesis of seed biological characteristics and environmental factors'influences, and these stages are not the main cause of the present vegetation pattern among the micro-landform units in Tiantong area. The present vegetation distribution differences are likely to vary among the dispersal, sapling, small tree or even big tree stage, which may be related with their different adaptabilities to soil and climate or other factors.
引文
[1]Aguilera M.O. and Lauenroth W.K.1995. Influence of gap disturbances and type of microsites on seedling establishment in Bouteloua gracilis[J]. Journal of Ecology 83:87-97.
    [2]Armstrong D.P. and Westoby M.1993. Seedlings from large seeds tolerated defoliation better:A test using phylogeneticaly independent contrasts[J]. Ecology 74(4):1092-1100.
    [3]Bellingham P.J.1991. Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests[J]. Biotropica 23(4):427-433.
    [4]Benitez-Malvido J. and Kossmann-Ferraz I.D.1999. Litter cover variability affects seedling performance and herbivory[J]. Biotropica 31:598-606.
    [5]Battaglia L.L., Fore S.A. and Sharitz R.R.2000. Seedling emergence survival and size in relation to light and water availability in two bottomland hardwood species[J]. Journal of Ecology 88(6):1041-1050.
    [6]Baraloto C., Goldberg D.E. and Bonal D.2005. Performance trade-offs among tropical tree seedlings in contrasting microhabitats[J]. Ecology 86(9):2461-2472.
    [7]Begon M., Townsend C.R. and Harper J.L.2006. Ecology:From Individuals to Ecosystems[M].4th ed. Blackwell Publishing, MA, USA.
    [8]Bloor J.M.G and Grubb P.J.2003. Growth and mortality in high and low light: trends among 15 shade-tolerant tropical rain forest tree species[J]. Journal of Ecology 91:77-85.
    [9]Burns B.R. and Leathwick J.R.1996. Vegetation-environment relationships at Waipoua Forest, Northland, New Zealand[J]. New Zealand Journal of Botany 34: 79-92.
    [10]Cook R.J. and Papendick R.I.1972. Influence of water potential of soils and plants on root disease[J]. Annual Review of Phytopathology 10:349-374.
    [11]Da L.J., Kang M.M., Song K., Shang K.K., Yang Y.C., Xia A.M. and Qi Y.F.2009. Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China[J]. Ecological Research 24:1287-1299.
    [12]Dalling J.W. and Hubbell S.P.2002. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species[J]. Journal of Ecology 90:557-568.
    [13]Daubenmire R.1972. Phenology and other characteristics of tropical semideciduous forest in northwestern Costa Rica[J]. Journal of Ecology 60: 147-170.
    [14]Daws M.I., Pearson T.R.H., Burslem D.F.R.P., Mullins C.E. and Dalling J.W. 2005. Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama[J]. Plant Ecology 179: 93-105.
    [15]Doust S.J., Erskine P.D. and Lamb D.2006. Direct seeding to restore rainforest species:Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia[J]. Forest Ecology and Management 234:333-343.
    [16]Engel V.L. and Parrotta J.A.2001. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil[J]. Forest Ecology and Management 152:169-181.
    [17]Enoki T.2003. Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan [J]. Ecological Research 18:103-113.
    [18]Enoki T. and Abe A.2004. Saplings distribution in relation to topography and canopy openness in an evergreen broad-leaved forest[J]. Plant Ecolgoy 173: 283-291.
    [19]Facelli J.M.1994. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields[J]. Ecology 75(6):1727-1735.
    [20]Fenner M.2000. Seeds:The Ecology of Regeneration in Plant Communities[M]. 2nd ed. CAB International Publishing, UK.
    [21]Fenner M. and Thompson K.2005. The Ecology of Seeds[M]. Cambrige University Press, Cambrige.
    [22]Fowler N.L.1988. What is a safe site?:Neighbor, litter, germination date, and patch effects[J]. Ecology 69(4):947-961.
    [23]Garwood N.C.1983. Seed germination in a seasonal tropical forest in Panama:A community study[J]. Ecological Monographs 53(2):159-181.
    [24]George L.O. and Bazzaz F.A.1999. The fern understory as an ecological filter: Emergence and establishment of canopy-tree seedlings[J]. Ecology 80(3): 833-845.
    [25]Hara M., Hirata K., Fujihara M. and Oono K.1996. Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan[J]. Ecological Research 11:325-337.
    [26]Harms K.E. and Dalling J.1997. Damage and herbivory tolerance through resprouting as an advantage of large seed size in tropical trees and lianas [J]. Journal of Tropical Ecology 13:617-621.
    [27]Harper J.L.1977. Population biology of plants[M]. Academic Press, London, UK.
    [28]Harper J.L., Clatworthy J.N., Mcnaughton I.H. and Sagar G.R.1961. The evolution and ecology of closely related species living in the same area[J]. Evolution 15(2):209-227.
    [29]Hunt R.1982. Plant Growth Curves:The Functional Approach to Plant Growth Analysis[M]. Edward Arnold Ltd., London.
    [30]International Seed Testing Association (ISTA).1976. International rules for seed testing[J]. Seed Science and Technology 4:114-177.
    [31]Jinks R.L., Willoughby I. and Baker C.2006. Direct seeding of ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.):The effects of sowing date, pre-emergent herbicides, cultivation, and protection on seedling emergence and survival[J]. Forest Ecology and Management 237:373-386.
    [32]Khumbongmayum A.D., Khan M.L. and Tripathi R.S.2005. Survival and growth of seedlings of a few tree species in the four sacred groves of Manipur, Northeast India[J]. Current Science 88(11):1781-1788.
    [33]Kikuchi T.1990. A DCA analysis of floristic variation of plant communities in relation to micro-landform variation in a hillside area[J]. Ecological Review,22(1): 25-31.
    [34]Kikuchi T.1991. Differentiation in vegetation related to micro-scale landforms with special reference to the lower sideslope[J]. Ecological Review,22(2):61-70.
    [35]Kikuchi T.2001. Vegetation and Landforms(地形植生志)[M]. University of Tokyo Press, Tokyo,2-93. (in Japanese)
    [36]Kikuchi T. and Miura O.1993. Vegetation patterns in relation to micro-scale landforms in hilly land regions[J]. Vegetatio 106:147-154.
    [37]Leishman M.R., Masters G.J., Clarke I.P. and Brown V.K.2000. Seed bank dynamics:the role of fungal pathogens and climate change[J]. Functional Ecology 14:293-299.
    [38]Leishman M.R. and Westoby M.1994. The role of seed size in seedling establishment in dry soil conditions-experimental evidence from semi-arid species[J]. Journal of Ecology 82(2):249-258.
    [39]Nagamatsu D., Hirabuki Y. and Mochida Y.2003. Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest[J]. Ecological Research 18:533-547.
    [40]Nagamatsu D. and Miura O.1997. Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan[J]. Plant Ecology 133:191-200.
    [41]Nagamatsu D., Seiwa K. and Sakai A.2002. Seedling establishment of deciduous trees in various topographic positions[J]. Journal of Vegetation Science 13:35-44.
    [42]Navarro-Cano, J. A.2008. Effect of grass litter on seedling recruitment of the critically endangered Cistus heterophyllus in Spain[J]. Flora 203:663-668.
    [43]Ozaki K. and Ohsawa M.1995. Successional change of forest pattern along topographical gradients in warm-temperate mixed forests in Mt. Kiyosumi, central Japan[J]. Ecological Research 10:223-234.
    [44]Paz H. and Martinez-Ramos M.2003. Seed mass and seedling performance within eight species of Psychotria (Rubiaceae)[J]. Ecology 84(2):439-450.
    [45]Paz H., Mazer S.J. and Martinez-Ramos M.1999. Seed Mass Seedling Emergence and Environmental Factors in Seven Rain Forest Psychotria (Rubiaceae)[J]. Ecology 80(5):1594-1606.
    [46]Pearson T.R.H., Burslem D.F.R.P.B., Goeriz R.E. and Dalling J.W.2003. Interactions of gap size and herbivory on establishment, growth and survival of three species of neotropical pioneer trees[J]. Journal of Ecology 91:785-796.
    [47]Pearson T.R.H., Burslem D.F.R., Mullins C.E. and Dalling J.W.2002. Germination ecology of neotropical pioneers interacting effects of environmental conditions and seed size[J]. Ecology 83(10):2798-2807.
    [48]Raich J.W.1990. Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest[J]. Journal of Tropical Ecology 6:203-217.
    [49]Sakai A. and Ohsawa M.1994. Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan[J]. Ecological Research 9:269-280.
    [50]Sheil D., Burslem F.R.P. and Alder D.1995. The interpretation and misinterpretation of mortality rate measures[J]. Journal of Ecology 83:331-333.
    [51]Shibata M. and Nakashizuka T.1995. Seed and seedling demography of four co-occurring Carpinus species in a temperatedeciduous forest[J]. Ecology 76(4): 1099-1108.
    [52]Takyu M., Aiba S. and Kitayama K.2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo[J]. Plant Ecology 159:35-49.
    [53]Tamura T.1969. A series of micro-landform units composing valley heads in the hills near Sendai[J]. Science Report of the Tohoku University,7th Series (Geography),19:111-127.
    [54]Tamura T.1974. Micro-landform units composing a valley head area and thir geomorphic significance [J]. Annals of the Tohoku geographical Association, 26:189-199.(in Japanese)
    [55]Tamura T.1987a.Landform-soil features of the humid temperature hills[J]. Pedologist,31:135-146. (in Japanese)
    [56]Tamura T. and Miyagi T.1987b. Landslides after the forest fire in the Tomiya Hills, north of Sendai. In:Iizumi, S. (ed.), Ecology of forest fire:Fire behavior in forest area and fire effects on ecosystem [M]. Forest Fire Group, Tokoku University, Sendai,331-340.
    [57]Tamura T. and Takeuchi K.1980. Land characteristics of the hills and their modification by man-with special reference to a few cases in the Tama Hills, west of Tokyo-Essays in Geography of Tokyo, Geographical Reports of Tokyo Metropolitan University,14/15:49-94.
    [58]Tang C.Q. and Ohsawa M.2002. Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China[J]. Plant Ecology 161:215-230.
    [59]Tateno R. and Takeda H.2003. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor[J]. Ecological Research 18:559-571.
    [60]Tsujino R. and Yumoto T.2007. Spatial distribution patterns of trees at different life stages in a warm temperate forest[J]. Journal of Plant Research 120:687-695.
    [61]Tsujino R. and Yumoto T.2008. Seedling establishment of five evergreen tree species in relation to topography, sika deer (Cervus nippon yakushimae) and soil surface environments[J]. Journal of Plant Research 121:537-546.
    [62]Turner I.M.1990. Tree seedling growth and survival in a Malaysian rain forest[J]. Biotropica 22(2):146-154.
    [63]Wassie A., Sterck F.J., Teketay D. and Bongers F.2009. Effects of livestock exclusion on tree regeneration in church forests of Ethiopia[J]. Forest Ecology and Management 257:765-772.
    [64]Winkler M., Hulber K. and Hietz P.2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest[J]. Annals of Botany 95:1039-1047.
    [65]Zar J.H.1999. Biostatistical Analysis[M].4th ed. Prentice Hall, New Jersey.
    [66]陈波,达良俊,宋永昌.2002.常绿阔叶林内和林窗中栲树的种子萌发和幼苗生长[J].热带亚热带植物学报,10(3):207-214.
    [67]陈章和,陈惠琴,刘惠琼,等.1995.南亚热带常绿阔叶林儿个树种的种子萌发和幼苗发育[J].植物学报,37(8):630-635.
    [68]崔现亮,王桔红,齐威,等.2008.青藏高原东缘灌木种子的萌发特性[J].生态学报,28(11):5294-5302.
    [69]达良俊,宋坤.2008.浙江天童受损常绿阔叶林实验生态学研究(Ⅰ):生态恢复实验与长期定位[J].华东师范大学学报(自然科学版),4:1-11.
    [70]达良俊,杨永川,宋永昌.2004.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J].植物生态学报,28(2):376-384.
    [71]丁圣彦.1999.常绿阔叶林演替系列的比较生态学研究[M].开封:河南大学 出版社.
    [72]丁圣彦,卢训令,李昊民.2005.天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较[J].生态学报,25(11):2862-2867.
    [73]国家林业局国有林场和林木种苗工作总站主编.2001.中国木本植物种子.北京:中国林业出版社.
    [74]姜良才,刘丽正,王希华.2007.天童常绿阔叶林林隙的形成特征[J].华东师范大学学报(自然科学版),(6):88-96.
    [75]梁哓东,叶万辉.2001.林窗研究进展(综述)[J].热带亚热带植物学报,9(4):355-364.
    [76]刘昉勋,黄致远.1982.江苏省地带性植被的基本特点与分布规律[J].植物生态学与地植物学丛刊,6(3):236-246.
    [77]刘志民,李雪华,李荣平,等.2003.科尔沁沙地15种禾本科植物种子萌发特性比较[J].应用生态学报,14(9):1416-1420.
    [78]刘志民,李雪华,李荣平,等.2004.科尔沁沙地31种1年生植物萌发特性比较研究[J].生态学报,24(3):648-653.
    [79]聂春雷,郑元润.2005.鄂尔多斯高原4种主要沙生植物种子萌发与出苗对水分和沙埋的响应[J].植物生态学报,29(1):32-41.
    [80]戚裕锋,杨徐烽,张奇平,等.2010.浙江天童受损常绿阔叶林实验生态学研究(Ⅴ):不同干扰下植被恢复初期主要树种五年的恢复和更新[J].华东师范大学学报(自然科学版),in press.
    [81]沈泽昊,方精云,刘增力,等.2001a.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报,25(6):721-732.
    [82]沈泽昊,张新时,金义兴.2000.地形对亚热带山地景观尺度植被格局影响的梯度分析[J].植物生态学报,24(4):430-435.
    [83]沈泽昊,张新时,金义兴.2001b.三峡大老岭植物区系的垂直梯度分析[J].植物分类学报,39(3):260-268.
    [84]宋坤.2007.天童常绿阔叶林米槠-木荷群落历史动态及干扰事件的重建[D].上海:华东师范大学.
    [85]宋永昌.2001.植被生态学[M].上海:华东师范大学出版社.
    [86]宋永昌,陈小勇.2007.中国东部常绿阔叶林生态系统退化机制与生态恢复[M].北京:科学出版社.
    [87]宋永昌,王祥荣.1995.浙江天童国家森林公园的植被和区系[M].上海:上海科学技术文献出版社.
    [88]孙书存,陈灵芝.2001.动物搬运与地表覆盖物对辽东栎种子命运的影响[J].生态学报,21(1):80-85.
    [89]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20-28.
    [90]王桔红,杜国祯,崔现亮,等.2009.青藏高原东缘61种常见木本植物种子萌发特性及其与生活史的关联[J].植物生态学报,33(1):171-179.
    [91]王希华,闫恩荣,严晓,等.2005.中国东部常绿阔叶林退化群落分析及恢复重建研究的一些问题[J].生态学报,25(7):1796-1802.
    [92]吴征镒.1980.中国植被[M].北京:科学出版社.
    [93]萧浪涛,王三根.2005.植物生理学实验技术[M].北京:中国农业出版社.
    [94]徐成东,冯建孟,王向平, 等.2008.云南高黎贡山北段植物物种多样性的垂直分布格局[J].生态学杂志,27(3):323-327.
    [95]杨永川.2005.中国中亚热带东部低山丘陵地形梯度上植被的分异及其形成和维持机制[D].上海:华东师范大学.
    [96]杨永川,达良俊.2006.丘陵地区地形梯度上植被格局的分异研究概述[J].植物生态学报,30(3):504-513.
    [97]杨永川,达良俊,由文辉.2005.浙江天童国家森林公园微地形与植被结构的关系[J].生态学报,25(11):2830-2840.
    [98]于洋,曹敏,郑丽,等.2007.光对热带雨林冠层树种绒毛番龙眼种子萌发及其幼苗早期建立的影响[J].植物生态学报,31(6):1028-1036.
    [99]袁志发,周静芋.2000.试验设计与分析[M].北京:高等教育出版社.
    [100]张天澍,李恺,王群,等.2006.浙江天童山鼠类对栲树种子的捕食和扩散[J].生态学杂志,25(2):161-165.
    [101]郑光华.2004.种子生理学研究[M].北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700