水位梯度下挺水植物生存策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究根据洱海目前挺水植被的状况,选择了四种典型的挺水植物(水葱(Scirpus validus)、菖蒲(Acorus calamus)、香蒲(Typha orientalis)、茭草(Zizania caduciflora)),研究水位梯度下这四种挺水植物的生存策略,通过相关指标的测定,找出挺水植物随水位变化的一般规律。按水位梯度采集了大量的野外挺水植物测定其相关的生长指标,总结野外自然条件下,挺水植物生长随水位变化的规律。将两种条件下生长的挺水植物随水位变化的规律进行了对比,发现两者的规律具有一致性。总结了四种挺水植物随水位变化的规律如下:
     (1)水位从Ocm到100cm,水位的增加对水葱的生长有显著的抑制作用,表现为:随着水位的增加,水葱的根茎长度、分蘖数和生物量均显著减少;7月份水葱各水位梯度根状茎长度分别为31.33cm、19.50cm、7.63cm、3.58cm;7月份水葱各水位梯度的分蘖数分别为15.25株、12.75株、9.25株、2.25株;7月份水葱在四个水位梯度下的平均总生物量(干重)分别为23.28 g、15.87 g、10.95g、0.67 g。水葱为了在深水中获得生存,将大部分的能量投资于地上部分的生长,地上部分的高度和地上部分与地下部分的比值都随着水位的增加而增大;另外随着水深的增加,水葱叶的直径增加,干湿比减少,这可能是水葱在深水区为了增强气体交换而产生了大量的通气组织的缘故。
     (2)随着水深的增加对菖蒲生长产生的抑制作用强度逐渐增强。根长度和根状茎的长度都随着水深的增加而减小,如7月份菖蒲在四个水位梯度下的根长度分别为43.60 cm、37.56 cm、30.10 cm、18.06 cm;菖蒲的高度和地上部分与地下部分的比值都随着水深的增加而增大,如7月份菖蒲在四个水位梯度下生物量分配比值分别为1.46、1.67、2.96、4.12,这是菖蒲为适应不利环境而积极调整能量分配策略的结果;受水分条件的影响,叶绿素的含量在30cm水深处含量较大。
     (3)对香蒲生长最为有利的水深不是在Ocm,而是35cm水深左右。在35cm水深处,香蒲根状茎的长度和生物量都要显著的高于其他三个水位梯度。在35cm水位处四个月香蒲根状茎长度分别为17.84 cm、52.06 cm、54.64 cm、73.20 cm,生物量分别为20.74 g、37.30 g、38.83 g、66.42 g;在Ocm水位处四个月香蒲生物量分别为22.09 g、32.98 g、16.29g、38.93 g。分蘖数与Ocm水位处香蒲总体分蘖数没有显著差异;香蒲的高度和地上部分与地下部分干重的比值都随着水位的增加而增大;随着水位的增加,香蒲叶基部的最大直径和最小直径的平均值都有增加的趋势,但这种趋势并不显著。
     (4)Ocm到30cm左右的水深处均适宜茭草的生长,水位过深会对茭草的生长产生强烈的抑制作用,甚至导致茭草死亡;综合分析根茎长度、分蘖数和生物量这三个指标,本研究认为茭草生长的最佳水深为30cm左右;7、8、9月份30cm水位处茭草生物量分别为26.99g、72.94 g、113.34 g,7、8、9月份Ocm水位处茭草生物量分别为17.47 g、42.62 g、70.38 g;茭草的高度和地上部分与地下部分的比值均随着水位的增高而增大;随着水位的增加和淹水时间的延长,由于茭草基部叶片的脱落,茭草的横断面会逐渐由椭圆形状向圆形转变。
     (5)综合分析,菖蒲耐淹时间最长,但由于根状茎长度短、分蘖慢,扩散繁殖慢;香蒲、水葱、茭草根状茎生长快,能够在短时间内扩散到大范围的区域;香蒲最适水深为35cm左右;茭草、水葱、菖蒲的适宜水深为Ocm至30cm左右,水位过深不利于其生长。
Based on the present emergent macrophytes in Erhai lake, four typical emergent macrophytes(Scirpus validus、Acorus calamus、Typha orientalis、Zizania caduciflora) were selected, and the relationship between emergent macrophytes and different gradient water level was studied, by measuring some relative index finding the rules of emergent macrophytes responsive to water gradient levels. We also collected some field emergent macrophytes and measured the relative index to find the rule of the field emergent macrophytes responsive to water gradient levels. Then we compared the rules in this two growth condition to seem the uniformity. The rules of the four emergent macrophytes responsive to water gradient levels are as following:
     As the water level from Ocm to 100cm, inhibiting effect on S. validus are gradually increased. The rhizome, tiller number and biomass are significantly decreased due to the increasing water level. In deep water, S. validus put the large proportion biomass to the above ground and less to the below ground, thus, the biomass proportion of above ground to below ground (BPAGBG) are increased compared to sallow water. In addition, the diameters of leaves are bigger in deep water than in sallow water, and the ratio of dry weight and fresh weight of leaves are decreased as the increasing water level, which may because S. validus developed much aeration tissue to enhance the exchange of gases.
     The inhibiting effect on the growth of the A. calamus increased as the increasing water level. To adapt to the adverse condition A. calamus adjust its strategy of energy allocation, decreasing the length of roots and rhizomes and increasing the BPAGBG in deep water. Effected by the water, the largest content of chlorophyll of A. calamus was in 30cm water depth.
     The most advantageous water level to the growth of T. orientalis was not in Ocm water depth, but 35cm water depth, under which water depth T. orientalis has the longest length of rhizome and the largest biomass, and the length and biomass are significantly big than the other three water level (0cm、70cm、120cm). However, the tiller number of the Ocm and 35cm water level were not significant. As the increasing water depth, the BPAGBG also increased as S. validus and A. calamus. The mean largest and least diameter of the T. orientalis increased as the water depth increasing.
     The suitable depth for the growth of Z. caduciflora is from 0cm to 30cm, and the too deep water level would inhibit the growth severely or would lead to death. Based on the length of the rhizome, tiller number and biomass, the best depth of water for growth is 30cm. The height and BPAGBG of Z. caduciflora increased as the increasing water depth. The transverse section of Z. caduciflora changed from ellipse to round probably due to the leaves falling off as the increasing water depth and the time extending.
     Comprehensive analysis of the four emergent macrophytes, A. calamus has the longest living time in drowned condition, but its rhizome length is shorter, till number less and reproducing and spreading slower than the other three emergent macrophytes. The rhizome of S. validus, T. orientalis and Z. caduciflora extending very fast, they can reach large areas in very short time. The best suitable depth for T. orientali growth is about 35cm water depth, and the suitable depth for S. validus, A. calamus, Z. caduciflora is from 0cm to 30cm water depth.
引文
[1]Woodward G. Biodiversity, ecosystem functioning and food webs in fresh waters:Assembling the jigsaw puzzle[J]. Freshwater Biology,2009,54:2171-2187.
    [2]沈琪,刘珂,李世玉.杭州西溪湿地植物组成及其与水位光照的关系[J].植物生态学报,2008,32(1):114-122.
    [3]Sipkay C., Kiss K.T., fiilop C.V. Trends in research on the possible effects of climate change concerning aquatic ecosystems with special emphasis on the modeling approach[J]. Applied Ecology and Environmental Research,2009,7(2):171-198.
    [4]刘建康.高级水生生物学[M].北京:科学出版社;1999.
    [5]Dhote S., Dixit S. Water quality improvement through macrophytes-a review[J]. Environmental Monitoring and Assessment,2009,152:149-153.
    [6]Moore M., Romano S.P., Cook T. Synthesis of upper mississippi river system submersed and emergent aquatic vegetation:Past, present, and future[J]. Hydrobiologia,2010,640(1):103-114.
    [7]Pottier J., Bedecarrats A., Marrs R.H. Analysing the spatial heterogeneity of emergent groups to assess ecological restoration [J]. Journal of Applied Ecology,2009,46(6):1248-1257.
    [8]谢永宏,陈心胜.三峡工程对洞庭湖湿地植被演替的影响[J].农业现代化研究,2008,29(6):684-687.
    [9]李倩,曾光明,黄国和.三峡工程对洞庭湖水力梯度及其湿地植物生长的影响[J].安全与环境学报,2005,5(1):12-15.
    [10]吴龙华.长江三峡工程对鄱阳湖生态环境的影响研究[J].水利学报,2007,10:586-591.
    [11]赵广琦,崔心红,张群.水生植物引种的生态安全评价[J].广西植物,2009,29(4):488-492.
    [12]Galatowitsch S.M., Anderson N.O., Ascher P.D. Invasiveness in wetland plants in temperate north america[J]. Wetlands,1999,19(4):733-755.
    [13]王亚民,曹文宣.中国水生外来入侵物种对策研究[J].农业环境科学学报,2006,25(1):7-13.
    [14]Fang J., Wang Z., Zhao S.,等.Biodiversity changes in the lakes of the central yangtze [J]. Front Ecol Environ,2006,4(7):369-377.
    [15]Dudgeon D., Arthington A.H., Gessner M.O.,等.Freshwater biodiversity:Importance, threats, status and conservation challenges[J]. Biol Rev,2005,81:163-182.
    [16]Chauhan M., Gopal B. Vegetation structure and dynamics of a floodplain wetland along a subtropical regulated river[J]. River Research and Applications,2005,21(5):513-534.
    [17]杨自辉,方峨天,刘虎俊.民勤绿洲边缘地下水位变化对植物种群生态位的影响[J].生态学报,2007,27(11):1400-1406.
    [18]Fraser L.H., Feinstein L.M. Effects of mycorrhizal inoculant, N:P supply ratio, and water depth on the growth and biomass allocation of three wetland plant species[J]. Canadian Journal of Botany,2005,83(9):1117-1125.
    [19]刘永,郭怀成,周丰,等.湖泊水位变动对水生植被的影响机理及其调控方法[J].生态学报,2006,26(9):3117-3126.
    [20]Vretare V., Weisner S.E.B., Strand J.A.,等.Phenotypic plasticity in Phragmites australis as a functional response to water depth[J]. Aquatic Botany,2001,69:127-145.
    [21]Lenssen J.P.M., Menting F.B.J., Van Der Putten W.H.,等.Effects of sediment type and water level on biomass production of wetland plant species[J]. Aquatic Botany,1999,64:151-165.
    [22]Mauchamp A., Blanch S., Grillas P. Effects of submergence on the growth of Phragmites australis seedlings[J]. Aquatic Botany,2001,69:147-164.
    [23]Van Den Brink F.W.B., Van Der Velde G., Bosman W.W.,等.Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding [J]. Aquatic Botany,1995,50:79-97.
    [24]Baumgartner D., Mortl M., Rothhaupt K.-O. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of lake constance[J]. Hydrobiologia,2008,613:97-107.
    [25]Azza N., Denny P., Koppel J.V.D.,等.Floating mats:Their occurrence and influence on shoreline distribution of emergent vegetation[J]. Freshwater Biology,2006,51:1286-1297.
    [26]Sharma P., Asaeda T., Fujino T. Effect of water depth on the rhizome dynamics of Typha angustifolia[J]. Wetlands Ecol Manage,2008,16:43-49.
    [27]Grace J.B. Effects of water depth on Typha latifolia and Typha domingensis[J]. AmerJBot, 1989,76(5):762-768.
    [28]Hessen D.O., Anderson T.R. Excess carbon in aquatic organisms and ecosystems: Physiological, ecological, and evolutionary implications[J]. Limnol Oceanogr, 2008,53(4):1685-1696.
    [29]Helene M., Segretain B. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat[J]. Freshwater Biology,2001,46:935-945.
    [30]罗文泊,谢永宏,宋凤斌.洪水条件下湿地植物的生存策略[J].生态学杂志,2007,26(9).
    [31]王海洋,陈家宽,进周.水位梯度对湿地植物生长、繁殖和生物量分配的影响[J].植物生态学报,1999,23(3):269-274.
    [32]王丽,胡金明,宋长春.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响[J].应用生态学报,2007,18(11):2432-2437.
    [33]Terrados J., Grau-Castella M., Pinol-Santina D.,等.Biomass and primary production of a 8-11 m depth meadow versus<3m depth meadows of the seagrass Cymodocea nodosa (ucria) ascherson[J]. Aquatic Botany,2006,84:324-332.
    [34]Van Nes E.H., Scheffer M., Van Den Berg M.S. Aquatic macrophytes:Restore, eradicate or is there a compromise? [J]. Aquatic Botany,2002,72:387-403.
    [35]Stottmeister U., WieBner A., Kuschk P.,等.Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances,2003,22:93-117.
    [36]Luo W., Xie Y. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species[J]. Hydrobiologia,2009,624(1):151-160.
    [37]Vojtiskova L., Munzarova E., a O.V.,等.Growth and biomass allocation of sweet flag (Acorus calamus L.) under different nutrient conditions[J]. Hydrobiologia,2004,518:9-22.
    [38]Vojtiskova L., Munzarova E., Votrubova O.,等.The influence of nitrogen nutrition on the carbohydrate and nitrogen status of emergent macrophyte Acorus calamus 1[J]. Hydrobiologia, 2006,563:73-85.
    [39]Bucher M., Braendle R., Kuhlemeier C. Glycolytic gene expression in amphibious acorus calamus 1. Under natural conditions[J]. Plant and Soil,1996,178(1):75-82.
    [40]Matsui T., Tsuchiya T. Root aerobic respiration and growth characteristics of three typha species in response to hypoxia[J]. Ecological Research,2006,21:470-475.
    [41]Matsui Inoue T., Tsuchiya T. Growth strategy of an emergent macrophyte, typha orientalis presl, in comparison with Typha latifolia L. And Typha angustifolia L.[J]. Limnology, 2006,7(3):171-174.
    [42]Inoue T.M., Tsuchiya T. Interspecific differences in radial oxygen loss from the roots of three Typha species[J]. Limnology,2008,9(3):207-211.
    [43]Groeneveld D.P., French R.H. Hydrodynamic control of an emergent aquatic plant (Scirpus acutus) in open channels[J]. Water Resources Bulletin,1995,31(3):505-514.
    [44]Tanner C.C. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters[J]. Wetlands Ecology and Management,2001,9(1):49-73.
    [45]Langan M.M., Hoagland K.D. Growth responses of Typha latifolia and Scirpus acutus to atrazine contamination[J]. Bulletin of Environmental Contamination and Toxicology, 1996,57(2):307-314.
    [46]Shipley B., Keddy P.A., Lefkovitch L.P. Mechanisms producing plant zonation along a water depth gradient a comparison with the exposure gradient[J]. Canadian Journal of Botany, 1991,69(7):1420-1424.
    [47]Rea N., Ganf G.G. Water depth changes and biomass allocation in two contrasting macrophytes [J]. Freshwater Res,1994,45:1459-1468.
    [48]Blanch S.J., Ganf G.G., Walker K.F. Tolerance of riverine plants to flooding and exposure indicated by water regime[J]. Regulated Rivers:Research & Management,1999,15:43-62.
    [49]Engloner A.I., Papp M. Vertical differences in Phragmites australis culm anatomy along a water depth gradient[J]. Aquatic Botany,2006,85:137-146.
    [50]Brix H., Sorrell B.K. Oxygen stress in wetland plants:Comparison of de-oxygenated and reducing root environments[J]. Functional Ecology,1996,10:521-526.
    [51]叶春,于海婵,宋祥甫.基底条件和栽培方式对芦苇和香蒲生长发育的影响[J].环境科学研究,2008,21(1):59-63.
    [52]布东方,胡金明,周德民.不同水位梯度小叶章叶绿素含量试验研究[J].湿地科学,2006,4(3):227-232.
    [53]崔保山,赵欣胜,杨志峰,等.黄河三角洲芦苇种群特征对水深环境梯度的响应[J].生态学报,2005,5(26):4350.
    [54]曹昀,王国祥,刘玉.淹水对菖蒲萌发及幼苗生长的影响[J].湖泊科学,2007,19(5):577-584.
    [55]卢少勇,张彭义,余刚,等.茭草、芦苇与水葫芦的污染物释放规律[J].中国环境科学,2005,25(554-557).
    [56]颜昌宙,金相灿,赵景柱,等.云南洱海的生态保护及可持续利用对策[J].环境科学,2005,26(5):38-42.
    [57]彭文启,王世岩,刘晓波.洱海水质评价[J].中国水利水电科学研究院学报,2005,3(3):192-198.
    [58]钱崇澍,陈焕镛.中国植物志[M].北京:科学出版社;1992.
    [59]《土壤有机质测定法》(GB 9834-1988).In.
    [60]国家环境保护部.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社;2002.
    [61]White S.D., Ganf G.G. A comparison of the morphology, gas space anatomy and potential for internal aeration in Phragmites australis under variable and static water regimes[J]. Aquatic Botany,2002,73:115-127.
    [62]Inoue T., Tsuchiya T. Depth distribution of three Typha species, Typha orientalis presl, Typha angustifolia L. And Typha latifolia L., in an artificial pond[J]. Plant Species Biology, 2009,24(1):47-52.
    [63]Blom C.W.P.M., Voesenek L.A.C.J. Flooding:The survival strategies of plants[J]. Trends in Ecology & Evolution,1996,11:290-295.
    [64]Helene M., Segretain B. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat[J]. Freshwater Biology,2001,46(7):935-945.
    [65]De Kroon H., Hutchings M.J. Morphological plasticity in clonal plants:The foraging concept reconsidered[J]. Journal of Ecology,1995,83(1):143-152.
    [66]Coops H., Van Der Velde G. Effects of waves on helophyte stands:Mechanical characteristics of stems of Phragmites australis and Scirpus lacustris[J]. Aquatic Botany,1996,53(3-4):175-185.
    [67]杨敏文.快速测定植物叶片叶绿素含量方法的探讨[J].光谱实验室,2002,19(4):478-481.
    [68]曾建敏,姚恒,李天福,等.烤烟叶片叶绿素含量的测定及其与spad值的关系[J].分子植物育种,2009,7(1):56-62.
    [69]Cizkovakoncalova H., Kvet J., Thompson K. Carbon starvation-a key to reed decline in eutrophic lakes[J]. Aquatic Botany,1992,43(2):105-113.
    [70]Asaeda T., Fujino T., Manatunge J. Morphological adaptations of emergent plants to water flow:A case study with Typha angustifolia, Zizania latifolia and Phragmites australis[J]. Freshwater Biology,2005,50(12):1991-2001.
    [71]Boar R.R. Responses of a fringing Cyperus papyrus L. Swamp to changes in water level[J]. Aquatic Botany,2006,84(2):85-92.
    [72]White S.D., Ganf G.G. The influence of convective flow on rhizome length in Typha domingensis over a water depth gradient[J]. Aquatic Botany,1998,62(1):57-70.
    [73]Edwards A.L., Lee D.W., Richards J.H. Responses to a fluctuating environment:Effects of water depth on growth and biomass allocation in Eleocharis cellulosa torr. (Cyperaceae)[J]. Canadian Journal of Botany,2003,81(9):964-975.
    [74]Sharma K.P., Pradhan V.N. Study on growth and biomass of underground organs of Typha angustata bory & chaub[J]. Hydrobiologia,1983,98:147-151.
    [75]Vartapetian B.B., Jackson M.B. Plant adaptations to anaerobic stress[J]. Annals of Botany, 1997,79:3-20.
    [76]Vretare V., Weisner S.E.B. Influence of pressurized ventilation on performance of an emergent macrophyte (Phragmites australis)[J]. Journal of Ecology,2000,88(6):978-987.
    [77]Kende H., Van Der Knaap E., Cho H.-T. Deepwater rice:A model plant to study stem elongation[J]. Plant Physiology (Rockville),1998,118(4):1105-1110.
    [78]Deegan B.M., White S.D., Ganf G.G. The influence of water level fluctuations on the growth of four emergent macrophyte species[J]. Aquatic Botany,2007,86(4):309-315.
    [79]Engloner A.I., Major A., Podani J. Clonal diversity along a water depth gradient in a declining reed stand as detected by three different genetic methods[J]. Aquatic Botany, 2010,92(1):1-8.
    [80]Drapikowska M., Krzakowa M. Morphological and biochemical variation among common reed (Phragmites australis) populations in northwest poland[J]. Oceanological and Hydrobiological Studies,2009,38(2):29-38.
    [81]Farrell J.M., Murry B.A., Leopold D.J.,等.Water-level regulation and coastal wetland vegetation in the upper st. Lawrence river:Inferences from historical aerial imagery, seed banks, and Typha dynamics[J]. Hydrobiologia,2009,24.
    [82]Coops H., Van Den Brink F.W.B., Van Der Velde G. Growth and morphological responses of four helophyte species in an experimental water-depth gradient[J]. Aquatic Botany, 1996,54(1):11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700