拟南芥ICK基因家族功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ICK (Inhibitor of Cyclin-dependent Kinase)是CDK的抑制因子,在细胞周期调控中起着重要作用。现有研究表明,植物ICK蛋白通过与CDK复合体的结合而抑制CDK的活性,从而抑制细胞分裂,影响植物生长和发育。拟南芥基因组有7个ICK基因。现有对ICK/KRP功能的了解大多来自超表达研究,而对正常生理条件下植物ICK的功能还知之甚少。在这项研究中,我们利用RNAi技术和T-DNA插入突变体等反向遗传学方法,系统研究了ICK基因家族的功能。主要结果如下:
     1.在分离ick1, ick2, ick7单突变体的基础上,我们通过杂交获得了ickl/2, ick2/7两个双突变体。基因表达分析的结果表明,这些突变体中相应的ICK基因没有表达。我们对突变体系ickl-1, ickl-2, ick2, ick7, ickl/2, ick2/7和两个野生型(Col-0和分离野生型)进行了莲座叶数目,分支数目,株高和鲜重分析,但没有发现明显差异。生长观测表明,双突变体系的生长有加强的趋势。
     2.利用ICK全长CDS和ICK保守区段的序列为干涉片段构建了两个RNAi载体pFGC5941-ICK1和pFGC5941-ICK1△,并转化拟南芥。在100mmol/L NaCl, lOumol/L ABA, lOumol/L IAA和低温(4℃)的处理条件下对ickl-2, pFGC5941-ICKl, pFGC5941-ICK△和Wt的鲜重进行了分析。分析结果显示ick1-2突变体相对于Wt对NaCl和ABA的处理不敏感,两个RNAi转基因系的对NaCl和ABA的敏感程度介于他们之间。基因表达分析表明,这可能与ICK基因应对胁迫时候的诱导表达有关。我们还利用pHGRV载体系统构建了一系列的RNAi建构,并获得了相应的转基因系。对这些转基因家系的分析没有观察到明显的表现型变化。
     3.我们利用ickl, ick2, ick7, ick5和ick6,通过杂交构建了18个突变体系,包括5个单突变体,5个双突变体,5个三突变体,2个四突变体和1个5突变体。基因表达分析表明,在这些突变体中,相应基因都被成功敲除。
     4.表型分析结果显示,低阶突变体与野生型相比没有明显的表型。四突变体和五突变体的叶片较野生型的窄。这表明,敲除多个ICK基因能改变叶片形态。通过分析一系列突变体体的鲜重/干重,我们发现ickl/2/5/6四突变体和五突变体的生长加强。在对植株的叶片,花瓣和种子等器官大小的分子中。我们发现五突变体的这些器官较野生型明显增大。细胞学水平的分析表明,这些表型是由于五突变体中的细胞增殖加强导致的。作为对细胞数目增多的反馈,五突变体这些器官中的细胞大小变小。
     5.互补分析表明,在ickl/2/5/6/7五突变体中引入ICK7基因,能部分互补五突变体鲜重增加和叶片性状改变的表形。
     6.我们对一系列的10个系(ickl, ick2, ick5, ick6, ick7, ickl/2, ick6/7, ickl/2/6/7, ickl/2/5/6/7, Wild-type, and ICK1OE line)进行了激酶活性分析,发现五突变体的激酶活性最高,其次是四突变体,二突变体和单突变体。这个结果表明敲除ICK基因能累积性的增强激酶活性。
     7. Real-time PCR的结果显示,在五突变体中E2F-诱导型基因的表达普遍上升,并同时伴有体内Rb蛋白和p-RB蛋白水平升高。因此,敲除ICK基因导致激酶活性升高。
     综上所述,在ickl/2/5/6/7五突变体中,ICK基因的表达下调导致激酶活性增加,增加了RB蛋白磷酸化,上调了E2F代谢途径有关基因表达,激活了E2F转录因子活性,启动了E2F-诱导基因的表达,从而加快了细胞增殖,导致植物细胞数目增多,器官和种子变大。我们的结果首次提供了多个ICK基因在正常生理条件下行使其功能的证据。
The ICK/KRP cyclin-dependent kinase (CDK) inhibitors play pivotal roles in cell cycle regulation. Present studies revealed that ICK/KRP proteins can inhibit CDK activity through binding to the CDK complex, leading to the effects of inhibiting the cell division and altering the plant growth and development. There are seven ICK/KRP genes in Arabidopsis genome. Current understanding of ICK/KRP functions has mostly come from overexpression studies. We know little regarding the functions of ICK/KRPs in planta under normal physiological conditions. In this study, we took reverse genetic techniques including T-DNA inserted mutation and RNAi interference to systematically analyze the functions of ICK gene family. The main results are as follows:
     1) Based on the identification of ick1, ick2, and ick7single mutants, we obtained two double mutants ickl/2and ick2/7. Gene expression analysis showed that the corresponding genes had no expressions in these mutants. We thus analyzed rosette leaf number, branch number, plant height and fresh weight on ick1-1, ick1-2, ick2, ick7, ickl/2, ick2/7, and two wild types (Col-0wild-type and segregated wild-type), and did not observe any significant differences, whereas, the surveys on plant growth showed a trend of growth enhancement in the double mutants.
     2) Two RNAi vectors pFGC5941-ICK1and pFGC5941-ICK△were constructed using full length CDS of ICK1and the sequence of ICK1conserved region as interference fragments, respectively, and were used for transformation of Arabidopsis. Under100mmol/L NaCl,10umol/L ABA,10umol/L IAA and cold (4℃) treatment conditions, we conducted fresh weight analyses on ickl-2, pFGC5941-ICK1, pFGC5941-ICK△and wild-type. The results showed that ickl-2line was more insensitive to NaCl and ABA than the wild-type, whereas, the sensitivities of two RNAi transgenic lines to NaCl and ABA treatments were moderate in comparison with these of wild-type and ickl-2. Gene expression analyses by RT-PCR revealed that this observation may relate to the inducible expression of ICK genes in response to stress. We also prepared a series of RNAi constructs using pHGRV vector system, and obtained corresponding transgenic lines. No significant phenotypic changes have been observed in these transgenic lines.
     3) Using ick1, ick2, ick7, ick5and ick6single mutants, we generated18T-DNA lines including five single mutants, five double mutants, five triple mutants, two quadruple mutants, and one quintuple mutant through crosses. Gene expression analysis showed that the corresponding genes were knocked out successfully in these mutants.
     4) Phenotypically, while lower-order mutants showed no morphological changes compared to wild-type, the ick1/2/6/7quadruple mutant and the ick1/2/5/6/7quintuple mutant had narrower and longer leaves than wild-type, suggesting that down-regulation of multiple ICKs affected leaf shape. Fresh/dry weight analysis of a series lines showed significant growth enhancement in both ick1/2/5/6quadruple mutant and ick1/2/5/6/7quintuple mutant. Moreover, ick1/2/5/6/7quintuple mutant had larger leaves, petals, and seeds than wild-type control. Investigations on the cellular level revealed that the increase in cell proliferation was responsible for organ size increases. As feedback of increased cell proliferation, the cell sizes of all the organs surveyed in ick1/2/5/6/7quintuple mutant were decreased.
     5) In complementation assay, re-introducing of ICK7gene to ick1/2/5/6/7quintuple can at least partially rescue the fresh weight increase and leaf shape alteration phenotypes observed in ick1/2/5/6/7quintuple mutant.
     6) In CDK activity assay on10lines (ick1, ick2, ick5, ick6, ick7, ick1/2, ick6/7, ick1/2/6/7, ick1/2/5/6/7, Wild-type, and ICK1OE line), ick1/2/5/6/7quintuple mutant had the highest CDK activity, followed by ick1/2/5/6/7quadruple mutant, double mutant, single mutant, wild-type and ICK1E, suggesting that the knocking-out of ICK genes accumulatively increased CDK activity in planta.
     7) In ick1/2/5/6/7quintuple mutant, real-time PCR results showed that most of the E2F-inducible genes investigated was up-regulated, which is accompanied by the protein level increases of both RB and p-RB. Therefore, knocking-out of ICK genes increases CDK activity.
     Taken above data together, in the ick1/2/5/6/7quintuple mutant, down-regulation of ICK genes increases CDK activity, results in more phosphorylated RB protein, up-regulates the E2F pathway, stimulates transactivation activity of E2F, tunes up expressions of E2F-inducible genes and stimulates cell proliferation, which resulted in increased cell numbers, and larger organs and seeds. For the first time, we provided the evidence for the functions of multiple ICK genes in planta under normal physiological conditions.
引文
1. Abhary M, Anfoka G, Nakhla M, Maxwell D. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Archives of virology, 2006.151:2349-2363
    2. Abraham E, Miskolczi P, Ayaydin F, Yu P, Kotogany E, Bako L, Otvos K, Horvath GV, Dudits D. Immunodetection of retinoblastoma-related protein and its phosphorylated form in interphase and mitotic alfalfa cells. Journal of experimental botany,2011,62:2155-2168
    3. Abukhdeir AM, Park BH. P21 and p27:roles in carcinogenesis and drug resistance. Expert reviews in molecular medicine,2008,10:
    4. Acosta JAT, Fowke LC, Wang H. Analyses of phylogeny, evolution, conserved sequences and genome-wide expression of the ICK/KRP family of plant CDK inhibitors. Annals of Botany,2011,107:1141-1157
    5. Albani D, Mariconti L, Ricagno S, Pitto L, Moroni C, Helin K, Cella R. DcE2F, a functional plant E2F-like transcriptional activator from Daucus carota. Journal of Biological Chemistry,2000,275:19258-19267
    6. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science's STKE,2003,301:653
    7. Arabidopsis GI. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796
    8. Barroco RM, Peres A, Droual AM, De Veylder L, De Wolf J, Mironov V, Peerbolte R, Beemster GTS, Inze D, Broekaert WF. The cyclin-dependent kinase inhibitor Orysa; KRP1 plays an important role in seed development of rice. Plant physiology,2006, 142:1053-1064
    9. Barroco R, De Veylder L, Magyar Z, Engler G, Inze D, Mironov V. Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cellular and Molecular Life Sciences CMLS, 2003,60:401-412
    10. Baulcombe D. RNA silencing in plants. Nature,2004,431:356-363
    11. Bemis SM, Torii KU. Autonomy of cell proliferation and developmental programs during Arabidopsis aboveground organ morphogenesis. Developmental biology,2007, 304:367-381
    12. Berry LD, Gould KL (1996). Regulation of Cdc2 activity by phosphorylation at T14/Y15. Progress in cell cycle research, Springer:99-105.
    13. Besson A, Dowdy SF, Roberts JM. CDK inhibitors:cell cycle regulators and beyond. Developmental cell,2008,14:159-169
    14. Bird DA, Buruiana MM, Zhou Y, Fowke LC, Wang H. Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm. Plant cell reports,2007,26:861-872
    15. Bisbis B, Delmas F, Joubes J, Sicard A, Hernould M, Inze D, Mouras A, Chevalier C. Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. Journal of Biological Chemistry,2006,281:7374-7383
    16. Boudolf V, Vlieghe K, Beemster GT, Magyar Z, Acosta JAT, Maes S, Van Der Schueren E, Inze D, De Veylder L. The plant-specific cyclin-dependent kinase CDKB1; 1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. The Plant Cell,2004,16: 2683-2692
    17. Boyes DC, Zayed AM, Ascenzi R, McCASKILL AJ, Hoffman NE, Davis KR, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. The Plant Cell,2001,13:1499-1510
    18. Caro E, Castellano MM, Gutierrez C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature,2007,447:213-217
    19. Cheng Y, Cao L, Wang S, Li Y, Shi X, Liu H, Li L, Zhang Z, Fowke LC, Wang H. Down - regulation of multiple CDK inhibitor ICK/KRP genes up - regulates E2F pathway and increases cell proliferation, organ and seed sizes in Arabidopsis. The Plant Journal,2013,
    20. Cleary A, Fowke L, Wang H, John P. The effect of ICK1, a plant cyclin-dependent kinase inhibitor, on mitosis in living plant cells. Plant cell reports,2002,20:814-820
    21. Clough SJ, Bent AF. Floral dip:a simplified method forAgrobacterium - mediated transformation ofArabidopsis thaliana. The Plant Journal,1998,16:735-743
    22. Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant physiology,2005,138:2323-2336
    23. Colasanti J, Tyers M, Sundaresan V. Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proceedings of the National Academy of Sciences,1991,88:3377-3381
    24. Cooper GM. The eukaryotic cell cycle.2000,
    25. Crowe ML, Serizet C, Thareau V, Aubourg S, Rouze P, Hilson P, Beynon J, Weisbeek P, van Hummelen P, Reymond P. CATMA:a complete Arabidopsis GST database. Nucleic acids research,2003,31:156-158
    26. Dahl M, Meskiene I, Bogre L, Ha D, Swoboda I, Hubmann R, Hirt H, Heberle-Bors E. The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. The Plant Cell,1995,7:1847-1857
    27. De Falco G, Giordano A. CDK9 (PITALRE):A multifunctional cdc2 - related kinase. Journal of cellular physiology,1998,177:501-506
    28. de Jager SM, Scofield S, Huntley RP, Robinson AS, den Boer BGW, Murray JAH. Dissecting regulatory pathways of G1/S control in Arabidopsis:common and distinct targets of CYCD3; 1, E2Fa and E2Fc. Plant molecular biology,2009,71:345-365
    29. de La Paz Sanchez M, Gutierrez C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proceedings of the National Academy of Sciences,2009,106:2065-2070
    30. De Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inze D. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. The Plant Cell, 2007,19:211-225
    31. De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inze D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell,2001,13:1653-1668
    32. De Veylder L, Beeckman T, Beemster GTS, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. The EMBO journal,2002,21:1360-1368
    33. De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inze D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell,2001,13:1653-1668
    34. De Veylder L, de Almeida Engler J, Burssens S, Manevski A, Lescure B, Van Montagu M, Engler G, Inze D. A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta,1999,208:453-462
    35. Del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. The Plant Cell,2006,18: 2224-2235
    36. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell,1995, 82:675
    37. Dewitte W, Murray JA. The plant cell cycle. Annual Review of Plant Biology,2003, 54:235-264
    38. Doonan J, Fobert P. Conserved and novel regulators of the plant cell cycle. Current opinion in cell biology,1997,9:824-830
    39. Dubrovsky JG, Forde BG. Quantitative analysis of lateral root development:Pitfalls and how to avoid them. The Plant Cell,2012,24:4-14
    40. Ebel C, Mariconti L, Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature,2004,429:776-780
    41. Elena R-P, Xie Q, Boniotti MB, Gutierrez C. The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G1/S regulators. Nucleic acids research,1999,27:3527-3533
    42. Elledge SJ. Cell cycle checkpoints:preventing an identity crisis. Science,1996,274: 1664-1672
    43. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin:a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983,33:389-396
    44. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM. A Syndrome of Multiorgan Hyperplasia with Features of Gigantism, Tumorigenesis, and Female Sterility in p27 Kip1Deficient Mice. Cell, 1996,85:733-744
    45. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    46. Fobert PR, Gaudin V, Lunness P, Coen ES, Doonan JH. Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. The Plant Cell,1996,8:1465-1476
    47. Fountain M, Renz A, Beck E. Isolation of a cDNA encoding a G1-cyclin-dependent kinase inhibitor (ICDK) from suspension cultured photoautotrophic Chenopodium rubrum L. cells. Plant Physiol,1999,120:339
    48. Francis D. The plant cell cycle-15 years on. New Phytologist,2007,174:261-278
    49. Francis D, Sorrell DA. The interface between the cell cycle and plant growth regulators:a mini review. Plant Growth Regulation,2001,33:1-12
    50. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature,2000,408:325-330
    51. Galun E. RNA silencing in plants. In Vitro Cellular & Developmental Biology-Plant, 2005,41:113-123
    52. Gheysen G, Villarroel R, Van Montagu M. Illegitimate recombination in plants:a model for T-DNA integration. Genes & development,1991,5:287-297
    53. Gleave AP. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant molecular biology,1992,20:1203-1207
    54. Gonzalez N, Hernould M, Delmas F, Gevaudant F, Duffe P, Causse M, Mouras A, Chevalier C. Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum Mill.). Plant molecular biology,2004,56:849-861
    55. Grafi G, Burnett RJ, Helentjaris T, Larkins BA, DeCaprio JA, Sellers WR, Kaelin WG. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proceedings of the National Academy of Sciences, 1996,93:8962
    56. Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS One, 2009,4:e4780
    57. Han W, Rhee H-I, Cho JW, Ku MS, Song PS, Wang M-H. Overexpression of Arabidopsis ACK1 alters leaf morphology and retards growth and development. Biochemical and biophysical research communications,2005,330:887-890
    58. Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends in cell biology,2013,
    59. Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nature protocols,2007,2:924-932
    60. Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inze D. cdc2a expression in Arabidopsis is linked with competence for cell division. The Plant Cell,1993,5:1711-1723
    61. Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B. Versatile gene-specific sequence tags for Arabidopsis functional genomics:transcript profiling and reverse genetics applications. Genome research,2004,14:2176-2189
    62. Hirt H, Pay A, Bogre L, Meskiene I, Heberle-Bors E. cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. The Plant Journal,1993,4:61-69
    63. Ho SN, Horton RM. Method for gene splicing by overlap extension using the polymerase chain reaction,1991, Google Patents.
    64. Hoekema A, Hirsch P, Hooykaas P, Schilperoort R. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. 1983, Google Patents
    65. Horton RM, Cai Z, Ho S, Pease L. Gene splicing by overlap extension:tailor-made genes using the polymerase chain reaction. Biotechniques,1990,8:528
    66. Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR. [17] Gene splicing by overlap extension. Methods in enzymology,1993,217:270-279
    67. Imajuku Y, Hirayama T, Endoh H, Oka A. Exon—intron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS letters,1992, 304:73-77
    68. Inze D, De Veylder L. Cell Cycle Regulation in Plant Development 1. Annu. Rev. Genet.,2006,40:77-105
    69. Ito M (2000). Factors controlling cyclin B expression. The Plant Cell Cycle, Springer: 133-146.
    70. Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, Machida Y, Watanabe A. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. The Plant Cell,1998,10:331-341
    71. Jasinski S, Leite CS, Domenichini S, Stevens R, Raynaud C, Perennes C, Bergounioux C, Glab N. NtKIS2, a novel tobacco cyclin-dependent kinase inhibitor is differentially expressed during the cell cycle and plant development. Plant Physiology and Biochemistry,2003,41:667-676
    72. Jasinski S, Riou-Khamlichi C, Roche O, Perennes C, Bergounioux C, Glab N. The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3; 1-overexpressing plants. Journal of Cell Science,2002,115:973-982
    73. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature,1995,376:313-320
    74. Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods,2003,30:313-321
    75. Kang J-y, Choi H-i, Im M-y, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant Cell,2002,14:343-357
    76. Kerschen A, Napoli CA, Jorgensen RA, Miiller AE. Effectiveness of RNA interference in transgenic plants. FEBS letters,2004,566:223-228
    77. Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature,2008,455:1134-1137
    78. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C. Towards functional characterisation of the members of theR2R3 - MYBgene family fromArabidopsis thaliana. The Plant Journal,1998,16:263-276
    79. Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional mutagen in Arabidopsis. The Plant Cell,1999,11:2283-2290
    80. Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. The Plant Journal,2008,57:905-917
    81. Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proceedings of the National Academy of Sciences,2008,105:14721-14726
    82. Lees E. Cyclin dependent kinase regulation. Current opinion in cell biology,1995,7: 773-780
    83. Li Y, Zhou L, Li Y, Chen D, Tan X, Lei L, Zhou J. A nodule - specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytologist,2008,180: 185-192
    84. Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, Luo G, Sun K, Shi D, Aki S, Zheng N. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. The Plant Cell,2008,20:1538-1554
    85. Lui H, Wang H, DeLong C, Fowke LC, Crosby WL, Fobert PR. The Arabidopsis Cdc2a - interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin - dependent kinase activity in vitro. The Plant Journal,2000,21: 379-385
    86. Magyar Z, Atanassova A, De Veylder L, Rombauts S, Inze D. Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS letters,2000,486:79-87
    87. Magyar Z, Meszaros T, Miskolczi P, Deak M, Feher A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bilgin M. Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. The Plant Cell,1997, 9:223-235
    88. Martinez MC, J(?)rgensen J-E, Lawton MA, Lamb CJ, Doerner PW. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proceedings of the National Academy of Sciences,1992,89:7360-7364
    89. McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics,2001,159:1751-1763
    90. McGinnis K, Chandler V, Cone K, Kaeppler H, Kaeppler S, Kerschen A, Pikaard C, Richards E, Sidorenko L, Smith T. Transgene-induced RNA interference as a tool for plant functional genomics. Methods in enzymology,2005,392:1-24
    91. Meier U. A note on the power of Fisher's least significant difference procedure. Pharmaceutical Statistics,2006,5:253-263
    92. Meijer M, Murray JA (2000). The role and regulation of D-type cyclins in the plant cell cycle. The Plant Cell Cycle, Springer:77-89.
    93. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science,1998,282:662-682
    94. Mello CC, Conte D. Revealing the world of RNA interference. Nature,2004,431: 338-342
    95. Mendenhall M (1998). Cyclin-dependent kinase inhibitors of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Cyclin Dependent Kinase (CDK) Inhibitors, Springer:1-24.
    96. Michaelis C, Weeks G. Isolation and characterization of a cdc 2 cDNA from Dictyostelium discoideum. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,1992,1132:35-42
    97. Mironov V, De Veylder L, Van Montagu M, Inze D. Cyclin-dependent kinases and cell division in plants—the nexus. The Plant Cell,1999,11:509-521
    98. Murray AW. Recycling the cell cycle:cyclins revisited. Cell,2004,116:221-234
    99. Nafati M, Frangne N, Hernould M, Chevalier C, Gevaudant F. Functional characterization of the tomato cyclin - dependent kinase inhibitor SIKRP1 domains involved in protein-protein interactions. New Phytologist,2010,188:136-149
    100. Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A. Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. The Plant Cell,2002,14: 1847-1857
    101. Naouar N, Vandepoele K, Lammens T, Casneuf T, Zeller G, Van Hummelen P, Weigel D, Ratsch G, Inze D, Kuiper M. Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. The Plant Journal, 2009,57:184-194
    102. Norbury C, Nurse P. Animal cell cycles and their control. Annual review of biochemistry,1992,61:441-468
    103. Nurse P. Eukaryotic cell-cycle control. Biochem Soc Trans,1992,20:239-242
    104. Nurse P. A long twentieth century of review the cell cycle and beyond. Cell,2000, 100:71-78
    105. Nurse P, Bissett Y. Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast.1981,
    106. Ohto M, Fischer RL, Goldberg RB, Nakamura K, Harada JJ. Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences of the United States of America,2005,102:3123
    107. Parinov S, Sundaresan V. Functional genomics in Arabidopsis:large-scale insertional mutagenesis complements the genome sequencing project. Current opinion in biotechnology,2000,11:157-161
    108. Peres A, Churchman ML, Hariharan S, Himanen K, Verkest A, Vandepoele K, Magyar Z, Hatzfeld Y, Van Der Schueren E, Beemster GTS. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. Journal of Biological Chemistry,2007,282:25588-25596
    109. Peters J-M. SCF and APC:the Yin and Yang of cell cycle regulated proteolysis. Current opinion in cell biology,1998,10:759-768
    110. Pettko-Szandtner A, Meszaros T, Horvath GV, Bako L, Csordas-Toth E, Blastyak A, Zhiponova M, Miskolczi P, Dudits D. Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. The Plant Journal,2006, 46:111-123
    111. Polit JT, Kazmierczak A, Walczak-Drzewiecka A. Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba. Protoplasma, 2012,1-7
    112. Porceddu A, Stals H, Reichheld J-P, Segers G, De Veylder L, de Pinho Barroco R, Casteels P, Van Montagu M, Inze D, Mironov V. A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. Journal of Biological Chemistry,2001,276:36354-36360
    113. Preuss D (2002). How to grow Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY:1-18.
    114. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience letters, 2003,339:62-66
    115. Ramirez-Parra E, Gutierrez C. Characterization of wheat DP, a heterodimerization partner of the plant E2F transcription factor which stimulates E2F-DNA binding. FEBS letters,2000,486:73-78
    116. Ramirez-Parra E, Frundt C, Gutierrez C. A genome-wide identification of E2F regulated genes in Arabidopsis. The Plant Journal,2003,33:801-811
    117. Reichheld J-P, Chaubet N, Shen WH, Renaudin J-P, Gigot C. Multiple A-type cyclins express sequentially during the cell cycle in Nicotiana tabacum BY2 cells. Proceedings of the National Academy of Sciences,1996,93:13819-13824
    118. Ren H, Santner A, Pozo JC, Murray JAH, Estelle M. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. The Plant Journal,2008,53:705-716
    119. Renaudin J-P, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M. Plant cyclins:a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant molecular biology,1996, 32:1003-1018
    120. Romero I, Fuertes A, Benito M, Malpica J, Leyva A, Paz-Ares J. More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant journal, 1998,14:273-284
    121. Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant molecular biology,2003,53:247-259
    122. Rugang C, Liying Z, Junhong Z, Wei Z, Xue W, Bo O, Hanxia L, Zhibiao Y. Functional characterization of a Root-knot nematode resistance gene Mi from tomato (Lycopersicon esculentum L.).2006, Patent
    123. Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F, Joly RJ, Hasegawa PM, Bressan RA, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of stol/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant physiology,2004,136:3134-3147
    124. Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, Van Den Hoff M, Moorman A. Amplification efficiency:linking baseline and bias in the analysis of quantitative PCR data. Nucleic acids research,2009,37:e45-e45
    125. Salmenkallio-Marttila M, Aura A-M, De Veylder L, Inze D, Oksman-Caldentey K-M. Characterization of microstructure and cell wall components of Arabidopsis thaliana overexpressing cyclin-dependent kinase inhibitor 2. Phytochemistry Reviews,2002,1: 93-99
    126. Sanz L, Dewitte W, Forzani C, Patell F, Nieuwland J, Wen B, Quelhas P, De Jager S, Titmus C, Campilho A. The Arabidopsis D-type cyclin CYCD2; 1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. The Plant Cell,2011,23: 641-660
    127. Schnittger A, Schobinger U, Stierhof Y-D, Hulskamp M, fur Zuchtungsforschung M. Ectopic B-Type Cyclin Expression Induces Mitotic Cycles in Endoreduplicating Arabidopsis Trichomes. Current Biology,2005,15:980-980
    128. Segers G, Gadisseur I, Bergounioux C, Engler J, Jacqmard A, Montagu M, Inze D. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. The Plant Journal,1996,10:601-612
    129. Sekine M, Ito M, Uemukai K, Maeda Y, Nakagami H, Shinmyo A. Isolation and characterization of the E2F-like gene in plants. FEBS letters,1999,460:117-122
    130. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C. A high-throughput Arabidopsis reverse genetics system. The Plant Cell,2002,14:2985-2994
    131. Shen WH. The plant E2F-Rb pathway and epigenetic control. Trends in plant science, 2002,7:505-511
    132. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & development,1995,9:1149-1163
    133. SILENCING MOR. Activation and suppression of RNA silencing by plant viruses. Virology,2001,281:1-5
    134. Soni R, Carmichael JP, Shah ZH, Murray J. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. The Plant Cell,1995,7:85-103
    135. Sorrell DA, Marchbank A, McMahon K, Dickinson RJ, Rogers HJ, Francis D. A WEE1 homologue from Arabidopsis thaliana. Planta,2002,215:518-522
    136. Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, Cella R. Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant physiology,2006,140:1355-1366
    137. Stals H, Casteels P, Van Montagu M, Inze D (2000). Regulation of cyclin-dependent kinases in Arabidopsis thaliana. The Plant Cell Cycle, Springer:39-49.
    138. Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA. Characterization of maize (Zea mays L.) Weel and its activity in developing endosperm. Proceedings of the National Academy of Sciences,1999,96:4180-4185
    139. Tabara H, Grishok A, Mello CC. RNAi in C. elegans:soaking in the genome sequence. Science,1998,282:430-431
    140. Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes & development,2003,17:49-63
    141. Townsley FM, Ruderman JV. Proteolytic ratchets that control progression through mitosis. Trends in cell biology,1998,8:238-244
    142. Umeda M, Bhalerao RP, Schell J, Uchimiya H, Koncz C. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proceedings of the National Academy of Sciences,1998,95:5021-5026
    143. Umeda M, Umeda-Hara C, Yamaguchi M, Hashimoto J, Uchimiya H. Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant physiology,1999,119:31-40
    144. Valvekens D, Montagu MV, Lijsebettens MV. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences,1988,85:5536
    145. Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Molecular systems biology,2010,6:
    146. Vance V, Vaucheret H. RNA silencing in plants--defense and counterdefense. Science, 2001,292:2277-2280
    147. Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D. Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell,2002,14:903-916
    148. Verkest A, Manes C-LdO, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA; 1 kinase complexes. The Plant Cell,2005,17:1723-1736
    149. Verkest A, Manes CLO, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA; 1 kinase complexes. The Plant Cell,2005,17:1723-1736
    150. WANG H, FOWKE L, CROSBY W (1999). Cyclin-dependent kinase inhibitors as plant growth regulators, WO Patent 1,999,064,599.
    151. Wang H, Fowke LC, Crosby WL. A plant cyclin-dependent kinase inhibitor gene. Nature,1997,386:451
    152. Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC. ICK1, a cyclin-dependent protein kinase inhibitor fromArabidopsis thalianainteracts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. The Plant Journal,1998, 15:501-510
    153. Wang H, Zhou Y, Bird D, Fowke L. Functions, regulation and cellular localization of plant cyclin - dependent kinase inhibitors. Journal of Microscopy,2008,231: 234-246
    154. Wang H, Zhou Y, Fowke LC. The emerging importance of cyclin-dependent kinase inhibitors in the regulation of the plant cell cycle and related processes. Canadian journal of botany,2006,84:640-650
    155. Wang H, Zhou Y, Gilmer S, Cleary A, John P, Whitwill S, Fowke L. Modifying plant growth and development using the CDK inhibitor ICK1. Cell biology international, 2003,27:297-299
    156. Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC. Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. The Plant Journal,2000,24:613-623
    157. Waterhouse PM, Graham MW, Wang M-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences,1998,95:13959-13964
    158. Weingartner M, Pelayo HR, Binarova P, Zwerger K, Melikant B, de la Torre C, Heberle-Bors E, Bogre L. A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. Journal of Cell Science,2003,116:487-498
    159. Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ, Hulskamp M, Schnittger A. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. The Plant Cell,2005,17: 1704-1722
    160. Xiao J, Li H, Zhang J, Chen R, Zhang Y, Ouyang B, Wang T, Ye Z. Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Growth Regulation,2006,50:179-189
    161. Yang R, Tang Q, Wang H, Zhang X, Pan G, Tu J. Analyses of two rice (Oryza sativa) cyclin-dependent kinase inhibitors and effects of transgenic expression of OsiICK6 on plant growth and development. Annals of Botany,2011,107:1087-1101
    162. Zhang C, Ouyang B, Yang C, Zhang X, Liu H, Zhang Y, Zhang J, Li H, Ye Z. Reducing AsA Leads to Leaf Lesion and Defence Response in Knock-Down of the AsA Biosynthetic Enzyme GDP-D-Mannose Pyrophosphorylase Gene in Tomato Plant. PLoS One,2013,8:e61987
    163. Zhou Y, Fowke L, Wang H. Plant CDK inhibitors:studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant cell reports,2002,20:967-975
    164. Zhou Y, Li G, Brandizzi F, Fowke LC, Wang H. The plant cyclin - dependent kinase inhibitor ICK1 has distinct functional domains for in vivo kinase inhibition, protein instability and nuclear localization. The Plant Journal,2003,35:476-489
    165. Zhou Y, Niu H, Brandizzi F, Fowke LC, Wang H. Molecular control of nuclear and subnuclear targeting of the plant CDK inhibitor ICK1 and ICK1-mediated nuclear transport of CDKA. Plant molecular biology,2006,62:261-278
    166. Zhou Y, Wang H, Gilmer S, Whitwill S, Keller W, Fowke LC. Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICK1 in transgenic Brassica plants. Planta,2002,215:248-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700