甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高紫花苜蓿(Medicago sativa L.)产量及质量最重要的方法之一是给苜蓿接种高效固氮根瘤菌,苜蓿根瘤菌除与根系共生结瘤进行固氮之外,是否具有其它生物功能和作用目前尚未见报道。随着联合固氮微生物研究的深入,促生菌研究已从固氮范畴扩展到固氮、溶磷和分泌生长激素等多功能范畴(Hendry GS 1983),共生固氮微生物—根瘤菌是非常重要的一类促生菌,按照促生微生物存在多功能促进生长的特点,开辟根瘤菌其它促生功能的研究,进一步研究根瘤菌的促生机理和影响根瘤菌结瘤与促生功能影响因子,筛选优质高效多功能促生根瘤菌株尤为重要。本研究对甘肃5个不同生态区域阿尔冈金苜蓿(M. Algonquin)和陇东苜蓿(M. Longdong)草地春、夏、秋三季根瘤菌结瘤能力及其影响因子进行大系统多层次权重分析,采用YMA培养基法、回接初筛选试验法、~(15)N同位素稀释法、蒙金娜培养基和PKO培养基溶磷圈法、刚果红液体培养基比色法、YMA培养基附加胁迫因子培养法对根瘤菌进行了分离纯化和筛选,对初筛选菌株的固氮能力、溶磷能力、分泌生长素IAA能力和抗逆能力进行了测试,采用多元逐步回归和通径分析讨论了影响根瘤菌固氮、溶磷、分泌生长素、抗逆能力的主要土壤理化因子,结果表明:
     1)研究区域大部分属干旱半干旱地区,不论是旱作区的长期干旱,还是灌溉区的间隙性干旱,水分因子对根瘤菌结瘤数量造成较大影响,进而影响固氮量,表现出干旱地区苜蓿草地的干旱胁迫缺氮。
     2)供试的两个苜蓿品种,阿尔冈金苜蓿根瘤菌的有效性(结瘤能力)高于陇东苜蓿。并且在甘肃区域苜蓿结瘤主要发生于春季,春季苜蓿根瘤菌的有效性比夏季和秋季高。这一研究结果为甘肃苜蓿栽培应用根瘤菌剂最佳施用时期提供了依据。
     3)综合考虑各项根瘤测定指标,苜蓿根瘤菌在不同区域土类中的有效性以庆阳黑垆土最好,其次为武威灌淤土和定西灰钙土。甘南亚高山草甸土区,根瘤较大,但数量最少,根瘤菌的有效性不高,气温低和生长季节短是主要的限制性因素。天水褐土根瘤菌有效性差,与该土粘重、易板结、通气性差有关。
     4)不同区域苜蓿根瘤菌平均固氮能力差异性较大。庆阳、武威菌株平均固氮能力最强,定西菌株次之。菌株对生物量平均作用的大小与来源地区菌株固氮能力的强弱相对应,亦即庆阳、武威和定西菌株对苜蓿的平均促生能力较好,甘南菌株平均促生能力中等,天水菌株平均促生能力差。
     5)~(15)N示踪试验表明,苜蓿%~(15)N含量在0.425 %以下时,苜蓿% ~(15)N含量与固
Biological nitrogen fixation is a biochemical process attracting almost the same attention as photosynthesis. With the deepening research of nitrogen fixation bio-organisms, their growth-improving effects have been shown from nitrogen fixation, phosphorus dissolving and growth hormone secret (Hendry G S, 1983).
     Alfalfa is one of the main cultivated forage legumes in China, the most important way to improve its yield and quality is effective rhizobia inoculation. However, whether alfalfa rhizobia have other biological functions except nitrogen fixation has not been elucidated. So it is vital to find factors affecting noduling and growth-improvement, to screen effective multi-function rhizobia strains for different ecological regions and varieties. In this study, the noduling and its affecting factors in two alfalfa pastures (cv. Algonquin and Longdong) from 5 different eco-regions were analyzed by means of Analytical Hierarchy Process (AHP) in spring, summer and fall.The ability of nitrogen fixation phosphorus dissolving,IAA secret and stress tolerance of selected strains was tested and the main soil physical and chemical factors affecting the above ability were analyzed and discussed by means of multi-regression and path analysis.The results showed that:
     1) Soil moisture played a vital role on nodule number of alfalfa rhizoia both in long term drought in arid regions and interval drought in irrigation regions. Alfalfa pasture showed nitrogen deficiency under drought stress in drought regions.
     2) The noduling ability of Algonquin was higher than that of Longdong. This difference could partly attributed to environmental factors and their genetic features. Furthermore, in Gansu province, nodule formation mainly took place in spring, with higher capacity than in summer and autumn. The appropriate temperature for nodule formation could be lower than 15~20℃.
     3) Taking all the indexes of alfalfa rhizobia into a comprehensive consideration, meanwhile referring to effective nodule rate, the effectiveness of alfalfa rhizobia in different types of soils could be scored as chernozem soil in Qingyang >irrigate soil in Wuwei >podzol soil in Dingxi. Soil from sub-alpine meadow in Gannan had a better effect
引文
[1] .Jordan. 伯杰系统细菌学手册(第一卷)[M]. 北京: 中国科技出版社, 1984
    [2] Andrew H Bosworth, Mark K. Williams, Kenneth A. Albrecht. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Applied and Environmental Microbiology. 1994. 60: 3815~3832
    [3] Angela Aessitsch, Patrick K. Jjemba, Gudni Hardarson et al. Measurement of the competitiveness index of rhizobium tropici strain ciat899 derivatives marked with the gusA gene. Soil Biol. Biochem. 1997, 29(7): 1099~1110
    [4] Atkins, A.. Efficiencies and inefficiencies in the legume/rhizobium symbiosis~A review. Plant and soil. 1984, 82: 273~284
    [5] Barber, L. D., Joern, B. C., Volenec, J. J. et al. Supplemental nitrogen effects on alfalfa regrowth and nitrogen mobilization from roots. Crop Science. 1996,36: 1217~1223
    [6] Barber, L.Survival and plant nodulation at low pH by resistant Rhizobium meliloti strains. Am. Soc. Microbio. 1978, 167
    [7] Berdahl, J. D.,Wilton, A. C. and Frank, A. B.. survival and agronomic performance of 25 alfalfa cultivars and strains interseeded into rangeland. Journal of range management. 1989, 42(4): 321~316
    [8] Bergersen, F. J., Turner, G. L. An evaluation of ~(15)N methods for estimating nitrogen fixation in a subterranean clover~perennial ryegrass sward. Aust. J. Agric. Res.,1983, 34: 391~401
    [9] Beynon, J. L., D. P. Josey. Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J. Gen. Microbiol.. 1980, 118: 437~442
    [10] Bilal R.Associative Biological Nitrogen Fixation in Plants Growing in Saline[D]. Ph. D. Thesis. Punjab University, Lahore, Pakistan. 1988
    [11] Bohlool, B. B., and Schmidt, E. L. Persistence and competition aspects of rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci. Soc. Am. Proc. 1973, 37: 561~564
    [12] Bosse, M. D., Bottomley, P. J.. Nitrogen~fixing characteristics of alfalfa cultivars nodulated by representatives of an Rhizobium meliloti serogroup. Plant and soil. 1989, 117: 255~262
    [13] Bottomley, P. J, Jenkins, M. B. Some charactetistics of Rhizobium meliloti isolates from alfalfa fields in Oregon.Soil sci. soc. Am.J. 1983, 47: 1154~1157
    [14] Brockwell, J. Gsult,R. R., Peoples, M. B. et al, N_2 fixation in irrigated Lucerne grown for hay.Soil Bio.Biochem. 1995, 27(4): 589~594
    [15] Brockwell, J. Gsult,R.R.Margaret Zorin and Roberts,M.J.Effects of environmental variables on the competition between inoculum strains and naturalized populations of Rhizobiym trifolii for nodulation of Trifolium subterraneum L.and on Rhizobium persistence in the soil.Aust.J.Agric.Res. 1982, 33: 803~815
    [16] Brockwell, J., Pilka, A., Holliday, R. A. Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales.Australian Journal of experimental agriculture.1991, 31: 211~219
    [17] Bromfield E, S. P. Variation in Preference for Rhizobium meliloti Within and Between Medicago sativa CultivarsGrown in Soil. Appl. Environ.Microbiol. 1984, 48: 1231~1236
    [18] Chen WX, Tan Y, Gao J L, et al. Int J Syst Bacteriol, 1997, 47: 870~873
    [19] Chen WX, Yan GH, Li JL. Int J System Bacteriol, 1998, 38: 395~397
    [20] Craig, L. A., Wiebold, W. J., Mclntosh,M.S,Nitrogen fixation rates of alfalfa and red clover grown in mixture with grasses. Agron. J. 1981, 73: 996~998
    [21] Cregan,P. E. et al.:Soybean genotype restricting nodulation of previously unrestricted serocluster 123 Bradyrhizobia,Crop Sci., 29, 207~312, 1989
    [22] Daniel J.Use of Green Fluorescent Protein To Visuslize the Early Evens of Symbiosis between Rhizobium meliloti and Alfalfa(medibago sativa).Journal of Bacteriology. 1996, 178: 7159~7166
    [23] Danso S K A et al. Plant & soil, 1993, 152: 25~52
    [24] Danso S K A et al. Crop Sci, 1988, 28: 106~110
    [25] Danso S K A et al. Plant & soil, 1995, 174: 51~82
    [26] Denarie J, Roche P. Rhizobium nodulation signals. In: Verma DPS. Molecular Signals in Plant-Microbe Communications [M]. BocaRaton/Ann Arber/London: CRC Press, 1991. 296~324
    [27] Diane M. Hebb, Alan E. Richardson, R. Reid et al. PCR as an ecological tool to setermine the establishment and persistence of Rhizobium strains introduced into the field as seed inoculant. Aust J. Agric. Res. .1998, 49: 923~934
    [28] Diatloff,A.et al.:Ecological studies of root~nodule bacteria introduced into field environments. 4.symbiotic properties of Rhizobium japonicum and competitive success in nodulation of two Glycine max cultivars by effective and ineffective strains, Aust. J. Exp. Agric. Anim. Husb., 16, 514~521, 1976
    [29] Diouf.A et al..use of the gusA gene marker in a competition study of the Rhizobium strains nodulation the common bean (Phaseolus vulgaris) in Senegal soils. World Journal of Microbiology & Biotechnology. 2000,16: 337~340
    [30] Douka C.E., Doskaris J., Protopapadaki L., Visantinopoulos S., Xenoulis A.C., 1995. Relationship between biological nitrogen fixation and berbicide degradation. In ‘Proceedings of the international nitrogen fixation conference’. p.679.
    [31] Drefus B, Carcia JL, Gillis M. Int J System Bacteriol, 1998, 38: 89~98
    [32] Drevon J-J, Hartwig UA. 1997. Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201: 463~469.
    [33] Duhigg., P., Melton, B. Baltensperger, A.. Selection for acetylene reduction rates in “Mesilla”alfalfa. Crop sci., 1978, 18: 813~816
    [34] Eric Glickmann And Yves Dessaux. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Applied And Environmental Microbiology, 1995, 2: 793~796.
    [35] Evans, H. J.. Enhancing biological nitrogen fixation. National science foundation, Dir. Biological and meical science, Washington, DC 2050, 1975
    [36] FAO. 豆科植物根瘤菌剂及其利用[M]. 北京: 农业科技出版社, 1988. 19~21
    [37] Fauzia Y.Haffeez. 生物肥料在农业可持续发展中的应用前景[J]. 草原与草坪, 2003, 101(2): 10~18
    [38] Ferris I.G., Pederson R.N., Schwinghamer M. W., Haigh B. M., 1992. Sulfonylurea herbicides in cereal farming systems-detection, persistence, and impact. In ‘Proceedings of the 7th agronomy conference’, p.407. (The Australian Society of Agronomy: Adelaide
    [39] Fesenko A. N., Provorov N. A., Irina F Orlova., V. P. Orlov. Selection of Rhizobium leguminosarum bv. viceae strainsfor inoculation of Pisum sativum L. cultivars, Analysis of symbiotic efficiency and nodulation competitiveness. Plant and Siol. 1995, 172: 189~198
    [40] Fred,E.B.,Davenport,A.Influence of reaction on nitrogen assimilating bateria.J.Agric.Res. 1918, 14: 317~336
    [41] Fried M et al. Plant & soil, 1977, 47: 713~715
    [42] Fried M et al. Can J M icrobiol, 1983, 29: 1053~1062
    [43] Fuentes remirez. Acetobacter diazotrophicus, an IAA producing bacterium isolated from sugar cane cultivates of Mexico. Plant and soil. 1993, 154: 145~150
    [44] Gasser, H. P., Guy, M. O., sikora,I.Efficiency of Rhizobium meliloti strains and their effects on alfalfa cultivars. Can, J. Plant Sci. 1972, 52: 444~448
    [45] GAULT, R. R., Peoples, M. B., Turner,G.L.et al.nitrogen fixation by irrigated Lucerne during the first three years after establishment6. Aust. J. Agric. Res. 1995, 46: 1401~1425
    [46] gh-Jensen, Dr Henning; Schjoerring, Dr Jan K. and Soussana, Dr Jean-Francois (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Annals of Botany 90:pp. 745~753.
    [47] Gibson AH. Genetic variation in the effectiveness of nodulation of Lucerne varieties [J]. Aust.J.Agic.Res.,1962, 13: 388~399
    [48] Hamdi Hussein Zahran. Rhizobium~Legume Symbiosis and Nitrogen Fixation Swvere Conditions and in an Arid Clinate. Microbiology and Molecular Biology Review. 1999, 64: 968~989
    [49] Hardarson G et al. Plant & soil, 1993, 152: 19~23
    [50] Hardarson. G, gelchel, G. H. et al Rhizobiuml Strain Preference of Alfalfa Populations Selected for Characterrstics Associated with N_2 Fixation. Crop Science. 1982, 22: 54~58
    [51] Hardarson. G, Heichel, G. H., Vance, C.p. et al. I Evaluation of alfalfa and Rhizobium meliloti for compatibility in nodulation and nodule effectiveness. 1981, Crop Science. 21: 562~566
    [52] Harry T. cralle and G. H. Heichel. Tempetature and chilling sensitivity of nodule nitrogenase activity of unhardened alfalfal. Crop Science. 1982, 22: 300~303
    [53] Heichel, G. H., Barnes,D. K., Vance,C.P.et al.N_2 fixation and N and dry matter partitioning during a 4~year alfalfa stand. Crop sci.. 1984, 24: 811~815
    [54] Hendry GS, Jordan DC. In effectiveness of viomycin-peristant munant of Rhizobium [J]. Can. J. Mi-crobiol, 1983, 15: 671~675
    [55] Henri Jansen Van Rensburg, Barend W. Strijdom. Competitive abilities of Rhizobium meliloti atrains considered to have potential as inoculants. Applied and Environmental Microbiology. 1982, 44: 98~106
    [56] Henri S. Lowendorf and Martin Alexander. Selecting Rhizpbium meliloti for inoculation of alfalfa planted in acid soil. Soil sci soc. Am. J., 1983, 47: 935~938
    [57] Hesterman, O, B,. Sheaffer, D. K., Fuller. E. L., Economic comparisons of crop rptations including alfalfa, soybean, and corn. Agron. J. 1986, 78: 24~28
    [58] In Nitrogen Fixation in Legunes(J. M. Vincent, Ed. ). Pp. 173~191. Academic Press. Sydney.
    [59] J. M. 芬森特. 根瘤菌实用研究手册[M]. 上海: 上海人民出版社, 72~73, 1986
    [60] Javis BDW, van Berkum P, Chen WX, et al. Int J Syst Bacteriol, 1997, 47: 895~898
    [61] Jenkins, M. B. and Bottomley. P. J.. Seasonal response of uninoculated alfalfa to N fertilizer : siol N, nodule turnover,and symbiotic effectiveness of rhizobium meliloti. Agron. J.. 1984, 76: 959~963
    [62] Jones, D. G, Symbiotic nitrogen fixation~exploitation and unachieved potential. Ann. Aool. Bio. 1991, 118: 249~259
    [63] Jordan, Allen. 伯杰细菌鉴定手册[M]. 北京: 中国科技出版社, 1974
    [64] Jose L. Gil and Walter H. Fick. Soil nitrogen mineralization in mixtures of eastern gamagrass with alfalfa and red clover. Agron. J.. 2001, 93: 902~910
    [65] Joseph W. Kloepper and Chantal J. Beauchamp. A review of issues related to measuring colonization of plant roors by bacteria, Can. J. Microbiol. 1992, 38: 1219~1232
    [66] Kuykendall LD, Roy MA, O’Neill JJ, et al. Int J System Bacteriol, 1998, 38: 358~361
    [67] Kuykendall LD, Saxena B, Hu TS, et al. Can J Microbiol, 1992, 38: 501~505
    [68] Legard, S. F., Freney, J, R., Simpson, J. R. Assessing nitrogen transfer from legumes to associated grasses . Soil boil. Biochem., 1985, 17(4): 575~577
    [69] Lelia de Anda cralg. Wiebold. W. J., Mclntosh, M. S. Nitrogen fixation rates of alfalfa and red clover grown in mixture with grasses. Agronomy Journal, 1981, 73: 996~998
    [70] Lesley, S. M.. A bacteriophage typing system for Rhizobium meliloti . Can. J. Microgbiol. 1982, 28: 180~189
    [71] Lidija Halda-Alija. Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can. J. Microbiol. 2003: 49, 781~787
    [72] Lopez~Garcia, S.L., T. E.Vazouez, G.. Favelukes and A. R. Lodeiro. 2001. Improved soybean root association of N~starved Bradyrhizobium japonicum. J. Bacteriol, 183, 7241~7254.
    [73] Lorry, J. A., Russelle, M. P., and Heichel, G. h.. Quantification of sumbiotically fixed niteogen in siol surrounding alfalfa roots and nodules. Agron. J. 1992, 84:1033~1040
    [74] Maccio, D., Fabra, A., and Castro, S. 2002. Acidity and calcium interaction.affect the growth of Bradyrhizobium sp., and the attachment to peanut roots. Soil Biol. Biochem. 34, 201. Magalh?aes, FM, Baldani, JI, Souto, SM, Dobereiner
    [75] Mahler, R. L, Wollum, A. G. Seasonal Variation of Rhizobium meliloti in alfalfa hay and cultivated fields in noeth Carolina. Agron. J. 1982, 74: 428~431
    [76] Malik K.A., Zafar Y., Bilal R., et al. Use of ~(15)N~isotope Dilution for Quantification of N_2 Fixation Associated with Roots of Kallar Grass(Loptochloa fusall.)[J]. Biol. Fertil. Soil, 1987, (4): 103~108
    [77] Michael Collins, Duke, S. H., Influence if potassium~fertilization rate and form on photosynthesis and N_2 fixation of alfalfa. Crop science. 1981, 21: 481~485
    [78] Mohammad, A., Johnson. D. A., Nodulation, biomass production, and nitrogen fixation in alfalfa under drought. Journal of plant nutrition. 1996, 19(1): 185~199
    [79] Nutman, P. S.. Varietal differences in the nodulation of subterranean clover. Aust. J. Agri. Res. 1967,18: 381~425
    [80] Okeny. Root associative azosprillum species can stimulate plants .ASM news.1997, 63(7): 366~3702
    [81] Olsen, P. E., Rice. W. A. G., Stemke, W. and page, W. J. Strain~specific serological techniques for the identification of Rhizobium meliloti in commercial alfalfa inoculants, Can. J. Microbiol.. 1983, 29: 225~230
    [82] Olsen, P. E., Rice, W. A.. Mininal antigenic characterization of eight Rhizobium meliloto strains by indirect enzyme~linked immunosorbent assay(ELISA). Can. J. Microbiol. 1984, 30: 1093~1099
    [83] Peoples M B et al. Plant & soil, 1996, 182: 125~137
    [84] Peter R, Schofield, Alan H. Gibson, William F. Dudman et al.. Evidence for genetic exchange and recombination ofrhizobium symbiotic plasmids in a soil population. Applied and EEnvironmental Microbiology. 1987,53(12): 2942~2947
    [85] Peterson, T. A., Russelle, M. P.. Alfalfa and the nitrogen cycle in the corn belt. Journal of soil and water conservation. 1991, 3: 229~235
    [86] Phillips, D. A., Dakora, F. D., Sande. E. et al.. Syntheis. Release, and transmission of alfalfa signals to Rhizobiuml symbionts. Plant and Soil. 1994, 161: 69~80
    [87] Provorov N. A., Sainmnarov U. B., Tanriverdiev T. A and Sinarov B. V. 1994. The contributions of plant and bacteria genotypes in the growth and nitrogen accumulation of the inoculated alfalfa Plant and Soil. 164, 213~219
    [88] Rice, W. A. and Olsen, P. E.. Root~temperature effects on competition for nodule occupancy between two Rhizobium neliloti strains. Bio. Fertil. Soils. 1988, 6: 137~140
    [89] Rice, W. A., Plsen, P. E, Page, W. J., ELISA evaluation of the competitive abilities of two Rhizobium meliloti strains, Can. J. Microbiol. 1984, 30: 1187~1190
    [90] Rice, W. A.. Performance of Rhezobium meliloti strains selected for low~PH tolerance. Can. J. Palnt Sci. 1982, 62: 941~948
    [91] Robleto, E.A., K.Kmiecik, E.S.Oplinger, J.Nienhuis and E.W.Triplett. 1998. Trifolitoxin Production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Appl.Environ.Micro., 65, 2833~2840.
    [92] Robleto, E.A., Scupham, A. J., and Triplett, E.W. 1997. Trifolitoxin production in Rhizobium etli strain CE3 increase competitiveness for rhizosphere growth and root nodulation of Phaseolus vulgaris in soil. Mol. Plant~Microbe Interact. 10, 228~233.
    [93] Rome S, Fernandez MP, Brunel B, et al. Int J Syst Bacteriol, 1996, 46: 972~980
    [94] Sadowsky, M. J. and Graham, P.H. 1998. Soil Biology of the Rhizobiumceae. In: The Rhizobiumceae. H. P. Spaink, A. Kondorosi and P. J. J. Hooykaas, eds. Kluwer, The Netherlands. 155~172.
    [95] Scupham, A. J., Bosworth, A. H., Ellis, W.R., Wacek, T.J. Albrecht, K.A., and Triplett, E.W. 1996. Inoculation with Sinorhizobium meliloti RMBPC~2 increases alfalfa yield compared with inoculation with a nonengineered wild~type strain. Appl.Environ. Microbiol. 62, 4260~4262)
    [96] Seetin, M. W., Barens, D. K.. Variation among alfalfa genotypes for rate of acetylene reduction. Crop sci., 1977, 17: 783~787
    [97] Serraj R., T.R.Sinclair, and L.C.Purcell. 1999. Symbiotic N_2 fixation response to drought. J.Experi Bot., 50, 143~155.
    [98] Sharma, P. B., Ajit Singh, Rangil Singh. Symbiotic nitrogen fixstion by wenter legumes. IA comparative efficiency between an Indian and an Australian variety of legume, Medicogo sativa. Indian J. Agric. Res. 1973, 7(3~4): 159~163
    [99] Singleton P. W and Tavares J. W. Inoculation response of legumes in reation to the number and effectiveness of indigenous rhizpbium population. Appl. Environ. Mecrobiol. 1986, 51: 1013~1018
    [100] Slattery J.F., Pearce D. J., Slattery W.J. 2004. Effects of resident Rhizobiuml communities and soil type on the effective nodulation of pulse legumes. Soil Biology & Biochemistry 36, 1339~1346.
    [101] Smith, C.W.,1995.Soybean, Crop production evaluation, history and technology, Wilcy, New York, pp. 351~357.
    [102] Stephen p.harrison. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using randomprimers. Can.J.Microbio. 1992, 38: 1009~1015
    [103] Ta, T. C., Faris, M. A. Species variation in the fixation and transfer of nitrogen from legumes to associated grasses. Plant and soil. 1987, 98: 265~274
    [104] Tan ZY, Kan FL, Peng GX, et al. Int J Syst Evol Microbiol, 2001, 51: 909~914.
    [105] Tan. G. -Y., Tan, W.~K.. 1986. Interaction between alfalfa cultivars and Rhizobium strains for nitrogen fixation. Theoretical and Applied Genetics. 71: 724~729
    [106] Thakuria. D, Talukdar. N. C, Goswami. C, etal. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science, 2004, 86(7): 978~985
    [107] Thom as J C, Wasmann CC ,Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.)[J]. Plant Cell Rep , 1994, 14: 31~36
    [108] Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa l.) [J]. Plant Cell Rep, 1994, 14: 373~377
    [109] Thomas, R. J. The role of the legume in the nitrogen cycle of productive and sustainable pastures. Grass and forage science. 1992, 47: 133~142
    [110] Unkovich M. J., Pate J. S., Sandford P., 1997. Nitrogen fixation by annual legumes in Australian Mediteranean agriculture. Australian Journal of Agricultural Research 48, 267~293.
    [111] Valdivia,B.et al.:Antigenic and symbiotic characterization of indigenous Rhizobium leguminosarum bv.trifolii recovered from root nodules of Trifolium pratense L.sowe into subterranean clover pasture soils,Soil Biol.Biochem.,20(3),267~274, 1988
    [112] Van Ven.I>A et al . Fate and Activity of Microorganisms Introduced into Soil. Microbiology and Molecular biology Reviews. 1997, 61: 121~135
    [113] Velazquez E, Igual J M, Willems A, et al. Int J Syst Evol Microbiol, 2001, 51: 1011~102
    [114] Wagner G H et al, Agron J, 1982, 74: 607~612
    [115] White L O. The taxonomy of the crown gall organism Agrobacterium tumefaciens and its relationship to Rhizobium and other agrobacteria , J Gen Microbiol, 1972, 72: 565~574
    [116] Wilson Kate.J. Molecular techniques for the study of Rhizobiuml ecology in the field. Soil Biol Biochem. 1995, 27: 501~514
    [117] Witty J F. soil Biol Biochem, 1983, 15: 631~639
    [118] Yan A M, Wang E T, Kan F L, et al. Sinorhizobium melilotii associated with Medicago sativa and Melilotus spp. Int J Syst Bacteriol, 2000, 50: 1887~1891
    [119] Yong JPW, Haukka KE. New Phytol, 1996, 133: 87~94
    [120] Zabran H Rhizobium~Legume symbiosis and nitrogen fixation under sever Condition and in arid climate[J]. Microbiol Mol. Biol. Rev, 1999, (63): 968~989
    [121] Zhang, F., and Smith, D.L. 1996. Genistein accumulation in soybean[Glycine max(L.)Merr.] root systems under suboptimal root zone temperatures. J. Exp. Bot. 47, 785~792.
    [122] 安千里. 植物联合固氮分子生态学的研究方法和应用[J]. 植物生理学通讯. 2001, 37(10): 24~30
    [123] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000, 第三版
    [124] 常 玮, 王 炜, 屈新兰. 苜蓿根瘤菌菌剂的研究[J]. 新疆农业科学, 2004, 41(2): 102~104
    [125] 陈丹明, 曾昭海, 隋新华, 等. 紫花苜蓿高效共生根瘤菌的筛选[J]. 草业科学, 2002, 19(6): 27~32
    [126] 陈华癸,樊庆笙. 微生物学[M]. 北京: 中国农业出版社, 1979, 161~162
    [127] 陈华癸. 微生物学[M]. 北京: 中国农业出版社, 1999, 145~146
    [128] 陈文新, 李阜棣, 闫章才. 我国土壤微生物学和生物固氮研究的回顾与展望[C]. 世界科技研究与发展.2002, 4: 6~12
    [129] 陈文新. 根瘤菌分类的最新进展[J]. 微生物学报, 1985, 12: 28~32
    [130] 陈文新. 中国豆科植物根瘤菌资源多样性与系统发育[J]. 中国农业大学学报, 2004, 9(2): 6~7
    [131] 陈雪松, 张海瑜, 高为民, 等. 苜蓿中华根瘤菌与耐盐有关的 DNA 片段的克隆[J]. 微生物学报, 1999, (6): 489~494
    [132] 陈中义, 林 敏, 黄 大. 首例属间遗传工程微生物进入商品化生产[J]. 生物技术通报, 1998, 6: 41~42
    [133] 丁 武. 影响根瘤竞争结瘤的生态学因素分析[J]. 生态学杂志, 11(4), 50~54, 1992
    [134] 樊妙姬, 陈丽梅, 马庆生. 根瘤菌共生结瘤基因的分子遗传学研究进展[J]. 遗传 HEREDITAS(Beijing), 1998, (2): 43~48
    [135] 樊妙姬, 李正文, 韦莉莉. 根瘤菌结瘤基因的表达调控研究概况[J]. 广西农业生物科学, 1999, (2): 225~228
    [136] 冯瑞华. 用 AFLP 技术和 16SrDNA PCR~RFLP 分析毛苜蓿根瘤菌的遗传多样性[J]. 微生物学报, 2000, (4): 339~345
    [137] 冯月红, 姚 拓, 龙瑞军. 土壤解磷菌研究进展[J]. 草原与草坪, 2003, (1): 3~7
    [138] 盖钧镒. 试验统计方法[M]. 中国农业出版社. 2002. 9: 225~235
    [139] 高振生, 马其东, 牛志强等. 沿海滩涂地区苜蓿根瘤菌接种方法和效果研究[J]. 草地学报, 1996, 4(4): 288~292
    [140] 葛 成, 王大吕. 根瘤菌科. www.chinaedustar.com
    [141] 葛 诚. 根瘤菌结瘤基因及结瘤竞争研究的新进展[J]. 微生物学报, 14(2), 77~83, 1987
    [142] 葛 诚. 根瘤菌生态学研究及其技术进展[J]. 土壤学进展, 18(3)11~16, 1990
    [143] 耿华珠, 吴永敷, 曹致中等. 中国苜蓿[M]. 北京: 中国农业出版社, 38~39, 1995
    [144] 郭先武. 根瘤菌的结瘤基因与结瘤因子[J]. 生物技术通报, 1998, (4): 16~21
    [145] 郭先武. 根瘤菌质粒研究进展[J]. 微生物学通报, 1999, (4): 286~288
    [146] 洪 楠, 侯 军. SAS for windows 统计分析系统教程[M]. 北京: 电子工业出版社, 2001
    [147] 胡跃高. 开创中国农业新居面道路探索[M], 北京: 中国农业科技出版社, 2001
    [148] 胡跃高. 中国农业结构变革机制研究[M], 北京: 中国农业大学出版社, 1998
    [149] 虎 彪. 紫花苜蓿和红三叶接种根瘤菌试验研究[J]. 西南民族学院学报, 自然科学版, 1997, 23(2): 159~161
    [150] 靖元孝. 根瘤菌结瘤因子的研究进展[J]. 生命的化学, 1997.(1): 17~19
    [151] 阚凤玲, 陈文新. 西部某些根瘤的数值分类和 16rDNA PCR~RFLP 分析[J]. 微生物学通报, 2002, (3): 1~8
    [152] 康金花, 关桂兰, 沈艳芳. 苜蓿根瘤菌耐盐碱性试验[J]. 干旱区研究, 1996, (3),13~15
    [153] 李风兰, 王 宏, 董卫民等. 紫花苜蓿根瘤菌接种菌种筛选试验[J]. 草与畜杂志, 1998, (1): 17, 30
    [154] 李守德. 我国草业发展的成就,任务与对策[J]. 中国草地, 1997, 4: 1~4
    [155] 李香真, 陈 清. ~(15)N 同位素稀释法测定生物固氮量[J]. 核农学通报, 1997, (6): 291~293
    [156] 李新民, 谷思玉, 窦新田, 等. 不同土壤大豆接种根瘤菌剂反应的研究[J]. 黑龙江农业科学, 1998, 4: 1~5
    [157] 李友国, 周俊初. 影响根瘤菌共生固氮效率的主要因素及遗传改造[J]. 微生物学通报, 2002, (6): 86~89
    [158] 廖得聪, 罗明云, 张小平等. 分子标记技术在根瘤菌生态研究中的应用[J]. 西南农业学报, 2001, (14~增刊):117~119
    [159] 林稚兰, 黄秀梨. 现代微生物学与实验技术[M]. 北京:科学出版社, 2000. 9~13
    [160] 刘宏生. 辽宁省豆科结瘤植物及其根瘤菌资源调查[J]. 生态学杂志, 2000, (6: )62~64
    [161] 刘永秀, 张福销, 毛达如. 根际徽生态系统中豆科植物-根瘤菌共生固氮及其在可持续农业发展中的作用[J]. 中国农业科技导报, 1999, (4): 28~33
    [162] 马其东, 刘自学, 洪绂曾, 等. 不同根系发育能力的苜蓿品种接种根瘤菌的效果[J], 草业学报, 1999, 8(4): 46~52
    [163] 马晓彤, 刘惠琴, 宁国赞. 我国根瘤菌与苜蓿共生固氮优良组合研究进展及前景[A]. 中国草学会. 第二届中国苜蓿大会论文集, 2003
    [164] 马玉珍, 史清亮, 王 静. 山西省根瘤菌资源的种类与共生效应[J]. 山西农业大学学报, 1998, (1): 65~69
    [165] 美国农学会编. 耿华珠, 张玉发, 郭 博等译. 苜蓿的科学与技术[C]. 中国草原学会文集第二辑, 1986. 03
    [166] 宁国赞, 李元芳, 刘惠琴. 我国豆科牧草根瘤菌选育及应用研究的进展[J]. 中国草地, 1989, (3): 68~73
    [167] 宁国赞, 刘 惠, 马晓彤. 豆科苜蓿根瘤菌及其应用技术[M]. 郑州: 中原农民出版, 1998
    [168] 宁国赞, 刘 惠, 马晓彤. 中国苜蓿根瘤菌大面积应用研究现状及展望[C]. 首届中国苜蓿发展大会, 北京: 中国草原学会, 2001
    [169] 宁国赞, 刘惠琴, 马小彤. 中国豆科牧草根瘤菌资源的采集保藏及利用[J]. 草地学报, 1999, (2): 165~172
    [170] 沈世华, 荆玉祥. 中国生物固氮研究现状和展望[J] .科学通报, 2003, 48(6): 532~540
    [171] 苏风岩, 孙慧君, 李维光, 等. 生态环境对刺槐根瘤菌共生体系的影响[J]. 生态学杂志, 9(1), 51~53, 1990
    [172] 孙 羲, 郭鹏程, 陶勒南等. 植物营养与肥料[M]. 北京: 中国农业出版社, 205~209, 1998
    [173] 唐 勇, 陆 玲, 杨启银等. 解磷微生物及其应用的研究进展[J]. 天津农业科学, 2001, 7(2): 1~4
    [174] 万晓红, 韦革宏, 杨亚珍, 朱毓华. 紫花苜蓿品种根瘤菌表型多样性研究[J]. 草地学报, 2004, 12 (4): 48~49
    [175] 王 静, 马玉珍, 史清亮等. 山西根瘤菌资源多样性与特异性研究[J]. 应用与环境生物学报, 1999, (1): 79~84
    [176] 王继朋, 苏爱莲, 张晓锋. 苜蓿接种“多萌”根瘤菌的效应研究[C]. 第二届中国苜蓿大会论文集, 2003
    [177] 王莲芬. 层次分析引论[M]. 北京: 中国人民大学出版社, 1990
    [178] 王素英, 蔡雪梅, 许晓东, 杨晓丽. 林芝地区八一镇根瘤菌的表型多样性研究[J]. 自然科学报, 2002, (4), 04~05
    [179] 王素英, 李润花, 刘新成等. 西藏部分地区豆科植物根瘤菌资源的初步调查[J]. 西北农林科技大学学报(自然科学版), 2002, (1): 33~37
    [180] 王素英, 李新锁, 陈文新等. 河北豆科植物根瘤菌资源的初步调查研究[J]. 天津师大学报(自然科学版), 2000, (3): 32~36
    [181] 王素英. 根瘤菌分类的新进展[J]. 微生物学通报, 1997, 24(1): 44~47
    [182] 王素英. 林芝地区八一镇根瘤菌的表型多样性研究[J]. 陕西师范大学学报(自然科学版), 2002, 30(4)
    [183] 王卫红. 甘肃, 宁夏根瘤菌的分离及回接鉴定[J]. 干旱区研究, 1996, 13(4): 25~28
    [184] 王卫卫, 胡正海, 关桂兰等. 甘肃, 宁夏部分地区根瘤菌资源及其共生固氮特性[J]. 自然资源学报, 2002, (1): 48~54
    [185] 王卫卫, 阳 灿, 胡正海. 甘肃白龙江流域豆科植物根瘤菌共生固氮研究[J]. 水土保持通报, 2001, (6): 28~32
    [186] 王逸群, 荆玉祥. 豆科植物凝集素及其对根瘤菌的识别作用[J]. 植物学通报, 2000.(2): 127~132
    [187] 韦革宏, 陈文新, 朱铭莪. 陕甘宁地区根瘤菌数值分类与 DNA 同源性分析[J]. 应用与环境生物学报, 1999, (1): 73~78
    [188] 韦革宏, 陈文新, 朱铭莪. 陕甘宁地区根瘤菌的 16SrDNA PCR-RFLP 分析[J]. 农业生物技术学报, 2000, (4):333~336
    [189] 韦革宏, 朱铭莪. 分子生物学新方法在根瘤菌分类中的应用[J]. 西北农业大学学报, 1999, 27(2): 85~89
    [190] 席琳乔, 姚 拓, 韩文星等.联合固氮菌株分泌能力及对燕麦的促生效应测定[J]. 草原与草坪, 2005, 111(4): 25~29
    [191] 席琳乔,张 虎, 姚 拓等. 联合固氮菌固氮,分泌激素和溶磷能力的测定及对燕麦的促生效应[J]. 草原与草坪, 2005, (3): 23~27
    [192] 谢达平, 雷女孝, 彭道林等. 微生物菌肥的作用机理研究[J]. 常德师范学院学报(自然科学版), 2002, 14(1): 48~50
    [193] 谢秋宏, 相宏宇, 李 惟. 苜蓿根瘤突变株 GH66 积累聚 β~羟基丁酸[J]. 吉林大学自然科学学报, 1997, (4): 67~70
    [194] 徐幼平, 臧荣春, 陈卫良等. 阴沟肠杆菌 B8 发酵液对植物的促生作用和 IAA 分析[J]. 浙江大学学报(农业与生命科学版). 2001, 27(3): 282~284
    [195] 闫爱民, 陈文新. 干旱地区几种豆科植物根瘤菌的数值分类和 SDS-PAGE 全细胞蛋白电泳分析[J]. 应用与环境生物学报, 1998, (4): 354~359
    [196] 闫爱民, 陈文新. 两个根瘤菌新群的系统发育学分析[J]. 微生物学报, 2000, (1): 1~8
    [197] 阎爱民, 陈立新. 三个根瘤菌新群的 DNA-DNA 杂交分析[J]. 中国农业大学学报, 2000, (1): 14~20
    [198] 阎爱民, 陈文新. 苜蓿, 草木樨, 锦鸡儿根瘤菌的表型多样性分析[J]. 生物多样性, 1999, (2): 112~118
    [199] 杨苏生. 细菌分类学[M]. 北京: 中国农业大学出版社, 1997. 72~74
    [200] 杨兴宏, 刘艳宁, 杨苏声. 苜蓿中华根瘤菌 042B 共同结瘤基因 nodABC 的克隆与序列分析[J]. 生物工程学报, 1999, (3): 397~400
    [201] 杨兴宏, 杨苏声, 苜蓿中华根瘤菌 042BnodD 基因的克隆, 序列分析及其表达[J]. 微生物学报, 1999, (5): 416~425
    [202] 姚 拓, 王 刚, 陈本建, 龙瑞军. 盐碱地小麦根际联合固氮菌数量分布研究[J]. 土壤通报, 2004, (4): 479~482
    [203] 姚 拓, 龙瑞军, 王 刚等. 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J]. 土壤学报, 2004, (3): 444~448
    [204] 姚 拓, 张德罡, 胡自治. 高寒地区燕麦根际联合固氮菌研究 Ι.固氮菌分离及鉴定[J]. 草业学报, 2004, (2): 106~111
    [205] 姚 拓. 饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2002
    [206] 姚 拓. 促进植物生长菌的研究进展[J]. 草原与草坪, 2002, 99(4): 3~5
    [207] 姚 拓. 高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报, 2004, (3): 85~90
    [208] 姚竹云, 陈文新. 多项分类技术在根瘤菌分类中的应用[J]. 农业生物技术学报, 1998, 6(2): 161~165
    [209] 姚竹云, 陈文新. 根瘤菌的现代分类及其系统发育[J]. 微生物学杂志, 1998, 18(1): 38~43
    [210] 游志鹏, 廖玫江, 朱家璧. 结合态氮对根瘤菌生长液诱导的苜蓿根毛变形的抑制[J]. 植物生理学报, 1998, .(3): 215~219
    [211] 喻文虎, 扬鹏冀, 贾德荣. 红豆草, 紫花苜蓿根瘤菌接种研究[J]. 草业科学, 1995, 8(4): 29~35
    [212] 臧福军, 滕兴军, 高淑玲, 于府君. 苜蓿草场高产建制技术措施[J]. 草业科学, 1999, (2), 25~26
    [213] 曾昭海, 隋新华, 胡跃高等. 紫花苜蓿~根瘤菌高效共生体筛选及其田间作用效果研究[C]. 第二届中国苜蓿大会论文集, 2003
    [214] 曾照海. 紫花苜蓿高效根瘤菌筛选及田间鉴定方法研究[C]. 博士论文, 2003, 5~7
    [215] 张海瑜, 张海予, 李小红, 等. 一株能在苜蓿上结瘤的费氏中华根瘤菌[J]. 微生物学杂志, 2001, 41(2): 127~131
    [216] 张小平, 李阜隶. 根瘤菌的遗传多样性与系统发育研究进展[J]. 应用与环境生物学报, 2002, 8(3): 325~333.
    [217] 张玉发. 几种豆科牧草根瘤菌的分离与接种试验[J]. 草叶科学, 1994, (2): 26~28
    [218] 张玉发. 试论苜蓿生产在我国农业三元种植结构调整中的地位和利用[J]. 草业科学, 1999, (2),10~12
    [219] 张志芳, 张 榕. 利用菌根菌提高红豆草根瘤固氮能力的研究[J]. 草业科学, 1996, (3): 45~47
    [220] 赵小蓉, 林启美. 微生物解磷的研究进展[J]. 土壤肥料, 2001, (3): 7~11
    [221] 中国草原学会. 中国草地科学进展(第四届第二次年会暨学术讨论会文集)[C]. 北京: 中国农业大学出版社, 1998, 132~135
    [222] 中国农业科学院微生物所.《中国菌种目录》.农业出版社. 1992
    [223] 中国农业科学院微生物所.《中国农业菌种目录》.农业出版社. 1991
    [224] 中国农业微生物菌种保藏管理中心. 中国菌种目录[M]. 北京: 中国农业出版社, 1992
    [225] 中国农业微生物菌种保藏管理中心. 中国农业菌种目录[M]. 北京: 中国农业出版社, 1991
    [226] 朱 冰, 戴小密, 朱家璧等. 苜蓿根瘤菌 nodD3 P1 启动子下游序列的调节功能[J]. 科学通报, 1999, (21): 2308~2313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700