利用转基因技术改良水稻抗性和品质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,全球约二分之一的人口以稻米为主食,传统的遗传育种方法在提高水稻产量、抗性和品质方面已作出了重要贡献,但由于稻属种质资源的限制及常规育种方法的局限性,给水稻进一步的遗传改良带来一定困难。随着分子生物学研究的深入,基因的分离、克隆和重组技术以及转基因技术的日趋成熟,遗传转化已成为水稻遗传改良的一种有效手段。抗虫、抗病和抗除草剂转基因水稻的培育可为水稻的高产与稳产提供重要保证,也可减少化学农药的使用,改善环境质量。通过调控淀粉合成相关基因的表达,可以改良稻米的淀粉品质,以提高其食味品质或加工品质。
     本研究重点利用转基因技术进行水稻改良的研究,主要研究内容包括两大方面。一是将不同来源的抗虫、抗病和抗除草剂基因,包括苏云金芽孢杆菌(Bacillus thuringiensis,Bt)毒蛋白cryIA(c)基因、雪花莲凝集素(Galanthus nivalis agglutinin, GNA)基因、甜椒编码类铁氧还原双亲蛋白(Amphipathic protein 1, AP1)基因和土壤吸水链霉菌(bialaphos resistance, Bar)抗除草剂基因,导入4个高产粳稻品种广陵香粳、武香粳9号、武香9915和扬辐粳8号中,研究抗病、抗虫和抗除草剂转基因水稻,特别是含有不同目的基因组合的多抗转基因水稻的培育方法,二是,将控制直链淀粉合成的水稻蜡质(Waxy,Wx)基因的不同转基因构建,包括其全长基因组序列(简称全长Wx基因)、Wx-cDNA和反义RNA结构(简称反义Wx基因),导入具有不同直链淀粉含量的水稻品种协青早、龙特甫、武香粳9号、武香9915、苏御糯和广陵香糯等中,研究调控蜡质基因表达对改良稻米品质的效果,在此基础上进一步获得具有优良食味品质或特高直链淀粉含量的水稻新品种(系)。主要研究结果如下:
     1、转Bt基因水稻。通过双菌双载体或超双元载体介导的农杆菌介导共转化法,将Bt cryIA(c)基因和潮霉素抗性选择标记基因(HPT)同时导入粳稻品种武香粳9号和广陵香粳中,从其自交后代中筛选获得了无HPT基因的转Bt基因水稻材料。抗虫性鉴定结果表明,转Bt基因水稻对稻纵卷叶螟和二化螟的抗性较未转化对照有了明显提高,具体表现为:稻纵卷叶螟对转Bt基因水稻离体叶片的危害程度明显小于未转化对照,转Bt基因水稻离体叶片上的稻纵卷叶螟幼虫全部死亡;二化螟高龄虫对分蘖期转Bt基因水稻离体茎杆危害程度明显小于未转化对照,转Bt基因植株茎杆上只有少量的螟虫排泄物;二化螟幼虫在苗期转Bt基因水稻上死亡率达到100%,较未转化对照有明显提高;二化螟造成的成株期转Bt基因水稻的枯心率明显低于未转化对照,部分转化子对二化螟的抗性由未转化对照的高感上升为抗或中抗级别;在不施用任何农药的田间自然条件下,转Bt基因水稻表现为无稻纵卷叶螟危害,未转化对照的受害率达100%。
     2、转AP1基因水稻。通过超双元载体介导的农杆菌共转化法,将AP1基因和HPT基因同时导入粳稻品种武香粳9号、广陵香粳中,从其自交后代中筛选获得了含有AP1基因而无HPT基因的水稻。抗病性鉴定结果表明,转AP1基因水稻叶片上白叶枯病病斑长度均极显著小于未转化对照,广陵香粳转基因水稻的抗性级别由未转化对照的中抗上升为抗;转AP1基因水稻虽然与未转化对照对纹枯病的抗性级别均为中感,但相对病班长度均显著或极显著地小于未转化对照;大部分转AP1基因水稻对稻曲病的抗性较未转化对照有所提高。
     3、转GNA和Bar基因水稻。以粳稻品种广陵香粳、武香9915和扬辐粳8号为材料,以同时含有GNA和Bar基因的双元载体EHA105/pCUGNA-BAR介导的转化法,将GNA和Bar基因导入以上受体品种中,通过除草剂抗性鉴定和PCR分析,筛选获得了同时含有Bar基因和GNA基因的纯合转基因水稻。抗性鉴定表明,褐飞虱在转基因水稻上的进食量显著低于未转化对照和感虫对照品种台农本地1号(TN1),褐飞虱在转基因水稻上的繁殖率亦显著低于未转化对照,即转基因水稻对褐飞虱的进食量和繁殖率有明显的抑制作用;转基因水稻4901-1苗期对褐飞虱的抗性达到了中抗水平,较未转化对照扬辐粳8号的感虫水平有了明显提高。
     4、聚合多个抗性基因培育多抗转基因水稻。利用双菌双载体介导的共转化,将AP1基因、Bt基因和HPT基因同时导入粳稻品种广陵香粳中,并将其与同时含有GNA和Bar基因的转基因水稻杂交,从其自交后代中筛选获得了同时含有两个、三个或四个目的基因、但无HPT基因的多种类型的多价转基因水稻材料。通过抗性鉴定试验表明,这些多价转基因水稻表现出预期的抗病和/或抗螟虫和/或抗飞虱和除草剂的多抗特性,具体表现为:(1)含AP1基因的多价转基因水稻对白叶枯病(KS-1-20)的抗性级别与只含AP1基因的单价转基因水稻的抗性级别相同,均由未转化对照的中抗上升为抗病水平,但多价转基因水稻的病斑长度较只含AP1基因的单价转基因水稻有极显著地减小,且GNA基因和Bar基因对白叶枯病抗性的提高程度要大于Bt基因;用4个白叶枯病菌种混合后接种,同样表现为GNA基因和Bar基因可提高含AP1基因转基因水稻对白叶枯病的抗性;含AP1基因多价转基因水稻对纹枯病的抗性级别由未转化对照的中感上升为抗病,且GNA和Bar基因对纹枯病的抗性的提高程度大于Bt基因;(2)含Bt基因的多价转基因水稻对稻纵卷叶螟、二化螟抗性较未转化对照有了明显提高,具体表现为,稻纵卷叶螟对含Bt基因的多价转水稻离体叶片的危害程度明显小于未转化对照,含Bt基因的多价转水稻离体叶片上的稻纵卷叶螟幼虫全部死亡;含Bt基因的多价转水稻对二化螟的抗性由未转化对照的高感上升为抗或中抗级别;在不施用任何农药的田间自然条件下,含Bt基因的多价转基因水稻表现为无稻纵卷叶螟危害,未转化对照的受害率达100%;(3)褐飞虱取食含GNA基因的多价转基因水稻后排泄的蜜露量均较未转化对照和感虫对照品种TN1有极显著的减少,含GNA基因的不同多价转基因水稻上褐飞虱排泄的蜜露量差异不显著。
     5、转反义Wx基因水稻及其品质分析。从通过双菌双载体或超双元载体介导的共转化获得的武香粳9号、协青早和龙特甫转反义Wx基因水稻的自交后代中,筛选获得了无HPT基因的转反义Wx基因水稻。对转反义Wx基因水稻的分析表明:(1)反义Wx基因导入水稻后,可抑制转基因水稻胚乳中内源Wx基因的表达,表现为未成熟种子胚乳中的成熟2.3-kbWx基因RNA以及未剪切的3.3-kbWx基因RNA量均较未转化对照降低,成熟种子胚乳中的Wx蛋白表达量,直链淀粉含量较未转化对照有不同程度的降低,且在粳稻和籼稻中都选育获得了直链淀粉含量降低到糯性水平的转基因水稻植株;(2)直链淀粉含量降低后,对种子的其它淀粉品质性状也有明显的影响,表现为胶稠度变软;糊化温度在不同品种中表现不同,武香粳9号和协青早的转基因水稻,直链淀粉含量下降后,糊化温度变化不显著,龙特甫的转基因水稻,当直链淀粉含量明显下降后,糊化温度极显著升高;转基因水稻中的直链淀粉含量降低后对淀粉粘滞性谱(RVA)特性也有一些影响,但不同来源的转反义Wx基因水稻的表现不完全一致。当直链淀粉含量降低到糯性水平时,转基因水稻RVA谱的PKV、HPV和CPV均极显著降低;(3)当转基因水稻籽粒中直链淀粉含量极显著降低时,淀粉粒的充实情况变差;(4)转基因水稻直链淀粉含量降至糯性水平时,千粒重明显降低,最多可降低17.05%。
     6、转全长Wx基因水稻及其品质分析。对EHA105/p13W2介导获得的协青早、龙特甫、武香粳9号、武香9915和广陵香糯的转全长Wx基因水稻的分析表明:(1)全长Wx基因导入水稻后,大部分转基因水稻中Wx基因的表达量提高,表现为未成熟种子胚乳中的2.3-kbWx基因RNA量较未转化对照升高,成熟种子胚乳中的Wx蛋白表达量,直链淀粉含量较未转化对照有不同程度的升高,糯稻、粳稻和籼稻的转基因水稻的直链淀粉含量分别可达24.92%、24.14%,和27.52%,分别较对照提高了22.91%、9.72%和2.99%,即与籼稻相比,糯稻和粳稻品种转基因水稻中升高的幅度较大;(2)直链淀粉含量提高后,糯稻和粳稻转全长Wx基因水稻的胶稠度变硬,而籼稻转全长Wx基因水稻因其直链淀粉含量变化较小,胶稠度也无显著变化;广陵香糯来源的转基因水稻的糊化温度极显著降低,而其余四个品种转基因水稻的糊化温度均未发生显著变化;不同品种的转全长Wx基因水稻的RVA谱与未转化对照相比,表现出不同的差异;(4)粳稻和糯稻的转全长Wx基因水稻的直链淀粉含量升高幅度较大时,淀粉粒的充实情况变好,籼稻的转全长Wx基因水稻,因其直链淀粉含量升高幅度较小,其淀粉粒的变化亦较小;(5)糯稻和粳稻的转全长Wx基因水稻,当直链淀粉含量提高明显时,糙米千粒重有所提高,最高可较对照增加16.89%。
     7、糯稻中表达Wx cDNA及其对稻米品质的影响。以双菌双载体介导的共转化法,将Wx cDNA和HPT基因同时导入到了广陵香糯和苏御糯中。对转Wx-cDNA水稻成熟种子的分析结果表明:(1)大部分转Wx cDNA水稻胚乳中的Wx蛋白表达量提高,直链淀粉含量有不同程度的提高;(2)直链淀粉含量提高后,转Wx cDNA水稻的胶稠度变硬,糊化温度的变化在不同转化子中表现不完全一致,有升高也有降低;(3)当转Wx cDNA水稻的直链含量提高时,其RVA谱的特征值PKV、HPV和CPV均较相应的未转化对照大;(5)当直链淀粉含量明显升高时,转Wx cDNA水稻的淀粉粒的充实情况变好,糙米千粒重有所提高,最高可较对照增加8.56 %。
Rice is one of the most important crops in the world, providing staple food for more than half of the world’s population. It have got great achievement for improvement of rice yielding, resistance and quality through conventional breeding approach, but it becomes much difficult to further increase rice yielding and quality as the limition of conventional breeding and genetic resource. Recent advancements in molecular genetics and biotechnology offer new opportunities for rice breeders to increase rice resistance to diseases, insects and herbicide or enhance rice starch quality through transformation.
     The objective of this research was to study improving rice resistance and grain quality of several elite rice varieties through genetical engineering. To increase the resistance to diseases, insects and herbicide in rice, four target genes were used, which include the Bt cryIA(c) gene from Bacillus thuringiensis, GNA (Galanthus nivalis agglutinin) gene from snowdrop, AP1(Amphipathic protein 1)gene from sweet pepper (Capsicum annuum L.) and the herbicide resistance Bar gene from Streptomyces hygroscopicus. The another work was to regulate Wx gene expression in rice grains to improve starch quality via transformation of different Wx constructs, such as the antisense RNA structure, full length of Wx genome sequences and Wx-cDNA. The main results obtained were showed as follows:
     1. Bt gene transgenic rice. To produce selectable marker-free transgenic rice lines with increased resistance to pests, calli derived from immature seeds of two elite japonica rice varieties, Guanglingxiangjing and Wuxiangjing 9, were used for Agrobacterium-mediated co-transformation of the Bt cryIA(c) and hygromycin phosphotransferase (HPT) genes. Two different transformation approaches, a single twin T-DNA binary vector in one agrobacterial strain(EHA105/pSBBt) or two separate binary vectors in two separate agrobacterial culture(sEHA105/p03Bt:EHA105/pCAMBIA1300) were used. The twin T-DNA binary vector was composed of two separate T-DNA regions, one carrying the Bt cryIA(c) while the other the HPT gene. The two separate binary vectors either contained the Bt cryIA(c) gene or the HPT gene in individual plasmid. Many transgenic rice lines co-transformed with both the target and HPT genes were obtained, and, subsequenctly, the selectable marker-free Bt transgenic rice lines were selected from the offspring of the co-transgenic plants. The resistance evaluation indicated that: (1) The affected area of the Bt transgenic rice lines leaves in vitro caused by rice leaf folder was smaller than that of the wild types, and all the larvas were dead after 3 dayes feeded on the Bt transgenic rice lines leaves. Affected area of the Bt transgenic rice lines culms in vitro caused by five instar striped stem borers was also smaller than that of the wild types, and the excretion of striped stem borers was little on the Bt transgenic rice lines culms. (2) All the striped stem borer larvas were dead 3 dayes after feeded on the Bt transgenic rice seedlings. The dead hart rate of the Bt transgenic rice lines caused by striped stem borers during maturing stage was lower than that of the wild types, and the resistance grade of some Bt transgenic rice lines reached to middle resistance or resistance level. In natural condition, no Bt transgenic rice lines was disserved by rice leaf folder, and all the wild types were disserved.
     2. AP1 gene transgenic rice. To produce selectable marker-free transgenic rice lines with increased resistance to diseases, calli derived from immature seeds of Guanglingxiangjing and Wuxiangjing 9 were used for co-transformation of the 14 AP1 and HPT genes mediated with the twin T-DNA binary vector pSBAP1. Many transgenic rice lines co-transformed with the AP1 and HPT genes were obtained and HPT gene free AP1 transgenic rice lines were selected from the offering of the co-transgenic plants. The resistance evaluation after inoculation indicated that the AP1 gene confered the transgenic rice lines improved resistance both to bacterial leaf blight and sheath blight. (1)The bacterial leaf blight lesion length of AP1 transgenic rice lines was shorter than that of the wild types. And the resistance grade of the transgenic rice lines reached to resistance level; (2) Despite the disease resistance grade to sheath blight of the transgenic lines and the wild type was at the same level, middle sensitive, the ratio of the lesion length divided by plant height was reduced significantly compared to the wild type, i.e. the distance the lesions moved up the stem was decreased in the transgenic plants. The resistance of most AP1 transgenic rice lines to false smut was also improved in natural condition.
     3. GNA and Bar genes transgenic rice. To produce transgenic rice lines with increased resistance to brown planthopper and herbicide, calli derived from immature seeds of Guanglingxiangjing, Wuxiang9915 and Yangfujing 8 were used for transformation mediated with the binary vector pCUGNA-BAR. The resistance evaluation indicated that the GNA and Bar genes confered the transgenic rice lines improvemed resistance both to BPH and herbicide Basta. Honeydew production of BPH feeding on transgenic lines was signifcant lower than that of the wild types and the sensitive control TN1. The propagating frequecy of BPH feeding on the transgenic lines was also lower than that of the wild type. The resistance of one transgenic line, 4901-1, to BPH at seedling stage reached to middle resistance grade.
     4. Multi-resistance transgenic rice. To produce marker-free transgenic rice lines with improved resistance to pests, diseases and herbicide, calli derived from immature seeds of Guanglingxiangjing were used for co-transformation of the Bt cryIA(c), AP1 and HPT genes mediated with EHA105/pSBAP1 and EHA105/p03Bt. Some of the transgenic rice lines co-transformed with the Bt cryIA(c), AP1 and HPT genes were obtained. These plants were crossed with transgenic rice lines containing both GNA and Bar genes, and, therefore, the HPT gene free transgenic plants with different combination of target genes were selected from their offspring. The resistance evaluation showed that: (1) The AP1 gene confered the multi-gene transgenic rice lines improved resistance both to bacterial leaf blight and sheath blight. The leasion length of multi-gene transgenic plants caused by bacterial leaf blight(KS-1-20) was shorter than that of only AP1 gene transgenic rice. And the leasion length of AP1 gene, GNA gene and Bar gene transgenic rice lines was shorter than that of AP1 and Bt genes transgenic rice; After inoculated with the mixture of four bacterial leaf blight strains, the resistance to bacterial leaf blight was enhanced in multi-transgenic rice lines containing AP1, Bt, GNA and Bar genes when comparing with that of the transgenic lines containing the AP1 and Bt genes; (2) The sheath blight leasion length of multi-gene transgenic plants was shorter than that of the wild type and only AP1 gene transgenic rice. The resistance grades of multi-gene transgenic plants to sheath blight reached to resistance levels. The resistance to sheath blight was enhanced in multi-transgenic rice lines containing AP1, Bt, GNA and Bar genes when comparing with that of the transgenic lines containing the AP1 and Bt genes; (3) The resistance evaluation indicated that the Bt gene confered the multi-gene transgenic rice lines improved resistance to rice leaf folder and striped stem borer. Affected area of the Bt transgenic rice lines leaves in vitro caused by rice leaf folder was smaller than that of the wild type, and all the larvas were dead after 3 dayes feeded on the multi-gene transgenic rice lines leaves. The resistance grade of multi-gene transgenic rice lines to striped stem borers reached to resistance or middle resistance level. In natural condition, no multi-gene transgenic rice lines was affected by rice leaf folder, and all the wild types were affected. (4) The GNA and Bar genes confered the multi-gene transgenic rice lines improved resistance both to BPH and Basta. Honeydew production of BPH feeding on the multi-gene transgenic lines was signifcant lower than that of the wild type and the sensitive control TN1.
     5. Antisense Wx transgenic rice lines and their quality performance. In order to obtain marker-free and quality improved rice, HPT and anti-Wx genes were co-transformed to Xieqingzao, Longtefu and Wuxiangjing 9 mediated with EHA105/p13W0 and EHA105/pCAMBIA1300 or EHA105/pYH592. Several transgenic lines without the HPT gene were selected from the offspring of the co-transgenic plants. The analyses of Wx gene expression and starch quality indicated that: (1) The expression of Wx gene was suppressed to different level in different transgenic lines, and the amount of mature 2.3kb Wx mRNA and un-spliced 3.3kb Wx pre-mRNA in developing seeds of transgenic rice lines was lower than that of the wild types. The amount of Wx protein and amylose content in mature seeds of transgenic rice lines was also reduced in different transgenic lines, and some of which was reduced to the level of waxy rice, both in japonica rice and indica rice. (2) The other quality was also changed after the amylose content reduced, such as gel consistency (GC) changed to softer. The gelatination temperature (GT) of the transgenic rice lines which derived from Longtefu was increased as their amylose content reduced to that of the waxy rice. But the variance was not notable between the GT of the transgenic rice lines which derived from Wuxiangjing 9 and Xieqingzao and that of their wild types. There was also some variance in RVA profile in the anti-Wx transgenic rice. The PKV, HPV and CPV of the transgenic rice lines were reduced significantly as their amylose content was reduced to that of waxy rice. (4) The starch granules of the transgenic rice lines were not filled as good as that of the wild type when their amylose content was reduced notably. (5)The grain weight was reduced obviously in the transgenic rice lines as their amylose content was reduced to that of waxy rice and the decrease reached to 17.05% compared to that of the wild type.
     6. Sense Wx gene transgenic rice lines and their quality performance. The homozygous Wx gene transgenic rice lines were selected from the offspring of the transgenic plants mediated with EHA105/p13W2 derived from Xieqingzao, Longtefu,Wuxiangjing 9, Wuxiang 9915 and Guanglingxiangnuo. Wx gene expression and starch quality analysis indicated that: (1)The expression of Wx gene, as well as the amylose content, was increased to different level in different transgenic rice. The quantity of mature 2.3kb Wx mRNA in transgenic rice lines immature seeds was enhanced while the amylose content was increased. The Wx protein amount and amylose content in transgenic rice lines mature seeds were also enhanced and the enhancement was more obvious in the transgenic rice lines which derived from japonica rice and waxy rice than that from indica rice. For instance, the highest amylose content of transgenic rice lines derived from waxy rice, Japonica rice and indica rice reached to 24.92%, 24.14% and 27.52%,and the enhancement reached to 22.91%, 9.72% and 2.99%,respectively; (2) The other quality was also changed when the amylose content increased, and there were different exhibition in the different transgenic lines which derived from indica rice or japonica rice, such as gel consistency (GC) changed to harder in the transgenic rice lines which derived from japonica rice and waxy rice, but the variance was not obvious in the transgenic rice lines which derived from indica rice. The GT of the transgenic rice lines only which derived from Guanglingxiangnuo was reduced as their amylose content was increased. There were also some variances in RVA profile in different transgenic lines; (3) The starch granules of the transgenic rice lines were filled better than that of the wild types as their amylose content was increased obviously; (4)The 1000-grain brown rice weight was increased in the transgenic rice lines which derived from japonica rice and waxy rice when their amylose content was increased notably, and the enhancement reached to 16.89%.
     7. Wx cDNA transgenic rice lines and their quality performance. In order to study the effect of Wx cDNA on rice quality, Wx cDNA and HPT gene were co-transformed to Guanglingxiangnuo and Suyunuo mediated with EHA105/pCAMBIA1300 and EHA105/p585. The analyses of Wx gene expression and starch quality indicated that: (1)The Wx protein quantity in the transgenic rice lines mature seeds was enhanced as their amylose content was increased; (2)The amylose content in most of the transgenic rice lines was increased differently in different transgenic rice lines. The highest one reached to 19.12% and the enhancement reached to 17.82%; (3) The other quality was changed as their amylose content increased. GC was changed to harder in the transgenic rice lines as their amylose content was increased. But the variance of GT was complex, i.e. some of them were increased and some of them were decreased; (4) There were also some variance in RVA profile in different transgenic lines as their amylose content was increased, such as PKV, HPV and CPV of the transgenic rice lines were higher than that of the wild type. (5) The starch granules were filled better when their amylose content was increased obviously in the transgenic rice; (6)The 1000-grain brown rice weight was increased in the transgenic rice lines when their amylose content was increased notably, and the enhancement reached to 8.56 %.
引文
[1]Zambryski P, Joos H, Genetello C, Leemans J, Montagu M Van, Schell J, Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity, EMBO J, 1983, 2:2143-2150.
    [2]Toriyama K, Arimoto Y, Uchimiya H, Hinata K,Transgenic rice plants after direct gene transfer into protoplast, Biotechnology, 1988, 6:1072-1074.
    [3]Zhang W, Wu R, Efficient regeneration transgenic plants from rice protoplast and correctly expression of the foreign in the plant, Theor Appli Genet, 1988, 76:835-840.
    [4]Roberta HS, Hood EE, Agrobacterium tumefaciens transformation of monocotyledons, Crop Science,1995,35:301-309.
    [5]李卫,郭光泌,郑国铝, 根癌农杆菌介导遗传转化研究的若干新进展,科学通报,2000,45(8):798-807.
    [6]Chan M T, Chang H H, Ho S L, Tong W F, Yu S M, Agrobacterium mediated production of transgenic rice plants expressing a chimeric amylase promoter/B-glucuronidase gene, Plant Mol Biol, 1993,22: 491-506
    [7]Hiei Y, Ohta S,Kumashiro T,Kumashiro T, Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the T- DNA, Plant J, 1994,6: 271-282.
    [8] Sanford J C, Klein T M, Wolf E D, Allen N, Delivery of substances into cells and tissues using a particle bombardment process, Partic Sci Technol, 1987,5: 27-37.
    [9] Klein T M, Wolf E D, Wu R, Sanford J C, Highly-velocity microprojectiles for delivering nucleic acids into living cells, Nature,1987,327:70-73.
    [10]Christou P, Ford T L, Kofrom M, Production of transgenic rice plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos, Bio/Technology,1991, 9: 957-962.
    [11]山松,张中林,吴祥甫,沈桂芳, 丙肝病毒融合抗原基因导入烟草叶绿体及转化株同质化的研究,作物学报,2000,26(2):143-147
    [12]周光宇,龚蓁蓁,王自芳, 远缘杂交的分子基础-DNA 片段杂交假设的一个论证, 遗传学报,1979,6:405-413
    [13]段晓岚,陈善葆,外源 DNA 导入水稻引起性状变异,中国农业科学,1985,3:6-10
    [14]Zhang H M, Yang H, Rech E L, Golds T J, Davis A S, Mulligan B J, Cocking E C, Davey M R, Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts, Plant Cell Reports,1988, 7: 379-384.
    [15]Toriyama K, Arimoto Y, Uchimiya H, Hinata K, Transgenic rice plants after direct gene transfer into protoplast, Biotechnology, 1988, 6:1072-1074.
    [16]李宝键,许新萍,石和平,柯遐义,应用电注射法将外源基因导入水稻种胚及获得转基因水稻植株研究,中国科学(B辑),1991,3:270-275
    [17]余增亮,王学栋,吴跃进等,离子束注入水稻诱变效应的研究,安徽农业科学,1989,2:10-13
    [18]朱祯,李玉英,转基因水稻植株再生及外源人α干扰素cDNA的表达,中国科学(B辑),1992,35:149-155
    [19]Guo Y D, Liang H, Berns M W, Laser-mediated gene transfer in rice, Physiologia Plantarum, 1995,93:19-24.
    [20] Herdt R W O, Research priorities for rice biotechnology, Khush G S , Toenniessen G H, Rice biotechnology CAB International . Philippines : Wallingford/ IRRI , Los Banos, 1991.
    [21]林良斌,官春云,Bt毒蛋白基因与植物抗虫基因工程,生物工程进展,1997,17:51-56
    [22]Gill S S, Cowles E A, Pietrantonio P V, The mode of Bacillus thuringiensis endotoxins, Annual Review of Entomology, 1992, 37:615-636
    [23]罗科,张青文,蔡青年,苏云金杆菌的杀虫蛋白和基因的结构、特点、分化及调控的研究进展,农业生物技术学报,1995,13:15-20
    [24] Krattiger A F, Insect resistance in crops: A case study of Bacillus thuri ngiensis (Bt) and its transfer to developing countries, ISAAA Briefs No. 2 ISAAA: Ithaca, N Y. 1997,4-11
    [25] Hofte H, Whiteley H R, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol, Rev., 1989, 53: 242?255.
    [26]夏启中,张明菊,抗植物虫害基因及其应用,鄂州大学学报,2005,12(3):56-60
    [27] Pefereon M, Progress and prospects for field use of Bt genes in crops, Trendsin Biotechnology, 1997, 15:173-177.
    [28]贝丽霞,白宝璋,Bt毒蛋白基因及其在水稻上的应用,农业与技术,1997,100:11-13
    [29]Fujimoto H, Itoh K, Yamamoto M, Insect resistant introduction of a modified delta-endotoxin gene of Bacillus, Biotechnology, 1993, 11:1151-1155
    [30] Wunn J,Kloti A, Burkhardt P K, Transgenic indca rice breeding line IR58 expressing a synthetic crvl(A)b gene from Bacillus thuringiensis, Bio Technology, 1996, 14:171-176.
    [31]Vaeck M, Reynaerts A, Transgenic plants protected from insect attack, Nature, 1987, 328:33-37.
    [32]Estruch J J, Carozzi N B, Desai N, Duck N B, Warren G W, Koziel M G, Transgenic plants: An emerging approach to pest control, Nature Biotechnology, 1997, 137-141.
    [33]Pefereon M, Progress and prospects for field use of Bt genes in crops, Trends in Biotechnology, 1997, 15:173-177.
    [34]杨虹,李家新,郭三堆,苏云金芽孢杆菌 δ-内毒素基因导入水稻原生质体后获得转基因植株,中国农业科学,1989,22:1-5
    [35]谢道昕,范云六,倪丕冲,苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株,中国科学(B辑),1991,21(8):830-834
    [36]Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan N A, Ghosh M, Soumitra K S, Transgenic elite indica rice plants expressing cry](A)c delta-endotoxin of Bacillus thuringiensisareresistant against yellow stem borer, Proceedings of the National Academy of Sciences of the USA, Washington, 1997, 94 :2111-2116.
    [37]Ghareyazie B, Alinia F, Menguito C A, Rubia L G, de Palma J M, Liwanag A, Cohen M B, Khush G S, Bennett J, Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryl(A) b gene, Molecular Breeding, 1997, 3: 401-414.
    [38]Wu C, Fan Y, Zhang C, Oliva N, Datta S K, Transgenic fertile japonica rice plants expressin a modified CryIA(b) gene resistant to yellow stem borer, Plant Cell Rep, 1997, 17: 129-132.
    [39]许新萍,胡明,卫剑文,陈金婷,李宝健,用基因枪法转化水稻获得转基因植株,中山大学学报(自然科学版),1997,36:25-29
    [40]Cheng X, Kaplan H, Kaplan H, Agrobacterium-transformed rice plants expressing synthetic cryIA(a) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer, Proceedings of the National Academy, 1998, 95:2767-2772.
    [41]舒庆尧,叶恭银,崔海瑞,项友斌,高明尉,转基因水稻“克螟稻”的选育,浙江农业大学学报,1998,24:579-580
    [42]Ramesh S, Nagadhara D, Pasalu I C, Kumari A P, Sarma N P, Reddy V D, Rao K V, Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice, J Biotechnol, 2004, 111:131-41.
    [43]Tang W, Chen H, Xu C G, Li X H, Lin Y J, Zhang Q F, Development of insect-resistant transgenic indica rice with a synthetic cry1C gene, Mol Breeding, 2006, 18:1-10.
    [44]项友斌,梁竹青,高明尉,舒庆尧,夏英武,叶恭银,成雄鹰,I.Altosaar,农杆菌介导的苏云金杆菌抗虫基因cryIAb和cryIAc在水稻中的遗传转化及蛋白表达.生物工程学报,1999,15:494-500
    [45]朱常香,胡全安,温孚江,郑成超,张杰,用两个抗虫基因分别转化水稻及抗虫株系的获得,农业生物技术学报,1999,7:259-266
    [46]王爱菊,姚方印,温孚江,朱常香,李广贤,杨磊,朱其松,张洪瑞,利用BT基因和Xa21基因转化获得抗螟虫和白叶枯病的转基因水稻,作物学报,2002,28:857-860
    [47]李永春,张宪银,薛庆中,农杆菌介导法获得大量转双价抗虫基因水稻植株,农业生物技术学报,2002,1:60-63
    [48]杨杰,钟维功,陈志德,唐晓清,唐华伦,转基因抗虫水稻的研究进展,江西农业学报,1999,11(3):48-53
    [49]韩兰芝,吴孔明,彭于发,郭予元,转基因抗虫水稻生态安全性研究进展,应用与环境生物学报,2006,12:431-436
    [50]张少斌,刘慧,农作物抗虫蛋白质工程及其应用,安徽农业科学,2006,34(8):1617-1618
    [51]Hilder V A, Gatehouse A M R, Sheerman S E, Barker R F, Boulter D, A novel mechanism of insect resistance engineered into tobacco, Nature, 1987,330:160-163.
    [52]Broadway R M, Duffey S S, Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua, J Insect Physiol, 1986, 32(10) :827- 833.
    [53]Hinks C F, Hupka D, The effects of feeding leaf sap from oats and wheat, with and without soybean trypsin inhibitor, on feeding behavior and digestive physiology of adult males of Melanopoplus, J. Insect Physiol., 1995, 41: 1007-1015.
    [54]肖怀秋,林亲录,李玉珍,赵明谋,蛋白酶抑制剂抗虫基因工程研究进展,生物技术通报,2004,6:22-25
    [55]王转花,杨斌,张政,植物蛋白酶抑制剂抗虫基因工程研究进展,植物保护学报,2001,28(1):83-88.
    [56]Xu D P, David M E, David M E, Constitutive expression of a cowpea trypsin inhibitor gene, CpTI, in transgenic rice plants confers resistance to two major rice insect pests, Molecular Breeding, 1996, 2:167-173.
    [57]朱祯,抗虫融合蛋白、其编码基因以及用该基因生产转基因植株的方法,专利号 ZL 99 103430.9
    [58]马炳田,王玲霞,李平,朱祯,周开达,抗虫基因在转基因植株中聚合的初步研究,四川大学学报(自然科学版),2002,39:50-54
    [59]范钦,许新萍,李宝键,多个抗虫基因转化水稻两用系培矮-64S,实验生物学报,2002,35(1):42-46
    [60]冯道荣,许新萍,邱国华,李宝键,多个抗病虫基因在水稻中的遗传和表达,科学通报,2000,45(15):1593-1599
    [61]Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D,Wu R, Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant, Nature Biotechnology, 1996, 14: 494-498.
    [62]Lee S L, Lee S H , Koo J C, Chun H J, Lim C O, Mun J H, Song Y H, Cho M J, Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Molecular Breeding, 1999, 5:1-9.
    [63]王才林,朱镇,赵凌,张亚东,林静,张所兵,陈涛,刘贤进,王冬兰,黄骏麒,龚蓁蓁,用花粉管通道法将慈姑蛋白酶抑制剂基因(API)导入水稻获得转基因植株,江苏农业学报,2005,4:245-248
    [64]常团结,朱祯,植物凝集素及其在抗虫植物基因工程中的应用,遗传,2002,24:493-500
    [65]赵强,张廷婷,崔德才,植物来源抗虫基因的应用,生物技术通讯,2005,16:456-459
    [66]Pusztai A J, Plant lectins, Cambridge University Press, Cambridge, 1991
    [67]傅向东,李德葆,Paul Christou,雪莲凝集素(GNA)基因的载体构建及在水稻中的整合表达,浙江农业大学学报,1997,23:730-734
    [68]Rao K V, Rathore K S, Hodges T K, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown D P, Powell K S, Spence J, Gatehouse A M, Gatehouse J A, Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper, Plant J., 1998,15:469-77.
    [69]Sudhakar D, Fu X, Stoger E, Williams S, Spence J, Brown D P, Bharathi M, Gatehouse J A, Christou P, Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants, Transgenic Res,1998,7:371-8.
    [70]孙小芬,唐克轩,万丙良,戚华雄,卢兴桂,表达雪花莲凝集素(GNA)的转基因水稻纯系抗褐飞虱,科学通报,2001,46:1108-1113
    [71]戚华雄,陈志军,万丙良,吕亮,唐克轩,抗褐飞虱转基因水稻的应用研究,湖北农业科学,2001,(3):7-8
    [72]牛芝霞,朱祯,李艳萍,吴茜,邹美智,牛景,孙海波,周维,雪花莲外源凝集素基因在水稻保持系上的转化,天津农业科学,2003,9(2):1-4
    [73]祝莉莉,祝彩磊,翁清妹,黄臻,何光存,水稻抗褐飞虱基因的研究,湖北农业科学,2004,(1):l24
    [74] Tang K, Tinjuangjun P, Xu Y, Sun X F, Gatehouse J A, Ronald P C, Qi H X, Lu X G, Christou P, Kohli A, Particle bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap sucking insect pests, Planta, 1999, 208:552-563.
    [75]李桂英,许新萍,夏嫱,傅家谟,盛国英,转 GNA+SBTi 双价基因抗虫水稻的遗传分析及抗虫性研究,中山大学学报(自然科学版),2003,42(1):l25-126
    [76]张红宇,吴先军,唐克轩,汪旭东,孙小芬,周开达,半夏凝集素基因(pta)导入水稻及其表达的初步研究,遗传学报,2003,30:1013-1019
    [77]孔维文,邓仲香,王倩,唐克轩,利用农杆菌介导法将抗虫基因和高赖氨酸蛋白基因导入超级杂交水稻亲本材料 1826 中,分子植物育种,2004,2:495-500
    [78]朱祯,菊芋凝集素编码基因及其抗虫植物基因工程中的应用,专利号ZL 01 1 44120.8,授权日2004-5-5
    [79]贾建航,王斌,植物抗病基因克隆研究进展,生物工程进展,2000,20:21-26
    [80]朱廷恒,宋凤鸣,郑重,水稻抗病基因工程研究进展,农业生物技术学报,2004,12 (2):212-218
    [81]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T, The Pib gene for rice blast resistance belong to the nucleotide binding and leucine repeat class of plant disease resistance genes, Plant J, 1999,19: 55-64.
    [82]Lin W, Aunratha C S, Datta K, Potrykus I, Muthukrishnan S, Datta S R, Genetic engineering of rice for resistance to sheath blight, Bio/Technology, 1995,13:686-691.
    [83]覃宏涛,肖晗,孙宗修,哈茨木霉几丁质酶基因提高水稻抗病性研究,云南农业大学学报,2000,15:213-216
    [84]袁红旭,许新萍,郭建夫,张建中,李宝健,转基因水稻“竹转68”病害发生风险的初步研究,湛江海洋大学学报,2001,21:52-56
    [85]Feng D, Xu X P, Qiu G H, Li B J, Inheritance and expression of multiple disease and insect resistance genes in transgenic rice, Chinese Sci Bull, 200l, 46:101-106.
    [86]毛碧增,李德葆,李群,何祖华,转化双价防卫基因获得杭纹枯病水稻.植物生理与分子生物学学报,2003,29:322-323
    [87]明小天,王莉江,安成才,苑华毅,郑宏红,陈章良,利用土壤农杆菌将天花粉蛋白基因转入水稻植株并检测抗稻瘟病活性,科学通报,2000,45(10):1080-1084
    [88]彭昊,王志兴,窦道龙,朱生伟,路铁刚,孙敬三,由根癌农杆菌介导将萄萄糖氧化酶基因转入水稻,农业生物技术学报,2003,11:16-19
    [89]施利利,王松文,郭玉华,水稻抗白叶枯病分子育种的研究进展,天津农学院学报,2001,8:14-18
    [90]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, and Sasaki T, Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation, Genetics,1998, 95: 1 663-1 668.
    [91]Iyer A S, McCouch S R, The rice bacterial blight resistance gene Xa5 encodes a novel form of disease resistance, Molecular Plant-Microbe Interactions, 2004, vol.17, pp. 1348-1354.
    [92]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21, Science, 1995, 270: 1804-1806.
    [93]Sun X L, Cao Y L, Yang Z F, Xu C G, Li X H, Wang S P, Zhang Q F, Xa26, a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice, encodes an LRR receptor kinase-like protein, The Plant Journal, 2004, 37:517-527.
    [94] Gu K Y, Yang B, Tian D S, R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice, Nature, 2005,435:1122-1125.
    [95] Wang G L, Song W Y, Ruan D L, Sideris S, Ronald P C, The cloned gene,Xa2l, confers resistance to multiple Xanthomonas oryzae pv.oryzae isolates in transgenic plants, Molr Plant-Microbe Interact,1996, 9:850-855
    [96]Tu J, Ona I, Zhang Q, Mew T W, Kush G S, Datta S K, Transgenic rice variety ‘IR72’ with Xa21 is resistance to bacterial blight, Theoretical and Applied Genetics, 1998, 97: 31-36.
    [97]翟文学,李晓兵,田文忠,周永力,潘学彪,曹守云,赵显峰,赵彬,章琦,朱立煌,由农杆菌介导将白叶枯病抗性基因 Xa21 转入我国的 5 个水稻品种,中国科学(C 辑),2000,30(2):200-206
    [98]Lee S L, Lee S H , Koo J C, Chun H J, Lim C O, Mun J H, Song Y H Cho M J, Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice, Molecular Breeding, 1999, 5:1-9.
    [99]Mourgues F, Brisset M N, Chevreau E, Strategies to improve plant resistance to bacterial diseases through genetic engineering, Trends Biotechnol,1998, 16:203-210.
    [100]黄大年,田文忠,抗菌肽 B 基因导入水稻及转基因植株的鉴定,中国科学(C 辑),1997,27(1):55-62
    [101]简玉瑜,吴新荣,莫毫葵,陈凤珍,董春,黄自然,应用基因枪将蚕抗菌肽基因导入水稻获得抗白叶枯病株系,华南农业大学学报,1997,l8 (4):l-7
    [102]田文忠,丁力,曹守云,戴顺洪,叶松青,李良材,植物抗毒素转化水稻和转基因植株的生物鉴定,植物学报,1998,40:803-808
    [103]Tang K X, Sun X F, Hu Q N, Wu A Z, Lin C H, Lin H J, Twyman R M, Christou P and Feng T Y, Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. Oryzae, Plant Science, 2001, 160: 1035-1042.
    [104]黄世文,转基因水稻抗病性研究进展及环境安全性评价,植物保护,2005,31(4):5-9
    [105]Register J C,Beachy R N, Resistance to TMV in transgenic plants result from interference with an early event in infection, Virology, 1988, 166:524-532.
    [106]Hayakawa T, Zhu Y, Itoh K, Geneticly engineered rice resistance to rice strip virus,an insect-transmitted virus, Proceedings of the National Academy of Science of USA, 1992,89:9865 -9869.
    [107]Kouassi N, Brugidou C, Chen L, Ngon A, Yussi M, Beachy R, Fauguet C, Transgenic rice plants expressing rice yellow mottle virus coat protein gene. International Rice Research Notes, 1997, 22:14-15.
    [108]邹新慧,何 平,植物抗病毒基因工程研究进展及存在的问题,江西农业学报,2002,14(4):59-65
    [109] Golemboski D B, Lomonossof G P, Zaitlin M, Plants transformed with atobacco mosaic virus nonslructoral gene sequence are resistant to the virus, ProcNatlAcad Scl US, 1990, 87: 631l-6315.
    [110]刘富梁,抗病毒植物基因工程策略的研究进展,湖北植保,2001,4:36-38
    [111]Huet H, Mahendra S, Wang J, Sivamani E, Ong C A, Chen L, Kochko A, Beachy R N, Fauquet C, Near immunity to rice tungro spherical virus achieved in rice by replicase-mediated resistance strategy, Phytopathology, 1999, 89:1022-1027
    [112]PintoY M, KokR A, BaulcombeD C, Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYM V transgenes, Nat Biotechnol, l999, 17:702-707.
    [113]盛春宁,骆 云,商 魏,核酶抗病毒、抗肿瘤作用的研究进展,陕西医学杂志,2003,32(12):1100-1101.
    [114] Han S, Wu Z, Yang H, Wang R, Yie Y, Xie L, Tien P, Ribozyme-mediated resistance to rice dwarf virus and the transgene silencing in the progeny of transgenic rice plants, Transgenic Res, 2000, 9:l95-203.
    [115]向文胜,抗除草剂草甘膦转基因作物,东北农业大学学报,1998,29(1):92-98
    [116] Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R, Stalker D, Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate, Nature, 1985, 317:741-744.
    [117]Cao M X, Huang J Q, Wei Z M, Yao Q H, Wan C Z, Lu J A, Engineering higher yield and herbicide resistance in rice by Agrobacterium-mediated multiple gene transformation, Crop Sci., 2004, 44(6): 2206 – 2213.
    [118] Shah D M, Horsch R B, Klee H J, Kishore G M, Winter J A, Tumer N E, Hironaka C M, Sanders P R, Gasser C S, Aykent S, Siegel N R, Rogers SG, and Fraley RT, Engineering herbicide tolerance in transgenic plant, Science,1986, 233:478-491.
    [119]Tachibana K, Watanabe T, Sekizawa T, Takematsu T,Accumulation of ammonia in plants treated with bialaphos, Pest Sci., 1986, 11:33-37.
    [120]Seelye J F, Borst W M, King G. A, Hannan P J, Maddock S D, Glutamine synthetase activity, ammonium acumulation and growth of callus cultures of Asparagus officinalis L. exposed to high ammonium or phosphinothricin, Journal of plant physiology, 1995, 146: 686-692.
    [121]Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson C J, The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster, Mol Gen Gent, 1986, 205:42-50.
    [122]段发平,染承邺,黎垣庆,Bar基因和转Bar基因作物的研究进展,广西植物,2001,21(2):166-172
    [123] Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen A H, Quail P H, Uchimiya H, Expression of a maize ubiquitin gene in transgenic rice plants, Plant Physiol, 1992, 100: 1503 -1507.
    [124]Park S H, Pinson S R, Smith R H, T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices, Plant Mol Biol, 1996, 32:1135-1148.
    [125]Wu C J, Plant regeneration with high efficiency and production of herbicide (PPT)-resistant transgenic plants from protoplasts of wide compatibility rice strain 02428, IRRI, Philippines, 1996, 804-808.
    [126]朱冰,利用基因枪法获得可遗传的抗除草剂转基因水稻植株,中国农业科学,1996,29(6):15-20
    [127]邓晓梅,杨竹平,粳稻幼胚转化系统的建立及除草剂杭性植林的获得,上海农业通报,1998,14:9-34
    [128]吴明国,黄大年,林建荣,汪晓玲,华志华,章善庆,薛锐,抗除草剂转基因水稻稳定系 TR4 的获得及其遗传研究,中国水稻科学,1999,13(3):173-175
    [129]黄大年,李敬阳,章善庆,用抗除草剂基因快速检测和提高杂交稻纯度的新技术,科学通报,1998,43:67-70.
    [130]James M G, Denyer K, Myers A M, Starch synthesis in the cereal endosperm, Curr Opin Plant Biol, 2003, 6:215-222.
    [131]French D, Organization of starch granules in starch Chemistry and Technology, Whistler R D, BeMiller J N, Paschall E F (eds), Academic Press Orlando, 1984, 184-242.
    [132]Nakamura Y, Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue, Plant Cell Physiol, 2002, 43:718-725.
    [133]舒小丽,舒庆尧,作物淀粉生物合成与转基因修饰研究进展,生物技术通报,2004,4:19-26
    [134]高振宇,黄大年,钱前,植物支链淀粉生物合成研究进展,植物生理与分子生物学学报,2004,30(5):489-495
    [135]Sano Y. Gene regulation at the waxy locus in rice. In: Institute of Radiation Breeding (eds), Gamma-field Symposia, 1985, 24, 63–77.
    [136]Shimada H, Tada Y, Antisense regulation of the rice waxy gene expression using PCR-amplified fragment of the genome reduce the amylose content in grain starch, Theor Appl Genet, 1993, 86:665-672.
    [137]刘巧泉,王宗阳,顾铭洪,反义waxy基因导入水稻降低胚乳直链淀粉含量的研究,21世纪水稻遗传育种展望,北京,中国农业出版社,1999:206-213
    [138]Terada R, Nakajima M, Isshiki M, Okagaki R J, Wessler S R, Shimamoto K, Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice, Plant Cell Physiol, 2000, 41: 881-888.
    [139]陈秀花,刘巧泉,王宗阳,王兴稳,蔡秀玲,张景六,顾铭洪,反义Wx 基因导人我国籼型杂交稻重点亲本,科学通报,2002,47,684-688
    [140] Itoh K, Nagajima M, Shimamoto K, Silencing of waxy genes in ricecontaining Wx transgenes, Mol Gen Genet, 1997,225:351-358.
    [141]Itoh K, Ozaki H. Okada K, Hori H, Takeda Y, Mitsui T, Introduction of Wx transgene into rice wx mutants lead to both high and low amylose rice, Plant Cell Physiol, 2003, 44:473-480.
    [142]陈秀花,刘巧泉,吴信淦,王宗阳,顾铭洪,水稻分支酶基因 Sbe1 和 Sbe3 cDNA 的克隆及全序列分析,中国水稻科学,2003,2:109-112
    [143] 陈秀花,转反义 Sbe 基因提高稻米直链淀粉含量的研究, 扬州大学博士学位论文,2003
    [144]吴方喜,谢华安,苏军,胡昌泉,陈建民,孙东发,王锋,rbe1 正、反义基因改变籼稻直链淀粉含量的研究,2006,21:150-153
    [145]王金花,罗文永,李晓方,基 因 工 程 途 径 改 良 水 稻 品 质 与 营 养价 值 , 中国生物工程杂志,2004,24(8):20-24
    [146]Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S, Takaiwa F, Accumulation of soybean glycinin and its assembly with the glutelins in rice, Plant Physiol, 1999,120:1063-1074.
    [147]高越峰,荆玉祥,沈世华,戚华雄,卢兴桂,高赖氨酸蛋白基因导入水稻及可育转基因水稻植株的获得,植物学报,2001,43:506-511
    [148]刘巧泉,基因工程技术提高稻米赖氨酸含量,扬州大学博士学位论文,2003
    [149]王为民,赵倩,于静娟,朱登云,敖光明,水稻转高赖氨酸蛋白质基因(sb401)植株的获得及种子中蛋白质和氨基酸的含量分析,作物学报,2005,31(5):603-607
    [150]Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I, Engineering the Provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) rice endosperm, Science, 2000, 287, 303-305.
    [151]Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F, Iron fortification of rice seed by the soybean ferritin gene, Nat Biotechnol, 1999, 17:282-286.
    [152]Lucca P, Hurrell R, Potrykus I, Fighting iron deficiency anemia with iron-rich rice, J Am Coll Nutr. 2002, 21:184S-190.
    [153]程志强,郭泽建,徐晓晖,柴荣耀,李德葆,转铁蛋白基因增强水稻对氧化胁迫与稻瘟病菌的抗性,中国水稻科学,2003,17:85-88
    [154]刘巧泉,姚泉洪,王红梅,顾铭洪,转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量,遗传学报,2004,31:518-524
    [155]焦芳婵,毛雪,李润植,转基因改良植物的胁迫耐性生物技术通讯,2001,12(2):135-139
    [156]朴红梅,金成海,王景余,刘宪虎,方秀琴,转基因水稻研究及其生物安全性问题,吉林农业科学,2005,30(l):21-24
    [157]曹孟良,转基因植物的研究及其产业化进展,湖南农业科学,2000,4:6-8
    [158]孙国凤,在拟南芥和水稻中导人甜菜碱生物合成系统基因已确认其耐碱性.生物技术通报,1994,6:40-41
    [159]Yokoi S, Sho-Ichi Higashi, Sachie Kishitani, Norio Murata and Kinya Toriyama, Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice, Molecular Breeding,1998, 4: 269-275.
    [160]杨庆文,稻的生物安全性问题及其对策,植物遗传资源学报,2003,4(3) :261-264
    [161]Ku M S B, Sakae A, Mika N, Hiroshi f, Hiroko T, Kazuko O, Sakiko H, Seiichi T, Misue M, Makoto M, High-level expression of maize phosphoenopyruvate carboxylase in transgenic rice plants, Nature Biotechnology, 1999, 17:76-80.
    [162]付永彩,丁月云,刘新仿,抑制衰老的嵌合基因在水稻中的转化,科学通报,1998,43:1963-1967
    [163]Hohn B, Levy A A, Puchta H. Elimination of selection markers from transgenic plants, Curr Opin Biotechnol, 2001, 12(2):139-43.
    [164]Zuo J R, Niu Q W, Ikeda Y and Chua N H, Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes, Plant Biotechnology, 2002,13:173-180.
    [165]王永飞,马三梅,亦如瀚,转基因植物选择标记基因及其安全性问题,植物生理学通讯,2004,40:604-610.
    [166]Komari T, Hiei Y, Saito Y, Mural N and Kumashirot T, Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers, The Plant Journal.1996,10(1), 165-174.
    [167]De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 1997,11(1): 15-29.
    [168]De Buck S, Jacobs A, Van Montagu M, Depicker A, The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration, Plant J. 1999, 20(3): 295-304.
    [169]Afolabi A S, Worland B, Snape J W, Vain P, A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations, Theor Appl Genet, 2004, 109(4): 815-26.
    [170]杨友才,周清明,转基因水稻研究进展,湖南农业大学学报(自然科学版),2003,29(1):85-88
    [171]曾兴权,韦泽秀,作物基因工程育种研究进展与展望.西藏农业科技,2006,28(3): 44-47
    [172]吴成,邓晓建,刘爱秋,李秀兰,杨志荣,我国杂交水稻基因工程育种策略探讨,生物技术通报,2003,1:4-7
    [1]Zambryski P, Joos H, Genetello C, Leemans J, Montagu M Van, Schell J,Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity, EMBO J,1983, 2:2143-2150.
    [2] Vaeck M, Reynaerts A, Transgenic plants protected from insect attack, Nature, 1987, 328:33-37.
    [3]罗科,张青文,蔡青年,苏云金杆菌的杀虫蛋白和基因的结构、特点、分化及调控的研究进展,农业生物技术学报,1995,13:15-20
    [4]Krattiger A F,Insect resistance in crops: A case study of Bacillus thuringiensis (Bt) and its transfer to developing countries, ISAAA Briefs No. 2 ISAAA: Ithaca, N Y. 1997,4-11.
    [5] 王志斌,张秀梅,郭三堆,在转基因植物中利用植物凝集素防治害虫的研究,植物学通报,2000:17:108-113
    [6]Powell K S, Gatehouse A M R, Hilder V A, Gatehouse J A, Antimetabolic effects ofplant lectins and plant and fungal enzymes on the nymphal stages of two important rice pest, Nilaparvata lugens and Nephotettix cinciteps, Entmol Exp Appl, 1993, 66:119.
    [7] Hilder V A, Powell K S, Gatehouse A M R, Gatehouse J A, Gatehouse L N, Shi Y, Hamilton W D O, Merryweather A, Newell C A, Timans J C, Peumans W J, van Damme E, Boulter D, Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids,Transgenic Res, 1995, 4:18-25.
    [8]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T, The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine- rich repeat class of plant disease resistance genes, The Plant Journal, 1999, 19: 55-64.
    [9]Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B, A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta, The Plant Cell, 2000, 12: 2033-2045.
    [10]Khush G S, Bacalangco E, Ogawa T, A new gene for resistance to bacterial blight from O. longistaminate, Rice Genet Newslett, 1990, 7 : 121-122.
    [11]Song W Y, Wang GL, Chen L L, Han Suk Kim, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P, A receptor kinase2like protein encoded by the rice disease resistance gene, Xa21, Science,1995, 279 : 1804-1806.
    [12]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kuruta N, Yano M, Iwata N, Sasaki T, Expression of Xa1, a bacterial blight2resistance gene in rice, is induced by bacterial inoculation, Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
    [13]翟文学,李晓兵,田文忠,周永力,潘学彪,曹守云,赵显峰,赵彬,章琦,朱立煌,由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种,中国科学(c辑),2000,30(2):200-206
    [14]朱廷恒,宋凤鸣,郑重,水稻抗病基因工程研究进展,农业生物技术学报,2004,12 (2):212-218
    [15]Tang K X, Sun X F, Hu Q N, Wu A Z, Lin C H, Lin H J, Twyman R M, Christou P and Feng T Y, Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. Oryzae, Plant Science, 2001,160: 1035-1042.
    [16] 贾士荣,转基因植物食品中标记基因的安全性评价,中国农业科学,1997,30(2):1-15.
    [17] 陈松彪,李旭刚,王锋,朱祯,无选择标记转基因植物的培育,中国生物工程杂志,2005,25(2):1-7
    [18]US Food and Drug Administration (FDA),1998.Draft Guidance for Industry:Use of Antibiotic Resistance Marker Genes in Transgenic Plants.http://vm.cfsan.fda.gov/ dms/opaarmg.html.
    [19]Miki B, McHugh S, Selectable marker genes in transgenic plants:applications, alternatives and biosafety, Journal of Biotechnology, 2004, 107(3), 193-232
    [20]Yoder J I, Goldsbrough A P, Transformation system for generating marker-free transgenic plants, Biotechnology(NY),1994,12:263-267.
    [21] 黄大年,李敬阳,章善庆,用除草剂基因快速检测和提高杂交水稻纯度的新技术,科学通报,1998,44(1):67-70
    [22]Chu C C, Wang C C, Sun C S,Hsu C, Yin K C, Chu C Y, Bi F Y, Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources, Sci Sin,1975, 5:484-490.
    [23]Toriyama K, Hinata K, Cell suspension and protoplasts culture in rice. Plant Sci, 1985, 41: 179-183.
    [24]Murashige T, Skoog F, A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiologia Plantarum, 1962,15:473-497.
    [25]刘明华,楼小明,王宗阳,张景六,洪孟民,玉米转座因子 Ac/Ds 导入水稻花药悬浮细胞并再生成植株,植物生理学报,1995:21:195-205
    [26]Sambrook J, Fritsch E F, Maniatis T, Molecular cloning:a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1989.
    [27]Hofgen R, Willmitzer L, Storage of competement cells for Agrobacterium transformarion, Nucl Acids Res, 1988, 16: 9877.
    [28]Hiei Y, Ohta S, Kumashiro T, Kumashiro T, Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the T- DNA, Plant J, 1994,6: 271-282.
    [29]刘巧泉,张景六,王宗阳,洪孟民,顾铭洪,根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报,1998,24:259-271.
    [30]于恒秀,刘巧泉,陈秀花,陆美芳,王兴稳,王宗阳,顾铭洪,根癌农杆菌介导的水稻转化系统的优化及转反义 Wx 基因植株的获得,中国水稻科学,2002,16:304-310
    [31]刘巧泉,陈秀花,王兴稳,彭凌涛,顾铭洪,一种快速检测转基因水稻中潮霉素抗性的简易方法,农业生物技术学报,2001,9:264-265
    [32]Murray M G, Thompson W F, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research, 1980, 8: 4321-4325.
    [33]McCouch S R, Kotcket G,Yu Z H, Molecular mapping of rice chromosome, Thero Appl Genet, 1988, 76: 815-829.
    [34]方中达,许志刚,过崇俭,殷尚智,伍尚忠,徐羡明,章琦,中国水稻白叶枯病菌致病型的研究,植物病理学报,1990,20 (2):81-88
    [35]陈志谊,陆凡,刘永锋,陈毓苓,史阿宝,王法明,张坚勇,范瑞昌,吉建安,江苏省水稻主栽及区试品种抗病性鉴定和评价,江苏农业学报,2001,17(2):82-86
    [36]Wang B M, He Z P,Tian X L, Preparation of monoclonal antibodies to CrylA insecticidal crystal protein and application to determinate toxin in Btcotton, Cotton Science, 2000, 12:34-39.
    [37]王保民,李召虎,李斌,田晓莉,段留生,翟志席,何钟佩,转抗虫棉各器官毒蛋白的含量及表达,农业生物技术学报,2002,10(3):215-219
    [38] Maqbool S B, Riazuddin S, Loc N T, Gatehouse A M R, Gatehouse JA, Christou P, Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests, Molecular Breeding, 2001, 7: 85–93.
    [39]张良佑,吴洪基,萧整玉,许新萍,胡 明,李宝健,转基因水稻的抗虫性初探,华南农业大学学报,1998,19(2):4-7
    [40]Pathak P K, Saxena R C, Heinrichs E A, Parafilm sachet for measuring honeydew exeretion by Nilaparvata lugens on rice, J Econ Entomol, 1982, 73: 194-195.
    [41] 顾正远,王益民,水稻对褐飞虱抗性的筛选技术,江苏农业科学,1984,(10):22-23
    [42]王玲,转基因技术改良水稻品种对病虫及除草剂抗性的研究,扬州大学硕士论文,2005
    [43]Wünn J, Kl?ti A, Burkhardt P, Ghosh-Biswas G C, Launis K, Iglesias V A, Potrykus I, Transgenic Indica rice breeding line IR58 expressing a synthetic CryA(b) gene from Bacillus thuringiensis provies effective insect pest control, Bio/Technology, 1996, 14: 171-176.
    [44]Ghareyazie B, Alinia F, Menguito C A, Rubia L G, de Palma J M, Liwanag A, Cohen M B, Khush G S, Bennett J, Enhanced resistance to two stem borers in an aromatic rice containing a syntheticCryl(A)b gene, Molecular Breeding, 1997, 3: 401-414.
    [45]刘光杰,付志红,沈君辉,张亚辉,水稻品种对稻飞虱抗性鉴定方法的比较研究,中国水稻科学,2002,16(l):52-56
    [46]Sogawa K, Pathak M D, Mechanism of brown planthopper resistance in Mudgo variety of rice, Appl Entomol Zool, 1970, 5:145-158.
    [47]杨庆文,转基因水稻的生物安全性问题及其对策,植物遗传资源学报,2003,4 (3):261-264
    [48]Hohn B, Levy A A, Puchta H, Elimination of selection markers from transgenic plants, Curr Opin Biotechnol, 2001,12(2):139-43.
    [49]Zuo J R, Niu Q W, Ikeda Y, Chua N H, Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes, Plant Biotechnology, 2002, 13:173-180.
    [50]王永飞,马三梅,亦如瀚,转基因植物选择标记基因及其安全性问题,植物生理学通讯,2004,40:604-610
    [51]Komari T, Hiei Y, Saito Y, Mural N, Kumashirot T, Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers, The Plant Journal 1996, 10(1), 165-174.
    [52]Komari T, Hiei Y, Saito Y, Mural N and Kumashirot T, Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers, The Plant Journal, 1996, 10(1), 165-174.
    [53]De Buck S, Jacobs A, Van Montagu M, Depicker A. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration, Plant J., 1999, 20(3): 295-304.
    [54]Afolabi A S, Worland B, Snape J W, Vain P, A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations, Theor Appl Genet, 2004, 109(4): 815-826.
    [55]Vain P, Afolabi A S, Worland B, Snape J W, Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup, Theor Appl Genet,2003,107: 210-217.
    [56] 常团结,朱祯,植物凝集素及其在抗虫植物基因工程中的应用,遗传,2002,24:493-500
    [57] 王志斌,郭三堆,表达cryIA/gna双价抗虫基因烟草兼抗棉铃虫和蚜虫,科学通报, 1999,44(19):2068-2075
    [58] Stoger E, Williams S, Christou P, Down R E, Gatehouse J A, Expression of theinsecticidal lectin from snowdrop (Galanthus nivalis agglutinin,GNA ) in transgenic wheat plants:effects on predation by the grain aphid Stiobionalae, Molucular Breeding,1999,5:65-73.
    [59] Chrispeels M J, Raikhel N V, Lectins, lectin genes, and their role in plant defense, Plant Cell,1991,3:1-9.
    [1]Wang Z Y, Wu Z L, Xing Y Y, Guo X L, Zhang W G, Hong M M, Nucleotide sequence of rice waxy gene, Nucleic Acids Res, 1990,18:5898.
    [2]Shimada H, Tada Y, Kawasaki T, Fujimura T, Antisense regulation of the rice waxy gene expression using PCR-amplified fragment of the rice genome reduces the amylose content in grain starch, Theor Appl Genet,1993, 86: 665-672.
    [3]刘巧泉,王宗阳,顾铭洪,反义waxy基因导入水稻降低胚乳直链淀粉含量的研究,21世纪水稻遗传育种展望,北京,中国农业出版社,1999:206-213
    [4] Terada R, Nakajima M, Isshiki M, Okagaki R J, Wessler S R, Shimamoto K,Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice, Plant Cell Physiol, 2000, 41: 881-888.
    [5]Itoh K, Nagajima M, Shimamoto K, Silencing of waxy genes in rice containing Wx transgenes, Mol Gen Genet, 1997,225:351-358.
    [6]Itoh K, Ozaki H. Okada K, Hori H, Takeda Y, Mitsui T, Introduction of Wx transgene into rice wx mutants lead to both high and low amylose rice, Plant Cell Physiol.,2003,44:473-480.
    [7]Sambrook J, Fritsch E F, Maniatis T, Molecular cloning:a laboratory manual, New York: Cold Spring Harbor Laboratory Press, 1989.
    [8]Murray M G, Thompson W F, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research, 1980, 8: 4321-4325.
    [9]郑霏琴,王宗阳,高继平,水稻胚乳中核糖核酸的分离,植物生理学通讯,1993,29:438-440
    [10] Chen J J, Rowley J D, Wang S M, Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification, Proc Natl Acad Sci USA, 2000, 97(1):349-353.
    [11] Sano Y, Different regulation of waxy gene expression in rice endosperm, Theor Appl Genet, 1984, 68: 4567–4573.
    [12]陆美芳,通过共转化法培育无抗性选择标记的转反义 Wx 基因水稻的研究,扬州大学硕士论文,2002
    [13]Juliano B O, Rice quality screening with the Rapid Visco. Analyser. In: Walker CE, Hazelton JL (eds) Applications of the Rapid Visco Analyser, Newport Scienti"c, Sydney, Australia, 1996, 19-24.
    [14] 吴殿星,夏英武,高明尉,McClung A, 稻米淀粉RVA谱特征与食用品质的关系, 中国农业科学, 1998,31(3):25-29
    [15] Radhika R K, Ali S Z, Bhattacharya K R, The fine structure of rice starch amylopectins and its relation to the texture of cooked rice, Carbohydrate Polymers, 1993, 22:267-275.
    [16]Ramesh M, Ali S Z, Bhattacharya K R, Structure of rice starch and its relation to cooked-rice texture, Carbohydrate Polymers,1999, 38:337-347.
    [17]于恒秀,转基因技术改良稻米直链淀粉含量的研究,扬州大学硕士论文,2001
    [18]徐丽,不同转基因结构调控稻米直链淀粉含量的研究,扬州大学硕士论文,2005
    [19] Liu Q Q, Wang Z Y, Chen X H, Cai X L, Tang S Z, Yu H X, Zhang J L, Hong M M, Gu M H, Stable inheritance of the antisense waxy gene in transgenic rice with reduced amylose level and improved quality, Transgenic Research, 2003, 12: 71-78.
    [20]陈秀花,转反义 Sbe 基因提高稻米直链淀粉含量的研究,扬州大学博士学位论文,2003
    [21]吴方喜,谢华安,苏军,胡昌泉,陈建民,孙东发,王锋,rbe1正、反义基因改变籼稻直链淀粉含量的研究福建农业学报,2006,21(2) :150-153
    [22]He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H, Genetic analysis of rice grain quality,Theor Appl Genet,1999,98:502~508
    [23] 高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前,水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析,中国科学(C辑),2003,33:481-487
    [24] Reddy G M, Sarala A K, Study on the amylose content and gelatinization temperature in certain local cultivars and induced grain shape mutants in rice, Euphytica, 1979,28:665-674.
    [25]Hussain A A, Maurya D M, Vaish C P, Study on quality status of indigenous upland rice(Oryza sativa), Indian J Genet, 1987,47:145-152.
    [26]Sood B C, Siddiq E A, Possible physico-chemical attributes of kernel influencing kernel elongation in rice, Indian J Genet, 1986, 46:456-460.
    [27]Juliano B O, Bautista G M, Lugay J C, Reyes A C, Studies on the physicochemical properties of rice, Agri Food Chem, 1964, 12: 131-138.
    [28]郭益全,刘清,张德梅,谢顺景,籼稻烹调与食用品质及谷粒性状之遗传,中华农业研究,1985,34:243-257
    [29]朱碧岩,贾志宽,水稻品质性状遗传参数的分析,西北农业大学学报,1990,18:69-73
    [30]刘宜柏,吴慧光,饶治祥,黄健,孙义伟,水稻品种稻米品质的研究,江西农业大学学报,1990(水稻品质育种研究专辑):36-44
    [31] 夏红,直链淀粉含量与稻米的糊化温度及胶稠度的关系,食品科学,1998,19:12-13
    [32]韩月澎,徐明良,严长杰,陈秀兰,顾铭洪,水稻糯性突变对淀粉理化特性的影响。中国水稻科学,2004,18:125-129
    [33] 舒庆尧, 吴殿星, 夏英武, 高明尉,稻米淀粉 RVA 谱特征与食用品质的关系,中国农业科学, 1998, 31(3):25-29
    [34]吴殿星, 舒庆尧, 夏英武,利用 RVA 谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性,中国水稻科学, 2001, 15(1):57-59
    [35] 吴殿星, 舒庆尧, 夏英武,RVA 分析辅助选择食用优质早籼稻的研究,作物学报, 2001, 27(2):165-172
    [36] 张小明, 石春海, 富田桂,粳稻米淀粉特性与食味间的相关性分析.中国水稻科学, 2002, 16(2):157-161
    [37]王 丰, 程方民, 钟连进, 孙宗修,早籼稻米 RVA 谱特性的品种间差异及其温度效应特征,中国水稻科学, 2003, 17(4):328-332
    [38]隋炯明,李 欣,严 松,严长杰,张 蓉,汤述翥,陆驹飞,陈宗祥,顾铭洪,稻米淀粉 RVA 谱特征与品质性状相关性研究,中国农业科学 2005,38(4):657-663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700