一株地芽孢杆菌(Geobacillus sp.)在模拟油藏环境下的生长与运移实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在油藏中有效地生长与运移是微生物提高原油采收率技术成功的关键。目前的微生物采油技术研究更多的集中在利用室内摇瓶培养实验研究微生物代谢产物对油、水理化性质的影响方面,而对于细菌在油藏环境中的生长、运移和代谢作用研究较少。
     本论文以一株典型的好氧采油微生物G2菌为例,确定在适宜的营养和配气条件下,好氧微生物在模拟典型实验区块实际油藏条件下的生长状况,确定影响微生物在岩石毛细孔隙中运移的主要因素,并计算运移效率。主要研究结果与结论如下:
     1.从胜利油田微生物研究中心菌种库中优选出一株地芽孢杆菌(Geobacillus sp. G2),通过室内评价实验确定了该菌株适宜作为典型的好氧采油微生物用于微生物驱油基础理论研究。
     通过对菌种库的细菌进行筛选,从中挑选出一株G2菌,室内摇瓶实验结果表明,该菌具有耐高温、以不同类型原油为唯一碳源能够生长、降粘、产表面活性物质、并对原油和液蜡有较好的乳化和分散作用等利于提高原油采收率的功能。通过物理模拟驱油实验和盲管驱油实验考察了该菌株的驱油性能:物理模拟驱油实验表明,采用空气辅助驱(液气比1:10),在一次水驱的基础上,经过5周期50d培养驱替,该菌能够提高原油采收率12.9-15.9%;盲管驱油实验也表明该菌能够驱出盲管中的残余油。以上实验结果表明,优选的G2菌可以作为典型的好氧采油微生物用于微生物驱油基础理论研究。
     2.采用单次单因子法确定了G2菌适宜的生长条件。采用单次单因子法,通过摇瓶培养实验确定了G2菌适宜的培养条件:蔗糖3%,NaCl 0.5%,NaNO3 0.2%,KH2PO4 0.14%,Na2HPO4·12H2O 0.37%,FeSO4·7H2O 0.001%,MgSO4·7H2O 0.02%,CaCl2 0.001%,酵母粉0.05%,pH 7.0,温度50-55℃。确定了该菌株生长的pH、温度和盐度范围:pH 5.5-9.5,温度35-70℃, NaCl浓度0-10%;同时确定了该菌株适宜生长的pH、温度和盐度的范围:pH 6.0-9.0,温度40-60℃,NaCl浓度0.5-8%。采用高压岩心管,利用高压空气加压,通过培养实验研究了高压对该菌株生长的影响,结果表明,该菌株能在10MPa高压下生长,但生长延滞期变长。以上实验结果表明,该菌株的pH、温度和盐度适应范围均较广且耐高压,说明该菌可能的油藏适应范围较广,进一步说明该菌株适宜用于好氧微生物驱油基础理论研究。
     3.以G2菌为例,通过调整模拟油藏环境的营养和配气,研究其在模拟典型实验区块实际油藏环境下的生长状况。
     1)通过对非生物因素耗氧实验研究和细菌生长耗氧量的估算,确定了好氧微生物在室内模拟胜利油田孤岛中一区Ng3区块油藏环境下生长实验的配气量(空气):在不饱和原油的情况下,配气量维持在常压下液气比1:10;在饱和原油的情况下,配气量维持在常压下液气比1:30就足以维持好氧微生物在模拟油藏环境下良好生长了。通过对蔗糖和NO3-等营养物在岩心中的运移实验,确定了在注入岩心3-4.5PV培养液时,岩心出口营养物的浓度基本达到注入浓度。
     2)通过模拟目标油藏的温度、压力、孔隙度、渗透率、流体特征和开发程度等因素,进行了G2菌在模拟油藏环境下的生长实验,结果表明,在注入适宜的营养和配气条件下,G2菌能够在模拟Ng3区块油藏环境下良好生长,细菌密度由106个/mL增加至108个/mL,该菌株适宜作为该区块实施微生物采油技术的候选菌种。残余油的存在对G2菌的生长基本没有产生影响,但在模拟油藏环境下,该菌生长延滞期较摇瓶培养实验长,说明为特定油藏进行的各种微生物采油技术研究必须在模拟油藏环境下进行。
     4.以G2菌为例,系统考察了驱替速度、实验温度、岩心渗透率、微生物菌体大小和聚集度以及油相存在与否等因素对微生物在岩石毛细孔隙中运移的影响,并探讨了微生物在岩心中运移过程中滞留的主要机制。
     1)先用处于生长稳定期的菌液进行连续的岩心驱替,接着用无菌水驱替,在出口取样分析菌体密度,记录整个驱替过程中的压差变化。驱替实验结果表明:驱替速度、实验温度、岩心渗透率、微生物菌体大小和聚集度以及油相存在与否等因素对微生物在岩心中运移有重要影响。当驱替速度、实验温度和岩心渗透率升高时,微生物运移效率增加;当微生物菌体大小和聚集度增加时,微生物运移效率降低;脉冲驱替能够增加微生物在岩心中的运移效率;油相存在能增加细菌的滞留量,降低细菌的运移效率。微生物在岩心中运移过程中的滞留是筛分、架桥堵塞、界面吸附、粘附和聚集堵塞等作用机制共同作用的结果。当注入微生物浓度较高时,架桥和聚集堵塞是微生物在岩心中滞留的主要作用机制,微生物更易滞留在岩心入口段,形成外部或内部滤饼,并对该段岩心渗透率伤害较大。
     2)微生物在模拟油藏环境下的生长和运移实验表明,即使在静止培养的条件下,扩散对微生物及其代谢产物的运移影响也很小,在连续驱替过程中,微生物运移的动力主要来自于水动力。
     本论文的研究成果为建立空气辅助微生物驱油技术室内评价方法(尤其是物理模拟驱油体系方法)和数模软件提供基础。另外,本论文针对胜利油田孤岛中一区Ng3区块进行研究,研究成果为该区块微生物采油矿场试验设计提供一定的理论基础和技术支撑,对最终提高现场应用效果具有促进作用。
The effective transport and growth of bacteria in reservoir is crucial to the success of microbial enhanced oil recovery (MEOR) technology. In recent years considerable efforts have been put into the effect of microbial metabolic products on physical and chemical properties of oil and water using shake-flask culture experiments, while there’s little information about the growth, transport and metabolism of bacteria in reservoir environment.
     The objectives of this study are to identify whether aerobic bacteria can grow in simulated reservoir conditions or not, and to determine the important factors that control the transport of bacteria through rock porous media. Furthermore, the mechanisms of bacteria retention and permeability reduction are investigated. The main results are summarized as follows:
     1 One strain of bacterium, identified as Geobacillus sp., was screened and confirmed as a candidate aerobic microorganism for MEOR by laboratory study.
     The bacterium Geobacillus sp., named G2, was screened from library of strains of Shengli Oilfield. The results of shake-flask experiments showed it exhibited good properties for MEOR: suffering high temperature, growing when different types of crude oil was added as the sole carbon source, reducing the viscosity of crude oil, producing biosurfactants, emulsifying and dispersing crude oil or liquid wax, and so on. Besides, Core flood experiments showed the oil recovery had been increased by 12.9-15.9% of original oil in place (OOIP) after 5 treatments of 50 days by adopting air-assistant technique (liquid/air 1:10 v:v). Blind tube-flood experiments also showed that the oil in the dead area could be effectively drived out by the strain G2. These results indicated that the strain G2 was suited for the theory study of MEOR.
     2 The optimal medium components and suitable growth conditions for the strain G2 were investigated by using“one-variable-at-a-time”method.
     The optimal culture conditions of this bacterium were studied by the shake-flask culture experiments. The results showed that the optimal culture conditions were as follows: 3% sucrose, 0.5% NaCl, 0.2% NaNO3, 0.14% KH2PO4, 0.37% Na2HPO4·12H2O, 0.001% FeSO4·7H2O, 0.02% MgSO4·7H2O, 0.001% CaCl2, 0.05% yeast extract, pH 7.0 and at 50-55℃. The ranges of the main factors that affected the growth of the bacterium were also investigated. The results were as follows: the temperature, salinity and pH range for growth of the strain G2 was 35-70℃, 0-10% NaCl and 5.5-9.5 respectively; suitable growth temperature, salinity and pH occurred at 40-60℃, 0.5-8% NaCl 6.0-9.0 respectively. Besides, the influence of high pressure on the growth of the strain G2 was studied by high-pressure culture experiments. The results showed that the strain G2 could grow at 10MPa, but the lag phase of growth became longer. These results further indicated that G2 was the suited experimental object for the theory study of MEOR.
     3 The growth of the strain G2 was studied in the simulated reservoir conditions when the nutrients and air conditions were adjusted for the better growth of the bacterium.
     1) Based on the experimental study on abiotic factor oxygen consumption and the estimation of biotic oxygen consumption, the amount of air injection for the growth of G2 in the simulated reservoir conditions of Block Ng3 of Shengli Oilfield was investigated. The results indicated that the amount of oxygen was sufficient for maintaining the growth of microorganisms in the simulated reservoir conditions when the ratio of Vwater to Vair was 1:10 and 1:30 at atmospheric pressure in the case of unsaturated oil and saturated oil respectively. In addition, the amount of nutrients injection was studied by the transport experiments of sucrose and nitrate. The results showed that the concentration of nutrients in the sandpack exports approached the injection concentration nearly when 3-4.5 pore volume (PV) of nutrition was injected. So the amount of nutrients was sufficient for maintaining the growth of the bacterium in the simulated reservoir conditions when 3PV of nutrition was injected.
     2) The growth of the strain G2 was studied in the reservoir by simulating the temperature, pressure, porosity, permeability, fluid characteristics and development status of the aimed reservoir. The results showed that the cell density of the bacterium increased from 106 to 108 cells/mL in the simulated reservoir conditions of Block Ng3 when appropriate nutrients and gas were injected. This suggested that the strain G2 was suitable as a candidate aerobic microorganism for implementation of the MEOR technology in this block. Basically, the presence of residual oil had no impact on the growth of this bacteria. But the lag phase of growth was longer than in the shake-flask culture, which suggested that all MEOR studies pertaining to a specific reservoir should be evaluated under the in situ conditions of the reservoir.
     4 The factors which affect the transport of the strain G2 were investigated systemically in sandpacks and cores. These factors included the linear velocity of injection, temperature, permeability, size and degree of the bacteria aggregation, presence of a residual oil phase and pulse injection. Furthermore, the major mechanisms of bacteria retention were discussed.
     1) Firstly, the cellular suspension in stationary phase was continuously injected into the core. Subsequently, the cellular suspension was continuously displaced by sterile water. Effluent samples were collected at the export for analyzing the cell density, and the pressure across the core was monitored during the displacement process. The results showed that increasing the fluid flow velocity, temperature, permeability and pulse displacement increased the efficiency of microbial transport, while increasing the size and aggregation of the bacteria decreased the efficiency of transport. Besides, the presence of a residual oil phase increased the bacteria retention and decreased the efficiency of transport. Furthermore, the mechanisms of the bacteria retention during the transport process were studied by the former experiments. The mechanisms of the bacteria retention during the transport of the bacterial suspension included surface adhesion, size exclusion, pore bridging and multi-particle hydrodynamic exclusion. It was likely that all these mechanisms were involved to varying degrees in the transport of the bacterial suspension. When high concentrations (>108 cells/mL) of microorganisms were injected, multiparticle hydrodynamic exclusion and size exclusion of cell aggregates were the most likely operative mechanisms for bacteria retention. Under this condition, the injected bacteria were prone to retain in the entrance of the core, and the rapidly decrease of permeability occurred due to the forming of the external or internal filter cakes.
     2) The growth and transport experiments showed that diffusive flux had little effect on the transport of microorganisms and their metabolites. This indicated that the main driving force of microbial transport came from hydrodynamic convection during the displacement process.
     In summary, the results of this study will hopefully provide the technologic support for establishing evaluation methods (especially physical simulation experiment method) for MEOR which adopt air-assistant technique, and will also hopefully provide some data for mathematical model of MEOR. In addition, it will provide the theoretical basis and technologic support for the design of MEOR in the Block Ng3 of Shengli Oilfield.
引文
[1] 何更生编. 油层物理[M]. 北京: 石油工业出版社, 1994.
    [2] 韩大匡. 中国陆上石油工业提高采收率技术的成就与面临的挑战[A]. 第十五界世界石油大会文集(上册): 240-250.
    [3] Han Dakuang. Developing high water-cut oil field deeply to enhance their oil recovery[J]. China Oil & Gas, 1994, 3: 10-14.
    [4] 王修垣. 微生物提高石油采收率(I) [J]. 微生物学通报, 1999, 26(5): 384-385, 383.
    [5] Altunina L K, Kuvshinov V A. Evolution tendencies of physico-chemical EOR methods[A]. Paper SPE 65173 presented at the 2000 SPE European Petroleum Conference held in Paris, France, 24–25 October, 2000.
    [6] Rodica Paduraru, Ion Pantazi. IOR/EOR-over six decades of Romanian experience[A]. SPE 65169.
    [7] George J S, Roger Hite J, Camahan N F, et al. The alphabet soup of IOR, EOR and AOR: effective communication requires a definition of terms[A]. SPE 84908.
    [8] 程海鹰. 油藏微生物在毛细孔隙中的运移过程研究[D]. 山东青岛: 中国海洋大学化学化工学院, 2006.
    [9] George J S. EOR: past, present and what the next 25 years may bring[A]. SPE 84864.
    [10] 杨普华. 提高采收率研究现状及近期发展方向[J]. 油气采收率技术, 1999, 6(4): 1-5.
    [11] 沈平平, 袁士义, 韩冬, 等. 中国陆上油田提高采收率潜力评价及发展战略研究[J]. 石油学报, 2001, 22(1): 45-49.
    [12] 张正卿, 石建姿. 提高采收率技术在中国石油开发生产中的地位和发展方向. 石油科技论坛, 2001, 6: 11-14.
    [13] 李红. 微生物采油一第四类提高采收率方法[J]. 试采技术, 1992, 13(4): 59-66.
    [14] 刘桂花. 积极探索微生物采油技术[J]. 华北石油设计, 1995, 4: 55-60.
    [15] 隋军, 石梅, 孙凤荣, 等. 以石油烃为唯一碳源提高采收率菌种的研究[J]. 石油学报. 2001, 22(5): 53-57.
    [16] 包木太, 牟伯中, 王修林, 等. 微生物提高石油采收率技术[J]. 应用基础与工程科学学报, 2000, 8(3): 236-245.
    [17] Bryant R S, et al. The fifth international conference on microbial enhanced oil recovery andrelated biotechnology for solving environmental problems[A]. University of Oklahoma, 1995.
    [18] Bryant R S et al. Significant of the survival and performance of bacillus species in porous medium for enhanced oil recovery[C]. Topical Report, NIPER-381, 1987.
    [19] 杨承志, 楼诸红. 微生物采油的地质基础及筛选标准[J]. 石油勘探与开发. 1997, 24(2): 69-72.
    [20] Bao Mutai, Mu Bozhong, Wang Xiulin, et al. A review of microbial enhanced oil recovery[J]. Petroleum Science, 2000, 3(3): 36~47.
    [21] 汪卫东. 微生物采油技术(MEOR)[J]. 世界石油科技. 1994, 5: 58-63, 104.
    [22] Jenneman G E, Clark J B. The effect of in-situ pore pressure on MEOR processes[A]. SPE/DOE 24203.
    [23] 邵华开译. 崔雪贞校. 原地空隙压力对微生物提高石油采收率过程的影响[J]. 国外油田工程, 1995, 1: 1-3.
    [24] Sanchez G 等著. 夏萍译. 罗景琪校. 金静芷审校. 委内瑞拉油田的嗜热细菌分离. 张正卿等编. 国外微生物提高采收率技术论文选[M]. 北京: 石油工业出版社, 1996: 136-141.
    [25] 张春英, 孟凡儒, 石梅, 等. 大庆油田微生物提高采收率的矿场试验[J]. 石油学报, 1995, 16(1): 88-95.
    [26] Kristjansson J K, et al. Thermophilic bacteria. CRC Press Inc. Boca Raton, Florida, 1991.
    [27] Finnerty W R, Singer M E. Microbial enhanced oil recovery[J]. Biotechnology, 1983, (1): 47.
    [28] 汪卫东. 罗801区块油藏微生物生态环境调整对提高原油采收率的影响[D]. 山东青岛: 中国海洋大学化学化工学院, 2004.
    [29] 李虞庚, 冯世功编译. 石油微生物学[M]. 上海: 上海交通大学出版社, 1991: 272-320.
    [30] Donaldson E C 等著. 金静芷, 王修垣, 秦同洛, 等译. 微生物提高石油采收率[M]. 北京:石油工业出版社, 1995: 75-82.
    [31] 张春英. 世界各国微生物采油的现状[J]. 油田化学. 1986, 3(1): 57-63.
    [32] 李希明, 冯时林. 微生物采油技术研究[J]. 油气采收率技术, 1997, 4(1): 1-10.
    [33] 张春英. 国外微生物采油技术水平调查[J]. 石油钻采工艺, 1989, 1: 69-78.
    [34] Bryant R S, Lindsey R 著, 黄骊译. 微生物提高采收率技术在全球范围内的应用[J]. 国外油田工程. 1996, 12: 1-2.
    [35] Lazer I. Development of MEOR technologies and the history of MEOR field tests[J]. Pakistan Journal of Hydrocarbon Research, 1998,10: 11.
    [36] Knapp R M, McInerney M J, Menzie D E. Microbial strains and products for mobility control and oil displacement[C]. Norman, Oklahoma, U.S.A.: DOE/BC/10300-45, No. AS19-80BC10300, Dec. 1987.
    [37] Zhang X, Knapp R M, McInerney M J. Quantitation of microbial products and their effectiveness in enhanced oil recovery[C]. Norman, Oklahoma, U.S.A.: DOE/BC/14662-15, No. DE-AC22-90BC14662, Feb. 1995.
    [38] Ginn T R. A brief review of bacterial transport in natural porous media[C]. Richland, Washington, U.S.A.: PNL-10867, DOE/ DE-AC06-76RLO 1830, Dec. 1995.
    [39] Parli J A, Stepp A K, Evans D B, et al. Transport and stability of polymer-producing bacteria in porous media[A]. Tulsa, Oklahoma, U.S.A.: SPE39670, 1998, 4: 173-182.
    [40] Stepp A K, Evans D B. Single well MEOR treatment[C]. Bartlesville, Oklahoma, U.S.A.: NIPER/BDM-0331, DOE/ DE-AC22-94PC91008, Sep. 1997.
    [41] Sri Kadarwati, Udiharto M, Noegroho H H, et al. Microbial EOR study to improve sweep efficiency in Caltex fields: phase 1-nutrient selection[A]. Kuala Lumpur, Malaysia: SPE 36747, Oct. 2001.
    [42] Lappan R E, Fogler H S. Effect of bacterial polysaccharide production on formation damage[J]. SPE Production Engineering. 1992, 24(3): 167-171.
    [43] Stepp A K, Bryant R S, Llave F M, et al. Microbial methods for improved conformance control in porous media[A]. Tulsa, Oklahoma, U.S.A.: SPE 35357, April, 1996.
    [44] Robertson E P. The use of bacteria to reduce water influx in producing oil wells[J]. SPE Production and Facilities, 1998, 5: 128-132.
    [45] Stepp A K, Bailey S A, Bryant R S, et al. Alternative methods for permeability modification using biotechnology [A]. Denver, Colorado, U.S.A.: SPE 36747, Oct. 1996.
    [46] Jenneman G E, Moffitt P D, Young G R. Application of a microbial selective plugging process at the North Burbank Unit: prepilot tests and results[A]. Tulsa, Oklahoma, U.S.A.: SPE 27827, April, 1994.
    [47] Knapp R M, McInerney M J, Menzie D E, et al. Microbial field pilot study[C]. Norman, Oklahoma, U.S.A.: DOE/BC/14246-11, No. DE-FG22-89BC14246, May, 1993.
    [48] Bryant R S, Stepp A K, Bertus K M, et al. Microbial enhanced waterflooding mink unit and phoenix field pilots[C]. Bartlesville, Oklahoma, U.S.A.:NIPER-683, DOE/FC22-83FE60149, July, 1993.
    [49] Bae J H, Chambers K T, Lee H O, et al. Microbial profile modification with spores[J]. SPE Reservoir Engineering, 1996, 8: 163-167.
    [50] Lee H O, Bae J H, Keith H. Laboratory design and field implementation of microbial profile modification process[A]. New Orleans, Louisiana, U.S.A.: SPE 49074, Sep. 1998.
    [51] Sharma M M, Georgiou G. Microbial enhanced oil recovery research[C]. Austin, Texas, U.S.A.: DOE/BC/14445-12, July 1993.
    [52] Sarkar A K, Georgiou G, Sharma M M. Transport of bacteria in porous media: I. an experimental investigation[J]. Biotechnology and bioengineering, 1994, 44(4): 489-497.
    [53] Brown L R, Vadie A A, Stephens J O. Slowing production decline and extending the economic life of an oil field: New MEOR Technology [J]. SPE Reservoir Evaluation & Engineering, Feb., 2002: 33-42.
    [54] Brown L R, Vadie A A, Stephens J O. Slowing production decline and extending the economic life of an oil field: new MEOR technology[A]. SPE 59306, Tulsa, Oklahoma, U.S.A., April, 2000.
    [55] Milekhina E I, Borzenkov I A, Zvyagintseva I S, et al. Ecological and physiological characterization of aerobic Eubacteria from oil fields of Tatarstan[J]. Microbiology, 1998, 67(2): 170-175.
    [56] Rozanova E P, Borzenkov, I A, Tarasov A L. Microbiological processes in a high-temperature oil field[J]. Microbiology, 2001, 70(1): 102-110.
    [57] Belyaev S S, Borzenkov I A, Nazina T N, et al. Use of microorganisms in the biotechnology for the enhancement of oil recovery[J]. Microbiology, 2004, 73(5): 590-598.
    [58] Bryant S L, Lockhart T P. Reservoir engineering analysis of microbial enhanced oil recovery[A]. SPE 63229, Dallas, Texas, U.S.A., Oct., 2000.
    [59] McInerney M J, Youssef N, Fincher T, et al. Development of microorganisms with improved transport and biosurfactant activity for enhanced oil recovery[C]. Norman, Oklahoma, U.S.A.: DOE/DE-FC-02NT15321 R 02, May, 2004.
    [60] Pope G A, Sepehrnoori K, Delshad, M. Development of an improved simulator for chemicaland microbial IOR methods[C]. Tulsa, Oklahoma, U.S.A.: DOE/DE-AC26-98BC15109, Oct. 2001.
    [61] Stephens J O, Brown L R, Vadie A A. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding[C]. Tulsa, Oklahoma, U.S.A.: DOE/BC/14962-24, Feb. 2000.
    [62] McInerney M J, Han S O, Maudgalya, S, et al. Development of more effective biosurfactants for enhanced oil recovery[C]. Tulsa, Oklahoma, U.S.A.: DOE/BC/15113-2, Jan. 2003.
    [63] Brown L R, Pittman, C U, Leo Lynch J F, et al. Augmenting a microbial selective plugging technique with polymer flooding to increase the efficiency of oil recovery-a search for synergy[C]. Mississippi, U.S.A.: DOE/BC/15210-5, June 2002.
    [64] Hitzman D O, Stepp A K, Dennis D M, et al. Innovative MIOR process utilizing indigenous reservoir constituents[C]. Ochelata, Oklahoma, U.S.A.: DOE/DE-AC26-99BC15214, Sep. 2003.
    [65] McInerney M J, Maudgalya S K, Knapp R, et al. Development of biosurfactant-mediated oil recovery in model porous systems and computer simulations of biosurfactant-mediated oil recovery[C]. Norman, Oklahoma, U.S.A.: DOE/DE-FC-02NT15321 R 03, May, 2004.
    [66] McInerney M J, Folmsbee M, Nagle D. Development of improved anaerobic growth of bacillus mojavensis strain JF-2 for the purpose of improved anaerobic biosurfactant production for enhanced oil recovery[C]. Norman, Oklahoma, U.S.A.: DOE/DE-FC-02NT15321 R 04, May, 2004.
    [67] Mancini E A. Haynes C, Benson J, et al. Improved oil recovery from upper jurassic smackover carbonates through the application of advanced technologies at womack hill oil field, choctaw and clarke counties, eastern gulf coastal plain[C]. Tulsa, Oklahoma, U.S.A.: DOE/DE-FC26-00BC15129, May, 2003.
    [68] Maudgalya S. Experimental and numerical simulation study of microbial enhanced oil recovery using bio-surfactants[D]. Norman, Oklahoma: The university of Oklahoma, graduate college, 2005.
    [69] Hughes D S. Revival of microbial enhanced oil recovery (MEOR) initiatives on UK Continental Shelf[A]. 24th Annual Workshop & Symposium Collaborative Project onEnhanced Oil Recovery International Energy Agency, Canada, Sep., 2003.
    [70] Awan A R, Teigland R, Kleppe J. EOR survey in the North Sea[A]. SPE 99546, Tulsa, Oklahoma, U.S.A., April, 2006.
    [71] 汪卫东. 我国微生物采油技术现状及发展前景[J]. 石油勘探与开发, 2002, 29(6): 37-50.
    [72] 石梅, 孙风荣, 侯兆伟, 等. 大庆油田微生物采油技术的发展和前景[J]. 世界石油工业, 2000, 7(4): 35-37
    [73] 冯庆贤, 陈智宇. 港东二区七断块微生物驱油试验研究[J]. 石油勘探与开发, 1999, 26(6): 68-71.
    [74] 向廷生, 冯庆贤, Nazina N T, 等. 本源微生物驱油机理研究及现场应用[J]. 石油学报, 2004, 25(6): 64-67.
    [75] 陈智宇, 冯庆贤, 刘如林, 等. 嗜热采油微生物菌种的开发与应用[J]. 石油学报, 2001, 22(6): 59-64.
    [76] 向廷生, 冯庆贤, 佘跃惠, 等. 本源微生物驱在大港高温稠油油田的现场应用[J]. 特种油气藏, 2005, 12(5): 72-75.
    [77] 冯庆贤, 李玉萍, 陈智宇. 微生物驱油矿场试验的监测[J]. 油田化学, 2001, 18(1):76-78.
    [78] 冯庆贤, 邰庐山, 滕克孟等. 应用微观透明模型研究微生物驱油机理[J]. 油田化学, 2001, 18(3): 260-264.
    [79] 王学立, 陈智宇, 李晓泉, 等.官 69 断块微生物驱油现场试验效果分析[J]. 石油勘探与开发, 2005, 32(2): 107-109.
    [80] Nagase K, Zhang S T, Asami H, et al. A successful field-test of microbial EOR process in Fuyu oilfield, China[A]. Tulsa, Oklahoma, U.S.A.: SPE 75238, April, 2002.
    [81] 段景杰, 赵亚杰, 吕振山.高含水油田微生物调剖技术[J]. 油田化学, 2003, 20(2): 175-179.
    [82] 张忠智, 李庆忠, 王洪君, 等.微生物采油技术中监控技术进展[J]. 石油化工高等学校学报, 2002, 15(2): 14-17.
    [83] 包木太. 微生物驱油机理研究[D]. 山东青岛: 青岛海洋大学化学化工学院, 2001.
    [84] 杨靖亚. 微生物提高石油采收率及防石油管材腐蚀可行性研究[D]. 陕西西安: 西北大学生命科学院, 2001.
    [85] 左良成. 微生物提高石油采收率菌种的筛选及其驱油效能研究[D]. 陕西西安: 西北大学生命科学院, 2003.
    [86] 张训华. 微生物采油数值模拟研究[D]. 北京: 中国科学院研究生院, 2003.
    [87] 孔祥平. 激活胜利油田单12区块内源微生物提高原油采收率室内研究[D]. 山东青岛: 中国海洋大学化学化工学院, 2004.
    [88] 王惠. 微生物及其衍生物对油气渗流的影响规律研究[D]. 四川成都: 成都理工大学, 2004.
    [89] 李辉. 微生物-聚合物联合驱油实验研究[D]. 北京: 中国科学院研究生院, 2004.
    [90] 赵凤敏. 微生物代谢作用对油藏物性的影响[D]. 四川成都: 西南石油学院, 2004.
    [91] 李珂. 微生物驱油数值模拟研究[D]. 四川成都: 西南石油学院, 2005.
    [92] 孙殿龙. 采油微生物菌种入库参数及菌种库的开发研究[D]. 北京: 中国科学院研究生院, 2005.
    [93] 崔君成. 微生物采油技术试验研究[D]. 黑龙江大庆: 大庆石油学院, 2005.
    [94] 李清心. 鼠李糖脂合成酶Rh1A和Rh1B基因的克隆、表达、纯化及在石油微生物中的表达和应用研究[D]. 山东济南: 山东大学, 2005.
    [95] 景贵成. 原油碳源微生物提高原油采收率机理[D]. 北京: 中国科学院研究生院, 2006.
    [96] 庞林绪, 莫冰.微生物采油中原油组分的变化[J].石油勘探与开发,1998,25(1):50-53.
    [97] Ghazali M, Karim A and Salim M A. Microbial Enhanced Oil Recovery (MEOR) Technology in Bokor Field, Sarawak. SPE Paper 72125.
    [98] 李清心, 康从宝, 王浩, 等.降解原油微生物的筛选及其部分特性的研究[J]. 石油勘探与开发, 2002, 29(6): 91-93.
    [99] 潘冰峰, 徐国梁, 施邑平, 等. 生物表面活性剂产生菌的筛选[J]. 微生物学报. 1999, 39(3): 264-267
    [100] 伍晓林, 陈坚, 伦世仪.生物表面活性剂在提高原油采收率方面的应用[J].生物学杂志. 2000, 17(6): 25~27.
    [101] Fox S L, Brehm M A, Robertson E P, et al. Comparative analysis of microbially mediated oil Recovery by surfactants produced by bacillus licheniformis and bacillus subtilis.
    [102] Banat I M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review[J]. Bioresource Technology, 1995, 51: 1-12.
    [103] Stepp A K, Bryant R S, Bertus K M. et al. Parameters affecting microbial oil mobilization in porous media.
    [104] Donaldson E C, Obeida T. Enhanced oil recovery at simulated reservoir conditions[M]. Microbial Enhancement of Oil Recovery – Recent Advances, 1996: 227-245.
    [105] 俞理, 于大森. 产气微生物提高原油采收率微观实验研究[J]. 油田化学, 1994, 11(2): 149-151, 156.
    [106] Wang W M, Lang D G and Liu W.. The application of NMR imaging to the studies of enhanced oil recovery in China[J]. Magn. Reson. Imaging, 1996, 14(7/8): 951-953.
    [107] Raider R A, Freeman D C, Jenneman G E, et al. The use of microorganisms to increase the recovery of oil from cores[A]. Paper SPE 14336 presented at the 1996 SPE Annual Technical Conference and Exhibition, Las Vedas, U.S.A., 22-25, September.
    [108] 闫宝东, 张晓弟, 倪方天. 微生物驱油物理模型实验研究[J]. 西南石油学院学报, 2003, 25(2): 51-55.
    [109] Paulsen, J E, Oppen E, Vatland J, et al. Biologically controlled water diversion demonstrated by new visual experimental technique[A]. paper SPE 28830 presented to European Petroleum Conference, London, U.K., 25-27 October,1994.
    [110] Paulsen, J E, Ekrann S, Oppen E. Visualisation of bacterial degradation and mobilization of oil in a porous medium[J]. Environmental Geology, 1999, 38(3): 204-208.
    [111] 包木太. 内源微生物驱油技术研究. 博士后研究工作报告, 2003.
    [112] 占部滋之著. 刘倩译. 张绪民审. 微生物提高采收率(EOR)—利用微生物增产原油的方法[J]. 采油工艺情报. 1993, 3: 71-76.
    [113] 刘如林. 微生物提高石油采收率的研究进展. 科教兴市: 9-10.
    [114] Taber J J. Technical screening guides for the enhanced oil recovery[A]. SPE 12069 56th Ann Tech Conference, 1983.
    [115] Bryant R S, Burchfied T E. Review of microbial technology for improving oil recovery [J]. SPE Reservoir Engineering, 1989, 5: 151-154.
    [116] 王永根, 张学博, 朱萍. 微生物采油的现状及发展趋势[J]. 世界石油工业. 2000, 7(11): 45-49.
    [117] Maure A, Dietrich F, Gómez Ulises, et al. Waterflooding optimization using biotechnology: 2-yearfield test, La Ventana Field, Argentina. the SPE Latin American and Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina, 25–28 March 2001.
    [118] 裴雪林, 刘丽, 赵金献.微生物采油技术在国内外的研究现状及实例[J]. 断块油气田.1997, 4(5): 61-66.
    [119] Evans D B 等. 运用微生物氧化方法改善碱驱效果提高原油采收率[J]. 新疆石油科技信息. 1999, 20(4): 78-80, 88.
    [120] 王修垣. 俄罗斯利用微生物提高石油采收率的新进展[J]. 微生物学通报, 1995, 22(6): 383-384,357.
    [121] 包木太, 汪卫东, 王修林, 等. 激活内源微生物提高原油采收率技术[J]. 油田化学, 2002, 19(4):382-386, 361.
    [122] 赵丽敏译. 唐养吾校. 微生物提高采收率方法在西西伯利亚 Vyngapour 油田先导性试验区的应用[A]. 第十五界世界石油大会文集(上册): 227-239.
    [123] 侯维虹, 纪平, 张义江等. 稠油段油层井微生物吞吐试验[J]. 大庆石油地质与开发. 2001, 20(2): 133-134.
    [124] 齐献宝, 王志明, 姜晨华, 等. 生物采油技术在辽河油田稠油开采中的应用[J]. 油田化学. 1999, 16(1): 60-63.
    [125] 李牧, 杨红, 刘宏伟, 等. 微生物吞吐开采稠油[J]. 油田化学. 1999, 16(2): 158-162.
    [126] 谭维业, 喻文, 方新湘, 等. KBS系列微生物采油技术研究与应用[J]. 油气采收率技术. 1999, 6(4): 6-12.
    [127] 彭裕生, 季华生, 梁春秀等编. 微生物提高石油采收率的矿场研究[M]. 北京: 石油工业出版社, 1997: 22-25.
    [128] 宗海鹏, 张欣, 杨良杰, 等. 微生物清蜡防蜡技术现场试验[J]. 石油钻采工艺. 1995, 17(4): 96-99.
    [129] 向廷生, 佘跃惠, 何正国. 微生物采油实验室研究及矿场试验[J]. 石油钻采工艺. 1998, 20(4): 84-87.
    [130] 冯庆贤, 窦松江, 杨怀军, 等. 采油微生物在毛细孔隙中的运移与生长实验研究[J]. 南开大学学报, 2003, 36(1): 126-128.
    [131] Jang, L K, Chang P W, Findley J E, et al. Selection of bacteria with favorable transport properties through porous rock for the application of microbially enhanced oil recovery[J]. Applied and environmental microbiology, 1983, 46: 1066-1072.
    [132] Wiencek, K M, Klapes N A, Foegeding P M. Hydrophobicity of Bacillus and Clostridium spores[J]. Applied and environmental microbiology, 1990, 56: 2600-2605.
    [133] 雷光伦, 李希明, 陈月明, 等. 微生物在油层中的运移能力及规律[J]. 石油勘探与开发,2001, 28(5): 75-78.
    [134] 王代流, 符碧英, 姜忠, 等. 垦利油田垦95断块室内岩心细菌流动实验研究[J]. 钻采工艺, 2003, 26(4): 82-85, 88.
    [135] Donaldson E C. Microbial enhanced oil recovery-recent advances. Amsterdam, Elsevier, 1991.
    [136] Douglas J, Bryant R S. Compatibility of two MEOR systems with sulfate-reducing bacteria[C]. Topical Report, NIPER-277, 1987.
    [137] 岳前声. 微生物采油中微生物和地层的相互作用及营养液的配制[J]. 钻采工艺研究, 1998, 22(1): 10-17.
    [138] Zeigler D R. The Genus Geobacillus, Introduction and Strain Catalog. Bacillus Genetic Stock Center, Catalog of Strains, 7th Edition, Volume 3.
    [139] 王新, 陈勇, 耿雪丽, 等. 微生物对原油降粘效果室内评价[J]. 石油工业技术监督, 2002, 18(8): 4-7.
    [140] 陈传平, 梅博文, 易绍金, 等. 砂岩储层中原油微生物降解的模拟实验研究[J]. 沉积学报, 1997, 15(1): 135-140.
    [141] 孔祥平, 贺元旦, 张翰奭, 等. 冀东油田微生物驱油技术室内研究[J]. 西安石油大学学报, 2006, 21(6): 44-48.
    [142] 周德庆. 微生物学教程. 第 2 版. 北京: 高等教育出版社, 2002.
    [143] Sarkar A K, Sharma M M, Georgiou G. Strength and stability of microbial plugs in porous media.
    [144] Sunde E, Beeder J, Nilsen R K, et al. Aerobic microbial enhanced oil recovery for offshore use[C]. SPE/DOE 24204, 1992: 497-502.
    [145] 张晓东译. 李焕臣校. 好氧微生物采油方法在海洋油田的应用[J]. 世界石油工业, 1996, 3(3): 51-54.
    [146] 汪卫东译. 任洪智校. 微生物提高采收率技术在英国大陆再度兴起[J]. 国外油田工程, 2005, 21(2): 7-11.
    [147] 孔祥平, 包木太, 汪卫东, 等. 内源微生物提高原油采收率物理模拟驱油实验研究[J]. 西安石油大学学报, 2005, 20(1): 37-42.
    [148] 张旭, 刘建仪, 孙良田, 等. 注空气低温氧化提高轻质油气藏采收率研究[J]. 天然气工业, 2004, 24(4): 78-80.
    [149] 廉抗利译. 注空气低温氧化工艺:轻质油藏提高采收率技术[J]. 国外石油动态, 2002, 15: 9-23.
    [150] 王晓蓉. 环境化学[M]. 南京: 南京大学出版社, 2001: 15-17.
    [151] 李利军, 孔红星, 陆丹梅. 蒽酮-硫酸法快速测定蔗糖的研究和应用[J] 2003, 24(10): 145-148.
    [152] 孔祥平, 包木太, 马代鑫等. 油田水中细菌群落分析[J]. 油田化学, 2003, 20(4): 372-376.
    [153] 陈绍铭, 郑富寿著. 水生微生物学实验法(上册)[M]. 北京: 海洋出版社, 1985: 91, 102.
    [154] 赵一章主编. 产甲烷细菌及研究方法[M]. 农业部厌氧微生物重点开放实验室. 成都: 成都科技大学出版社, 1997: 239-246.
    [155] 油田注入水细菌分析方法绝迹稀释法[S]. 中华人民共和国石油天然气行业标准, SY/T 0532-93.
    [156] 陈绍铭, 郑富寿著. 水生微生物学实验法(下册)[M]. 北京: 海洋出版社, 1985: 66-71.
    [157] 程海鹰, 肖生科, 汪卫东, 等. 变性梯度凝胶电泳方法在内源微生物驱油研究中的应用[J]. 石油学报, 2005, 26(6): 82-89.
    [158] 碎屑岩油藏注水水质推荐指标及分析方法[S]. 中华人民共和国石油天然气行业标准, SY/T 5329-94.
    [159] 岩心常规分析方法[S]. 中华人民共和国石油天然气行业标准, SY/T 5336-1996.
    [160] 山东大学等校合编. 物理化学实验[M]. 山东: 山东大学出版社, 1993: 259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700