降压型航空三相功率因数校正的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为减轻自重,提高飞机的能源利用效率,“多电飞机”将变速变频电源系统应用到航空电源中,大量非线性电力电子装置在航空电源中得到应用,飞机电能质量问题引起了广泛关注。航空领域相继对航空电源标准进行修订,提出了更加严格的要求。本文根据航空电源标准DO-160先后的变化,总结归纳了新航空电源标准的变化,指出设计航空三相功率因数校正(PFC)的特殊要求:①.降压型;②.高、变频率条件下的高谐波抑制性能;③.宽输入和不平衡电源电压条件下直流输出电压的稳定和更小的纹波。
     为满足航空三相PFC降压的要求,将广义有源电力滤波器(APF)应用到航空三相PFC中。与传统并联型APF和PWM整流器相比,它还具有谐波抑制效果好、处理功率容量小的优点。针对广义APF在电源电压变化条件下直流输出电压不能稳定的问题,提出了稳定直流输出电压的输入电流幅相控制策略。建立了输出电压可控的降压型航空三相PFC的dq坐标系下的数学模型,并对电压环和电流环进行了设计。通过仿真对谐波抑制效果和直流输出电压的稳定控制进行了验证。
     多电飞机交流电源频率在360~800Hz之间变化,快速准确地提取变频航空电源的同步信号是航空三相变流器的控制前提。文中将自适应陷波器(ANF)应用到变频航空三相电源系统的同步信号提取中,根据αβ静止坐标系下的瞬时对称分量法,构造了用ANF提取同步信号的微分方程,并给出了实现原理框图,可以快速准确地提取出基波正序和负序分量。文中在αβ静止坐标系下的ANF算法与三相abc坐标系下的算法相比,可以减少1/3的运算量。文中提出的检测方法在FPGA中实现,运算时间仅需115ns。
     针对输出电压的稳定控制对功率因数和逆变桥补偿容量影响的问题,定量分析了功率因数和逆变桥补偿容量与主电路和电源运行参数之间的关系。并根据此关系,针对航空电源标准要求的电源运行工况,对电源测电感和不可控整流桥侧电感进行了详细的设计。通过仿真对以上理论分析进行了验证。
     设计了数字控制的2kW实验样机。利用该样机,对文中提出的同步信号提取方法就航空电源标准要求的多种运行工况下进行了实验研究,结果证明提出的同步信号提取方法具有较好的动态性能。
More electric aircraft(MEA) apply variable speed variable frequency power to aircraft power system in order to reduce self-weight and improve utilizing efficiency for energy sources. Lots of power electronics devices will be used in aircraft power system, then, aircraft power quality has beeen paid attention by aircraft filed. So aircraft filed revise the aircraft power standard successively, and proposed stricter demand. Firstly, This paper summarizes the sequential change of aircraft power standard DO-160, and point out the special demand of designing aircraft three-phase power factor correction(PFC), which include step-down topology, better performance of suppressing harmonic in high and changing frequency ,steadier dc-output voltage and smaller waveform in wide and asymmetric power source voltage.
     This paper proposes applying generalized active power filter(APF) to aircraft three-phase PFC to realize step-down demand. It also has the advantages of better performance of suppressing harmonic and smaller power capacity processed by active power switch comparing with traditional shunt APF and pulse width modulation rectifier. This paper also proposes input current amplitude-phase control method to steady dc-output voltage. Then establishes mathematical model for step-down three-phase PFC with controllable output voltage for aircraft, designs controller of voltage-loop and current-loop. Besides, it verifies performance of suppressing harmonic and steady control of dc-output voltage by simulation.
     Ac-power source frequency in MEA is changing between 360Hz to 800Hz. The premise of controlling aircraft three-phase converter needs to extract the grid synchronized signals exactly and rapidly. This paper applies adaptive notch filter in extracting synchronized signals for variable frequency aircraft three-phase power, and constructs the differential equations and schematic diagram of extracting synchronization with ANF inαβstatic coordinate according to instantaneous symmetrical component inαβstatic coordinate. This new method can decompose the positive and negative sequence fundamental component exactly and rapidly. This proposed method with ANF inαβstatic coordinate can reduce 1/3 calculation burden compared with the original ANF method in three-phase abc static coordinate. The algorithm is implemented in filed programmable gate array, and the calculating time is only 115ns.
     This paper analyzes quantitatively relationship of power factor, inverter’s compensation capacity and circuit parameters to the problem of controlling dc-output voltage steady affects power factor and inverter’s compensation capacity. Then, according to above relationship it designs the inductor near power sourse and the inductor near uncontrolled rectifier. Finally, verifying the above theoretical analysis by simulating.
     At last, it designs 2kW-experimental prototype with numerical control. It experiments on proposed mothed of extracting synchronized signals in various working conditions demanded by aircraft power standard. Experimental result indicates that the mothed has better dynamic performance.
引文
[1]严仰光,龚春英,王慧贞等.多电飞机和电气科[J].电源技术学报,2007,5(1): 1-4
    [2] J.A. Rosero, J.A. Ortega, E. Aldabas, etal. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3): 3-9
    [3] K. Emadi, M. Ehsani. Aircraft power systems: technology, state of the art, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(1): 28–32
    [4] Jie Chang, Anhua Wang. New VF-power system architecture and evaluation for future aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 527–539
    [5] RTCA. DO-160D-1997, Environmental conditions and test procedures for aircraft equipment[S]. Washington USA: RTCA,1997
    [6] RTCA. DO-160E-2004, Environmental conditions and test procedures for aircraft equipment[S]. Washington USA: TRCA, 2004
    [7] RTCA. DO-160F-2007, Environmental conditions and test procedures for aircraft equipment[S]. Washington USA: TRCA, 2007
    [8] ISO-1540-2006. Aerospace-Characteristics of aircraft electrical systems[S]. ISO,2006
    [9] Departments and Agencies of the Department of Defense. MIL-STD-704F-2004. Aircraft electric power characteristics[S]. 2004
    [10] GJB 181A-2003,飞机供电特性[S].中华人民解放军总装备部,2003
    [11] T. Clark, F.J. Chivite-Zabalza, A.J. Forsyth, etal. Analysis and comparison of diode rectifier units suitable for aerospace applications[C]. IEEE PEMD York 2008: 602-606
    [12] B. Singh, G. Bhuvaneswari, V. Garg. A Novel Polygon Based 18-Pulse AC–DC Converter for Vector Controlled Induction Motor Drives[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 488-497
    [13] R. Burgos, A.Uan-Zo-li, F. Lacaux, etal. Analysis and Experimental Evaluation of Symmetric and Asymmetric 18-Pulse Autotransformer Rectifier Topologies[C]. Power Conversion Conference - Nagoya, 2007: 1286-1293
    [14] Jie Chang. Outlook of roles and necessities of power electronics for VF-power system of future large aircraft[C]. IEEE ICEMS Wuhan 2008:1190-1195
    [15] IEEE-STD-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems[S]. IEEE, 1993
    [16] K. Mino, G. Gong, J.W. Kolar, Novel hybrid 12-pulse boost-type rectifier with controlled outputvoltage[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1008–1018
    [17] Guanghai Gong, M.L. Heldwein, U. Drofenik, etal, Comparative evaluation of three-phase high-power-factor AC-DC converter concepts for application in future More Electric Aircraft[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3): 727–737
    [18] H.Wolf, T.Gathmann. Active three-phase rectifier for aircraft equipment[C]. European Conference on Power Electronics and Applications Dresden 2005:1-10
    [19]付志红,董玉玺,朱学贵等.数字锁相环与滤波技术在PWM整流器中的应用[J].重庆大学报,2010,7(33):35-41
    [20] Ismael Araujo-Vargas, Andrew J. Forsyth and F. Javier Chivite-Zabalza. High-Porformance Multipulse Rectifier With Single-Transistor Active Injection[J]. IEEE Transactions on Power Electronics, 2008, 3(23):1299-1308
    [21]陈东华,纪志成.适用于飞机电网的并联型有源电力滤波器功率电路及其控制策略[J].电网技术, 2008, 32(13): 75-79
    [22] Donghua Chen, Tao Guo, Shaojun Xie, Bo Zhou, Shunt Active Power Filters Applied in the Aircraft Power Utility[C]. IEEE PESC 2005 Recife:59-63
    [23]王永,沈颂华.空间矢量和单周控制三相航空有源电力滤波器[J].北京航空航天大学学报, 2007, 33(1):90-94
    [24] Ahmad Eid, Hassan El-Kishky, Mazen Abdel-Salam, etal. On Power Quality of Variable-Speed Constant-Frequency Aircraft Electric Power Systems[J]. IEEE Transactions on Power Delivery, 2010, 1(25): 55-65
    [25] M. Odavic, P. Zanchetta, M. Sumner, A Low Switching Frequency High Bandwidth Current Control for Active Shunt Power Filter in Aircrafts Power Networks[C]. IEEE IECON 2007: 1863–1868
    [26] R.P. Venturini, P. Mattavelli, P. Zanchetta, M. Sumner, Variable frequency adaptive selective compensation for active power filters[C]. IEEE PEMD 2008: 16–21
    [27]王群,姚为正,刘进军,王兆安.谐波源与有源电力滤波器的补偿特性[J].中国电机工程学报,2001,2(21):16-20
    [28]吴卫民,童立青,钱照明,彭方正.新型串联混合有源电力滤波器控制技术的研究[J].中国电机工程学报,2005,3(25):38-43
    [29]马海啸,於俊,陈新,龚春英,严仰光.适用于航空变频电网的串联混合有源电力滤波器[J].南京航空航天大学学报, 2008, 40(3): 329-334
    [30] LUIS T.MORAN, PHOIVOS D. ZIOGAS, GEZA JOOS, Analysis and design of a novel 3-φsolid-state power factor compensator and harmonic suppressor system[J] IEEE Transactions on Industry Applications, 1989, 4(25): 609-619
    [31]纪延超,戴克健,刘庆国等. 100kvar广义电力源滤波器(GAF)的仿真和实验[J].中国电机工程学报, 1997, 17(5): 315-321
    [32]韩杨,曼苏乐,姚钢等.基于T型APF的三相整流器及其控制策略[J].电工技术学报, 2009,1(24): 120-126
    [33]周雒维,杜雄,谢品芳等.直流侧APF与APF和PFC开关利用率的比较研究[J].中国电机工程学报,2003,23(8): 28-31
    [34] R.W.Erickson, Fundamentals of Power Electronics[M]. 2nd Edition. Secaucus, USA: Kluwer Academic Publishers, 2000
    [35] George J,Wakileh著,徐政译.电力系统谐波——基本原理、分析方法和滤波器设计[M].机械工业出版社,2003,62
    [36] Masaaki Sakui, Hiroshi Fujita, Mitsuo Shioya. A Method for Calculating Harmonic Currents of a Three-phase Bridge Uncontrolled Rectifier with DC Filter[J]. IEEE Transaction on Industrial Electronics, 1989,36(3):434-440
    [37]方宇,裘迅,邢岩等.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006,20(26):69-73
    [38]钟炎平,沈颂华. PWM整流器的一种快速电流控制方法[J].中国电机工程学报,2005,12(25):52-56
    [39]石健将,陆熙,王宝臣等.航空400Hz三相高功率因数PWM整流器的零静差矢量控制[J].电工技术学报,2010,2(25): 80-85
    [40]张兴,张崇巍. PWM整流器及其控制策略的研究[D].安徽:合肥工业大学,2003
    [41]胡寿松.自动控制原理[M].北京:科学出版社,2001
    [42] Elisabetta Lavopa, Pericle Zanchetta, Mark Sumner etal. Real-Time Estimation of Fundamental Frequency and Harmonics for Active Shunt Power Filters in Aircraft Electrical Systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):2875-2884
    [43] F.Cupertino, E. Lavopa, P. Zanchetta etal. Running DFT-based PLL Algorithm for Frequency, Phase and Amplitude Tracking in Aircraft Electrical Systems[J]. IEEE Transactions on Industrial Electronics, 2010
    [44]张桂斌,徐政,王广柱.基于空间矢量的基波正序、负序分量及谐波分量的实时检测方法[J].中国电机工程学报, 2001,21(10):1-5
    [45] Francisco D. Freijedo, Jesús Doval-Gandoy,óscar López etal. A Generic Open-Loop Algorithm for Three-Phase Grid Voltage/Current Synchronization With Particular Reference to Phase, Frequency, and Amplitude Estimation[J]. IEEE Transactions on Power Electronics, 2009,24(1):94-10
    [46] Rodriguez.P, Pou.J, Bergas.J, Candela.J.I, Burgos.R.P, Boroyevich.D. Decoupled doublesynchronous reference frame PLL for power converters control[J]. IEEE Transactions on Power Electronics, 2007,22(2):584-592
    [47]周鹏,贺益康,胡家兵.电网不平衡状态下风电机组运行控制中电压同步信号的检测[J].电工技术学报2008,23(5):108-113
    [48] Se-Kyo Chung. A Phase Tracting System for Three Phase Utility Interface Inverters[J]. IEEE Transactions on Power Electronics, 2000,15(3):431-438
    [49] Aurobinda Routray, Ashok Kumar Pradhan, K. Prahallad Rao. A Novel Kalman Filter for Frequency Estimation of Distorted Signals in Power Systems[J]. IEEE Transactions on Instrumentation and Measurement, 2002,51(3):469-479
    [50] Brendan Peter McGrath, Donald Grahame Holmes, James Jim H. Galloway. Power Converter Line Synchronization Using a Discrete Fourier Transform (DFT) Based on a Variable Sample Rate[J]. IEEE Transactions on Power Electronics, 2005, 20(4):877-884
    [51] Dragan Jovcic. Phase Locked Loop System for Facts[J]. IEEE Transactions on Power Systems, 2003,18(3):1116-1124
    [52] Masoud Karimi-Ghartemani, Houshang Karimi. Processing of Symmetrical Components in Time-Domain[J]. IEEE Transactions on Power Systems, 2007, 22(2):572-579
    [53] Rafael A. Flores, Irene Y.H. Gu, Math H.J. Bollen. Positive and Negative Sequence Estimation for Unbalanced Voltage Dips[C]. IEEE Power Engineering Society General Meeting, 2003, Volume:4
    [54] P. Rodríguez, R. Teodorescu, I. Candela etal. New Positive-Sequence Voltage Detector for Grid Synchronization of Power Converters Under Faulty Grid Conditions[C]. IEEE Power Electronics Specialists Conference, 2006. PESC '06. 37th, Page:1-7
    [55] Helber E.P. de Souza, Fabrício Bradaschia, Francisco A.S. Neves etal. A Method for Extracting the Fundamental-Frequency Positive-Sequence Voltage Vector Based on Simple Mathematical Transformations[J]. IEEE Transaction on Industrial Electronics, 2009,56(5):1539-1547
    [56] Jan Svensson, Massimo, Ambra sannino. Practical Implementation of Delayed Signal Cancellation Method for Phase-Sequence Separation[J]. IEEE Transactions on Power Delivery, 2007, 22(1):18-26
    [57] Masoud Karimi-Chartemani, Houshang Karimi, M. Reza Iravani. A Magnitude/Phase-Locked Loop System Based on Estimation of Frequency and In-Phase/Quadratrue-Phase Amplitudes[J]. IEEE Transaction on Industrial Electronics, 2004,51(2):511-517
    [58] Houshang Karimi, Masoud Karimi-Ghartemani, M. R. Iravani. Estimation of Frequency and its Rate of Change for Applications in Power Systems[J]. IEEE Transactions on Power Delivery, 2004,19(2):472-480
    [59] Masoud Karimi-Ghartemani, Reza Iravani. A Nonlinear Adaptive Filter for Online Signal Analysis in Power Systems: Applications[J]. IEEE Transactions on Power Delivery, 2002,17(2):617-622
    [60] Karimi-Ghartemani, M.Reza Iravani. A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments[J].IEEE Transactions on Power Systems,2004,19(3):1263-1270
    [61]袁旭峰,程时杰,文劲宇.改进瞬时对称分量法及其在正负序电量检测中的应用[J],中国电机工程学报,2008,28(1):52-58
    [62] Mohsen Mojiri, Masoud Karimi-Ghartemani, Alireza Bakhshai. Estimation of Power System Frequency Using an Adaptive Notch Filter[J]. IEEE Transactions on Instrumentation and Measurement, 2007,56(6):2470-2477
    [63] Davood Yazdani, Mohesn Mojiri, Alireza Bakhshai. A Fast and Accurate Synchronization Technique for Extraction of Symmetrical Components[J]. IEEE Transactions on Power Electronics, 2009,24(3):674-684
    [64] Davood Yazdani, Alireza Bakhshai, Geza Joos. A Nonlinear Adaptive Synchronization Technique for Grid-Connected Distributed Energy Source[J]. 2008,23(4):2181-2186
    [65] D. Yazdani, A. Bakhshai, P.K. Jain. A Three-Phase Adaptive Notch Filter Based Approach to Harmonic/Rective Current Extraction and Harmonic Decomposition[J]. IEEE Transactions on Power Electronics, 2010,25(4):914-923
    [66] P. A. Regalia. An improved lattice-based IIR notch filter,”IEEE Transactions on Signal Procession[J], 1991, 39(9):2124-2128
    [67] Liu Hsu, Romeo Ortega, Gilney Damm. A Globally Convergent Frequency Estimator[J]. IEEE Transactions on Automatic Control, 1999, 44(4):698-713
    [68]夏宇闻. Verilog数字系统设计教程[M].北京:北京航空航天大学出版社,2008.6
    [69]陈瑶,金新民.直驱风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700