慢性酒精中毒脑组织形态学变化及Tau蛋白、β-APP表达与TSAH死亡机制关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     酗酒后轻微外力引起的致死性外伤性蛛网膜下腔出血(traumatic subarachnoid haemorrhage,TSAH)时有发生,TSAH常与酗酒有关,国内外学者对此已有共识,但其发生及死亡机制尚未完全清楚。本课题组前期已建立了稳定的大鼠灌酒后TSAH模型,结果显示,慢性灌酒组大鼠TSAH发生率及死亡率分别高达81%和76%,远高于急性灌酒组的27%和4.8%(P<0.01)。综合相关文献及前期实验结果,我们提出长期酗酒对中枢神经系统(central nerves systerm, CNS)代谢、功能和形态各方面的累积性毒理作用,可能构成协同脑震荡性损伤导致TSAH死亡的神经病理学基础的假设。本研究通过观察慢性灌酒中毒的CNS形态学变化,以及与神经纤维轴突运输、信号转导密切相关的Tau蛋白、β-APP表达状况,探讨酗酒与TSAH死亡机制的相关性。
     材料与方法
     1动物模型及分组
     CL级雄性SD大鼠,体重300±30g,常规分笼饲养,随机分:灌水组10只、灌水打击组10只、灌酒组10只、灌酒打击组29只、灌酒停酒组6只。连续灌胃食用水或白酒(52%v/v北京红星二锅头)4周,剂量:前2周8 ml/kg/次、后2周12 ml/kg/次,每天9:00和16:00间隔7小时两次灌胃。
     2方法
     灌水组和灌酒组最后一次灌胃2h后,戊巴比妥腹腔注射麻醉后股动脉放血处死;灌水打击和灌酒打击组用自制单摆式打击装置给予脑震荡性打击,同时监测心电15min,存活大鼠打击后观测2h,戊巴比妥腹腔注射麻醉后股动脉放血处死,灌酒打击组中死亡的大鼠归为死亡组,各组均立即剖胸主动脉插管,含钙2%多聚甲醛-2.5%戊二醛固定液灌注固定30min,开颅提取全脑,置于4%中性多聚甲醛液固定6h,旁正中矢状切取脑组织,常规石蜡连续切片,分别HE、Bielschowsky’s镀银染色及Tau蛋白、β-APP免疫组织化学染色,光镜观察组织病理形态,图像采集系统观测、采图,Image-Pro Plus 6.0图像分析软件累积积分光密度(IOD sum)等量化病理学测量。
     同时,备制透射电镜脑组织样本立即置入2.5%戊二醛中,按常规方法清洗、固定、包埋、切片、染色,在JEM-1400透射电子显微镜下观察。
     3统计分析
     所有实验数据均采用均数±标准差表示,通过SPSS 17.0及Excel 2003分析处理数据,检验方法采用方差分析(ANOVA)、独立样本T检验、卡方检验。统计学检验所得值差异显著性以P<0.05、P<0.01表示。
     结果
     1实验大鼠一般情况观察
     灌水组饮食、活动状况良好,体重持续增加,第2w始体重增加明显(P<0.01)。灌酒组毛发粗糙、无光泽,精神状况差,并随着灌酒时间延长,逐渐出现体形消瘦、营养不良、进食量、活动减少、肢体瘫软等慢性酒精中毒改变。灌酒组大鼠灌酒后体重逐渐下降,第1w、第3w、第4w体重均明显下降,较灌酒前均差异显著(P<0.01)。
     灌水打击组心电图呈一过性心率减慢、QRS波群波幅增大,0.3±0.16s后恢复;灌酒打击组大鼠QRS波群波幅明显增大,恢复时间1.7±0.36s,较灌水打击组明显延长(P<0.05);打击死亡组大鼠QRS波幅明显增大,10s-1min后心率进行性减慢后呈直线。
     灌酒打击组TSAH发生率和死亡率分别为79.3%,51.7%,显著高于灌水打击组(P<0.01,P<0.05),根据Fisher分级法,灌酒打击组大鼠TSAH级别高于灌水打击组。
     2常规大体和组织病理学观察
     灌水组神经元、胶质细胞形态和分布正常,神经纤维粗细染色均匀、排列平直紧密。灌水打击组全脑轻度淤血,散在局限性小灶性出血,神经元、胶质细胞轻度水变性,尼氏体浅淡、数目减少,神经纤维不规则扭曲增粗、断裂、周隙扩大,排列疏松。
     灌酒组全脑表面轻度淤血,神经元排列紊乱,形态不一,散在固缩深染1型变和肿胀淡染2型变神经元,胞体肿大变圆,核增大、偏位,中央性尼氏体溶解、消失;胶质细胞增生;小脑蒲肯野细胞固缩、数目减少、疏密不均;神经纤维排列稍疏松、间隙增大,轻度不规则增粗、变形。
     灌酒打击组全脑表面弥漫淤血,脑干周围多见厚层TSAH,未见明显脑挫裂伤,神经元及神经胶质细胞高度水变性、周隙扩大,多见核固缩、溶解、消失,中央尼氏体不同程度边集、溶解、消失,多见噬神经及卫星现象;散在神经元脱失,胶质细胞增生;小脑蒲肯野细胞不规则减少,染色、疏密不均、核固缩;延脑多见红色神经元及暗神经元;神经纤维疏松水肿、周隙增宽,可见明显增粗、扭曲、断裂,局部肿胀明显。灌酒停酒组大鼠较灌酒组神经元及神经纤维病变有所缓解。
     3透射电镜观察
     灌水组脑干组织致密,神经纤维轴索粗细均匀、形态规整,电子密度较高,髓鞘深色、厚薄均匀,轴膜和髓鞘结合紧密,神经骨架纤维粗细均匀;神经元核、线粒体、高尔基复合体、内质网丰富,大小形态、排列规整,多见核糖体。灌水打击组组织较疏松水肿,电子密度较低,神经纤轴索粗细、深浅不均,髓鞘厚薄不一、散在裂隙分层;神经骨架纤维水肿、排列松散;神经元线粒体疏松肿胀、嵴扩张,内质网轻度扩大,突触间隙增宽、致密斑密度降低。
     灌酒组脑干组织疏松水肿,神经轴索弥漫粗细、形态不均、排列紊乱,髓鞘不规则分层、厚薄不均,神经纤维轴浆疏密不均,神经骨架纤维粗细不一、部分溶解,髓鞘脂质散在裂隙分层,神经元线粒体明显疏松肿胀、嵴长短粗细不一、外膜不完整,可见胞体、核固缩神经元,核膜皱折、异染色质增多、聚集,核仁固缩;胶质细胞增多,间质疏松水肿。灌酒打击组脑干神经纤维髓鞘高度疏松水肿,可见板层分离、褶叠和内陷,絮状物附着,部分区域形成囊泡样突起突入周围间隙中;神经骨架纤维崩解,局部被絮状沉淀物和膜性结构所代替,周边可见膜性细胞器的积聚,可见空化的线粒体;突触数量减少,突触小泡堆积;胶质细胞增多,间质水肿;在轴膜和髓鞘改变区,轴浆和细胞器逐渐积聚,呈反应性轴突肿胀;神经元体积明显缩小,胞浆及核电子密度增高、核膜皱折,异染色质团块状聚集,核仁消失或变小,核浆比例增大,胞周缝隙增宽,胞膜不完整,线粒体和内质网明显疏松肿胀。灌酒停酒组大鼠较灌酒组神经元及神经纤维病变有所缓解,水肿减轻。
     4免疫组化观察
     4.1 Tau蛋白IOD sum值
     正常组脑组织Tau蛋白主要在神经元的轴突和胞浆阳性表达。灌酒组脑干、小脑、海马、额叶等脑区Tau IOD sum值显著减小(P<0.05)。灌水打击组额叶脑区Tau IOD sum值显著增高(P<0.05),脑干、小脑、海马等部位Tau IOD sum值变化差异不显著(P>0.05)。慢性灌酒打击组脑干、小脑、海马、额叶等部位Tau IOD sum值显著增高(P<0.05)。慢性灌酒打击死亡组脑干、海马、额叶等部位Tau IOD sum值均高于慢性灌酒打击存活组(P<0.05)。
     4.2β-APP IOD sum值
     正常组β-APP主要在神经元胞浆阳性表达。灌酒组脑干、小脑、海马等脑区IOD sum值显著增高(P<0.05),额叶变化不显著(P>0.05)。灌水打击组脑干、海马等脑区β-APP IODsum值显著增高(P<0.05),小脑、额叶等部位差异不显著(P>0.05)。慢性灌酒打击组脑干、小脑、海马、额叶等部位β-APP IOD sum值显著减小(P<0.05)。慢性灌酒打击死亡组小脑、海马等部位β-APP IOD sum值均显著高于慢性灌酒打击存活组(P<0.05)。
     结论
     1、慢性酒精中毒可引起CNS神经纤维细胞骨架的形态结构破坏,降低传导功能的代偿性,导致易损性增加,提示其可能为慢性酗酒后,在脑震荡性打击下高死亡率发生的病理形态基础。
     2、大鼠脑干、小脑、海马、额叶等脑区Tau蛋白、β-APP的表达和分布显示,慢性酒精中毒显著降低CNS骨架蛋白Tau表达、上调CNSβ-APP的表达,分析认为上述变化可能是长期慢性酗酒脑白质萎缩、神经突起数量减少的机制之一,参与了慢性酒精中毒TSAH死亡的病理代谢基础。
     3、结合本课题组前期工作结果,认为酗酒相关的TSAH中,慢性酒精累积性CNS毒理学效应构成了神经损伤的重要病理学基础,可能是协同轻微的脑震荡性打击促进死亡的机制之一。
Background and objective
     In recent years, alcoholism with a slight external force, causing traumatic subarachnoid hemorrhage (TSAH) to death shows a rising trend. TSAH was often reported alcohol-related, but its mechanism of occurrence and death has not yet been entirely clear. Our team has established a stable TSAH model after alcoholism in rats, with the incidence and mortality rate of TSAH 81% and 76%, in the chronic group, much higher than 27% and 4.8% in the acute group (P<0.01). Therefore, we proposed that the long-term cumulative toxicity of alcoholism on the central nervous system (CNS), especially that in the brain stem central life on the metabolism, function and morphology, commonly cause death with the synergistic effect of TSAH and concussion injury. This study is based on previous work, by observing neuronal axonal transport, signal transduction that is closely related to the Tau protein,β-APP expression and distribution, to further discuss the correlation of Tau Protein,β-APP and the mechanism of death associated with TSAH in cases of chronic alcoholism in rat brains.
     Materials and Methods
     1 Animals model and groups
     CL-class male SD rats weighing 300±30 g, sub-conventional breeding were randomly divided: chronic water group(n=10), chronic water group with strike(n=10), chronic alcoholism group(n=10), chronic alcoholism group with strike(n=29), chronic alcoholism group stop drinking 1 month(n=6). Intragastric administration with drinking water or white wine (Beijing Red Star Erguotou, 52% v / v) for 4 weeks, dose: 2 weeks before 8 ml / kg / time, 2 weeks after 12 ml / kg / time, 9:00 and 16: 00 interval 7 hours twice one day ig.
     2 Methods
     Disposal of the rats after 4 w: chronic water group and chronic alcoholism group were killed by femoral artery bleeding after intraperitoneal injection of pentobarbital 2 h after the last gavage, chronic water group with strike and chronic alcoholism group with strike were given a concussion blow by a home-made device with pendulum, with a simultaneous monitor of ECG for 15 min. Two hours after strike the rats were killed using the above method. The dead rats in chronic alcoholism group with strike were classified as dead group. Immediately after death, the rats were fixed by perfusion of fixative (2.5% glutaraldehyde, 2% paraformaldehyde) for 30 min, using aortic cannulation. The whole brains were extracted and fixed in 4% neutral paraformaldehyde for 6 h. Sagittal sections of the brain were prepared for routine paraffin serial sections, HE, Bielschowsky's silver staining and Tau protein,β-APP immunohistochemical staining. The pathological changes were observed with light microscopy, image acquisition system, mining plans, Image-Pro Plus 6.0 image analysis software, cumulative integral optical density (IOD sum) and other quantitative pathological measurements. Brain tissues for electron microscopy were immediately placed in 2.5% glutaraldehyde, washed, fixed, embedded, sectioned and stained by conventional methods, and were observed using the JEM-1400 transmission electron microscope.
     3 Statistical Analysis
     All experimental data analysis was performed using the softs of SPSS 17.0 and Excel 2003, including analysis of variance (ANOVA) test, independent sample T test, chi-square test. P<0.05 or P<0.01is regarded as significant.
     Results
     1 General observation
     For rats in chronic water group, diet and spirit were kept in good condition, and the weight increased continuously, especially in the second week, it had a significant increase (P<0.01). For rats in chronic alcoholism group, the hair was rough and dull, the mental state was poor. With the increase of alcoholism, gradually, the rats showed the loss of body weight, malnutrition, decrease of food intake and activity, body limp and other changes of chronic alcoholism. Chronic alcoholism rats decreased gradually in weight, with the weight after 1w, 3w, 4w was significantly lower than that before alcoholism (P<0.05).
     There were no significant changes in the heart rate before and after strike for rats in chronic water group and chronic alcoholism group (P>0.05). For rats in chronic water group with strike, the electrocardiogram transiently showed slow heart rate, increased QRS amplitude waves for 0.3±0.16 s; for rats in chronic alcoholism group, heart rate slowed down, QRS wave amplitude significantly increased and recoveried after 1.7±0.36 s. The recovery time was significantly longer than that in the chronic water group with strike (P<0.05); dead rats significantly increased QRS amplitude, the heart rate slowed down after 10 s-1 min,then became a straight line.
     TSAH morbidity and mortality in alcoholism group with strike were 79.3%, 51.7%, significantly higher than that in the water with strike group (P<0.05). According to Fisher grading, the grade of TSAH alcoholism with strike group was higher than that in water with strike group.
     2 General observation and histopathological observation
     In chronic water group, the brain surface was smooth without vascular texture. By HE staining, the neurons and glial cell were found to be normal in morphology and distribution. Nerve fibers arranged regularly and closely with uniform size and staining. Bielschowsky's silver staining showed that brain stem nerve fibers were straight and arranged closely. The brains of chronic water group with strike showed mild cerebral congestion and scattered and limited hemorrhage. Neurons and glial cells had mild edema, and Nissl bodies were stained more lightly with the number reduced. Nerve fibers were irregularly thicken, broken, had expanded perivitelline and arranged loosely, with no TSAH, contusion or other lesions.
     Chronic alcoholism rats showed mild cerebral congestion on brain surface with vascular texture. Neurons arranged in disorder, reduced in number. Some of them sporadically had type 1 (pyknotic darkly stained) or type 2 (swelling lightly stained) changes. The cells were swollen and round, the nucleus increased in size and displaced. Central nissl bodies dissolved and disappeared; glial cells proliferated; cerebellar Purkinje cell shrinked, reduced in number, with uneven spacing. Nerve fibers were arranged slightly loosely, with increased gap, as well as mild irregular thickening and deformation, but there were no TSAH, contusion and other changes found. In chronic alcoholism group with strike, congestion was found in brain surface, with thick patchy TSAH found mainly in ventral brain stem, and no cerebral contusion found. Neurons and glial cells were in a high degree of hydropic degeneration, with the perivitelline space expanded, and more nucleus pyknosis, dissolved, disappeared. Central Nissl bodies displaced peripherally in the cell, dissolved, disappeared at different levels, neuronophagia and satellitosis were commonly found; neurons sporadically disappeared, gliosis proliferated; cerebellar Purkinje cells were unregularly reduced in number with uneven staining, density and pyknosis; red and dark neurons were found more commonly in medulla; nerve fibers were loose and swollen, cell gap was widened with irregular thickening, distort, break, and local swelling. Chronic alcoholism group with a stop of 1 month had milder pathological changs in neurons and nerve fibers than chronic alcoholism group.
     3 TEM changes
     In chronic water group, the brain stem was dense, nerve fiber axonal had uniform thickness, regular shape and high electron density. The myelin was dark with uniform thickness, and was tightly shafted with the membrane. Axoplasm and myelin of nerve fiber were dense and uniform. Nerve skeleton fiber had uniform thickness. Neuronal nuclei had rich mitochondria, Golgi complex, endoplasmic reticulum, which were regular in size, shape and arrangement, with ribosome commonly found. For chronic water group with strike, the brain tissue was loose, loose and swollen and lower electron density. Thickness and coloration of axonal nerve fiber and thickness of myelin were uneven. Skeleton of nerve fibers were loose and swollen. The myelin sporadically had layered fracture. Mitochondria of neurons were loose and swelled with its cristae expanded. Endoplasmic reticulum expanded mildly, and synaptic cleft widened mildly, and density of dense plaque was decreased.
     For chronic alcoholism rats, the brain stem was loose and swollen, axonal nerve fibers were widespreadly uneven in thickness and shape, disorganized with the myelin layer irregular and uneven in thickness and density. Nerve fiber skeleton had uneven thickness with some of them dissolved. The myelin sporadically had layered fracture. Mitochondria of neurons was obviously swelling and loose, with various crest length and thickness, and the outer membrane disintegrated. Neurons with the pyknosis of cell body and nuclear were found, with the nuclear membrane folded, heterochromatin increased and clustered, nucleolar condensated; Glial cells increased in number and the interstitial was loose and swollen.
     In chronic alcoholism with strike group, the myelin sheath of nerve fibers was highly loose with serious edema in the brain stem. Lamellar separation, folding, and retraction were found in the myelin sheath with floc attachment. Vesicle-like protrusions formed in part of the region and broke into the surrounding gap. The microtubules and microfilaments collapsed with some of them replaced by membranous structures and some membranous organelles (including cavitation mitochondria) clustering around them. The number of synapses reduced, synaptic vesicles accumulated; glial cells increased, interstitial occurred edema. Axoplasm and organelles accumulated gradually in the changed membranes and myelin-axis and resulted in reactive axonal swelling.
     Size of neurons decreased, electron density of cytoplasm and nucleus increased, nuclear membrane folded, heterochromatin clustered, nucleolus disappeared or became smaller, the nuclear cytoplasm ratio increased, the extracellular gap was widened, the membrane was disintegrated; loose and swollen, mitochondria and endoplasmic reticulum loose swelling.
     4 The expression of Tau,β-APP
     4.1 The IOD sum of Tau
     In normal rats, Tau protein was expressed mainly in the axons and the cytoplasm. In the chronic alcoholism group, the Tau IOD sum of brainstem, cerebellum, hippocampus, frontal lobe and other brain regions reduced significantly (P<0.05); In the chronic water group with strike, Tau IOD sum of the frontal lobe and other brain regions was significantly higher (P<0.05), but that of brain stem, cerebellum, hippocampus and other parts had no significant change (P>0.05); In the chronic alcoholism and strike group, the brainstem, cerebellum, hippocampus, frontal lobe and other parts of Tau IOD sum value was significantly higher (P<0.05). In the chronic alcoholism group with strike, Tau IOD sum of the brain stem, hippocampus, frontal lobe and other parts were significantly higher in the death rats than in the survival rats (P<0.05).
     4.2 The IOD sum ofβ-APP
     In normal rats,β-APP was mainly expressed in the neurons cytoplasm. In chronic alcoholism rats, the brain stem, cerebellum, hippocampus and other brain regions had significantly higher IOD sum (P<0.05), but that of frontal lobe not (P>0.05). In the chronic water group with strike,β-APP IOD sum was significantly higher in the brain stem, hippocampus and other brain regions (P<0.05), but not in cerebellum, frontal lobe and other parts (P>0.05). In the chronic alcoholism and strike group,β-APP IOD sum was significantly reduced in the rat brain stem, cerebellum, hippocampus, frontal lobe and other parts (P<0.05), but that in the dead rats were significantly higher than that in the survival (P<0.05).
     Conclusions
     1. Chronic alcoholism damaged the cytoskeleton structure of nerve fibers in CNS, might degrade the compensation of conduction, and lead to the increase of vulnerability, suggesting that it may be the pathological basis of the high mortality in concussion after chronic alcoholism.
     2. Expression and distribution of Tau protein,β-APP in rat brain stem, cerebellum, hippocampus, frontal lobe suggested that chronic alcoholism significantly degraded the expression of Tau protein and caused overexpression ofβ-APP in CNS, as might be one of the mechanisms of white matter atrophy and reduction of neurite number, contribute the pathological basis in death of TSAH in chronic alcoholism.
     3. Combined with the results of previous work in our team, consider that the toxicological cumulative effects of chronic alcoholism in CNS constitute an important pathological basis in nerve injury in TSAH of the alcoholism-related, possibly, one of the mechanisms to promote the death with mild concussion.
引文
[1] Simonsen J.Fatal subarachnoid haemorrhage in relation to minor head injuries[J].J Forensic Med. 1967 Oct-Dec;14(4):146-155.
    [2] Deck JH, Jagadha V.Fatal subarachnoid hemorrhage due to traumatic rupture of the vertebral artery.[J]Arch Pathol Lab Med. 1986 Jun;110(6):489-493.
    [3] Harland WA, Pitts JF, Watson AA.Subarachnoid haemorrhage due to upper cervical trauma[J].J Clin Pathol. 1983 Dec;36(12):1335-1341.
    [4] Contostavlos DL.Massive subarachnoid hemorrhage due to laceration of the vertebral artery associated with fracture of the transverse process of the atlas[J].J Forensic Sci. 1971 Jan;16(1):40-56.
    [5] Mas JL, Bousser MG, Hasboun D, et al.Extracranial vertebral artery dissections: a review of 13 cases[J].Stroke. 1987 Nov-Dec;18(6):1037-1047.
    [6] Mant AK.Traumatic subarachnoid haemorrhage following blows to the neck[J].J Forensic Sci Soc. 1972 Oct;12(4):567-572.
    [7] Plant JR, Butt JC.Laceration of vertebral artery. An historic boxing death[J].Am J Forensic Med Pathol. 1993 Mar;14(1):61-64.
    [8] Cameron JM, Mant AK.Fatal subarachnoid haemorrhage associated with cervical trauma[J].Med Sci Law. 1972 Jan;12(1):66-70.
    [9] Rong-Qiao He, Jian-Ying Luo, Wei Li.Effect of Alcohol on Aggregation of Human Neuronal Tau Protein. Protein & Peptide Letters [J]1998;5(5):279-285.
    [10] Bramlett HM, Kraydieh S, Green EJ, et al.Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats[J].J Neuropathol Exp Neurol. 1997 Oct;56(10):1132-1141.
    [11] Gleckman AM, Evans RJ, Bell MD, et al.Optic nerve damage in shaken baby syndrome: detection by beta-amyloid precursor protein immunohistochemistry[J].Arch Pathol Lab Med. 2000 Feb;124(2):251-256.
    [12]刘洪恩,孙晓川.β-淀粉样前体蛋白与弥漫性轴索损伤[J].创伤外科杂志.2005;7(1):73-75.
    [13]唐文渊,孙晓川.颅脑损伤基础及临床研究的一些进展[J].创伤外科杂志.2002;4(2):65-67.
    [14] Leclercq PD, Stephenson MS, Murray LS, Simple morphometry of axonal swellings cannot be used in isolation for dating lesions after traumatic brain injury[J].J Neurotrauma. 2002 Oct;19(10):1183-1192.
    [15] Tomimoto H, Akiguchi I, Wakita H, et al.Ultrastructural localization of amyloid protein precursor in thenormal and postischemic gerbil brain[J].Brain Res. 1995 Feb 20;672(1-2):187-195.
    [16]赵丽,韩威,陈嘉峰等.酒精中毒大鼠脑血管病变及相应脑组织损伤的病理观察[J].中风与神经疾病杂志,2005;22(1):51-54.
    [17]于晓军,赵福弟,刘卯阳等.大鼠脑震荡模型的建立及病理学研究[J].法医学杂志. 1992;8(3):119-123.
    [18] Armin SS, Colohan AR, Zhang JH.Traumatic subarachnoid hemorrhage: our current understanding and its evolution over the past half century[J].Neurol Res. 2006 Jun;28(4):445-452.
    [19] Okten AI, Gezercan Y, Ergün R.Traumatic subarachnoid hemorrhage: a prospective study of 58 cases[J].Ulus Travma Acil Cerrahi Derg. 2006 Apr;12(2):107-114.
    [20]杨晓明,崔慧先.酒精对神经及内分泌系统作用的研究进展[J].白求恩军医学院学报. 2003;(01) .
    [21]张行海.乙醇的代谢及毒性机理[J].湖北省卫生职工医学院学报. 1998;(02) .
    [22]孟东升,刘志中.酒精对神经系统发育的影响[J].国外医学.神经病学神经外科学分册. 1996;(02) .
    [23]胡建.慢性酒中毒对大脑损害的形态学研究[J].国外医学.神经病学神经外科学分册. 1998;(02) .
    [24]徐广涛.灌酒大鼠脑组织tPA、MMP-9表达变化与外伤性蛛网膜下腔出血的关系研究[D].汕头大学2007.
    [25]万勇.急慢性酒精中毒大鼠脑组织S-100β、MBP表达与TSAH死亡关系的研究[D].汕头大学2010.
    [26]李品玉.急慢性酒精中毒大鼠脑组织nNOS、HSP70表达与TSAH死亡关系的研究[D].汕头大学2010.
    [27]陆一,高贵山,于晓军等.食用酒对脑组织Ngb、Hif-1α和Na~+,K~+-ATPase活力影响及其死亡机制[J].毒理学杂志. 2009;(02) .
    [28]于爱红,朴常福,张在人.酒精中毒研究进展[J].中国康复理论与实践.2004;10(11):690-691.
    [29]赵丽,韩微,陈嘉峰,等.酒精中毒大鼠脑血管病变及相应脑组织损伤的病理观察[J].中风与神经疾病杂志.2005;33(1):51-53.
    [30] Zink BJ, Walsh RF, Fenstel PJ.Effect of ethanol on traumatic injury [J].J Neurotrauma, 1993;10: 275.
    [31]王琰萍.对脑血管病患者脑白质疏松的临床研究[D],苏州大学,2004.
    [32] Appelman AP, Exalto LG, van der Graaf Y, et al.White matter lesions and brain atrophy: more than shared risk factors? A systematic review[J].Cerebrovasc Dis. 2009;28(3):227-242.
    [33]王汉东,段国升,谭启富等.弥漫性轴突损伤早期超微结构改变[J].中华神经外科杂志,2000;16(1):41-44.
    [34]张素珍,慢性酒精中毒性神经病87例临床分析[J] .中国神经精神杂志. 2001;1027 ( 2) : 141.
    [35] TUCK RR, Jackson M. Social and cognitive disorders in alcoholice[J] . Med J Avst, 1991;155 ( 4) : 225.
    [36]孙晓川.轴突细胞骨架对非中断性轴索损伤的反应及在亚低温治疗后的早期改变中华创伤杂志2000;(10) 585-588
    [37] Miguel-Hidalgo JJ, Cacabelos R.Beta-amyloid(1-40)-induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield[J].Acta Neuropathol. 1998 May;95(5):455-465.
    [38]周丽华,陈以慈,姚志彬等.胚胎隔或隔与蓝斑组织联合移植治疗老年性痴呆动物模型的形态学研究[J].解剖学报.1996;27 :169-173.
    [39] Rush DK, Aschmies S, Merriman MC.Intracerebral beta-amyloid(25-35) produces tissue damage: is it neurotoxic?[J].Neurobiol Aging. 1992 Sep-Oct;13(5):591-594.
    [40] Zemlan FP, Rosenberg WS, Luebbe PA, et al.Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins[J].J Neurochem. 1999 Feb;72(2):741-750.
    [41] Hart GW.Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J].Annu Rev Biochem. 1997;66:315-335.
    [42] Liu F, Iqbal K, Grundke-Iqbal I, et al.O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease[J].Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10804-10809.
    [43] Lefebvre T, Ferreira S, Dupont-Wallois L, et al.Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization[J].Biochim Biophys Acta. 2003 Jan 20;1619(2):167-176.
    [44] Planel E, Miyasaka T, Launey T, et al.Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease[J].J Neurosci. 2004 Mar 10;24(10):2401-2411.
    [45]钱慰,刘飞,朱俐等.蛋白质O-GLcNAc糖基化修饰对tau蛋白磷酸化修饰的影响[J].生物化学与生物物理进展.2003;30:623-629.
    [46] Flament S, Delacourte A, Mann DM.Phosphorylation of Tau proteins: a major event during the process of neurofibrillary degeneration. A comparative study between Alzheimer's disease and Down's syndrome[J].Brain Res. 1990 May 14;516(1):15-19.
    [47] Fasulo L, Ugolini G, Visintin M, et al.The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis[J].J Neurochem. 2000 Aug;75(2):624-633.
    [48] Raff MC, Whitmore AV, Finn JT.Axonal self-destruction and neurodegeneration[J].Science. 2002 May 3;296(5569):868-871.
    [49] Gabbita SP, Scheff SW, Menard RM, et al.Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury[J].J Neurotrauma. 2005 Jan;22(1):83-94.
    [50] Yan SD,Chen X,Fn J, et al.RAGE and tau peptide neurotoxicity in alzheimer’s disease (see comm-ents).Nature,1996,382:685-691.
    [51]赵丽,韩威,陈嘉峰等.酒精中毒大鼠脑血管病变及相应脑组织损伤的病理观察[J].中风与神经疾病杂志.2005;22(1):51-54.
    [52]陈晓刚,张林,廖志刚等.弥漫性轴索损伤的实验病理学研究[J].法医进展.9-17.
    [53]张岩,程爱国.神经细胞凋亡与细胞内钙离子生理病理机制[J].中国煤炭工业医学杂志.2007;10(6):631-633.
    [54] Koike K, Moore EE, Moore FA, Carl VS, et al.Phospholipase A2 inhibition decouples lung injury from gut ischemia-reperfusion[J].Surgery. 1992 Aug;112(2):173-180.
    [55] Brooks PJ.Brain atrophy and neuronal loss in alcoholism: a role for DNA damage?[J].Neurochem Int. 2000 Nov-Dec;37(5-6):403-412.
    [56] Mooney SM, Miller MW.Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus[J].Brain Res. 2001 Aug 17;911(1):71-81.
    [57]李燕,邢恩鸿,李春辉.酒精对大鼠海马兴奋性氨基酸含量的影响[J].河北医科学学报.2009; 30(3):289-291.
    [58] Tsai G, Gastfriend DR, Coyle JT.The glutamatergic basis of human alcoholism[J].Am J Psychiatry. 1995 Mar;152(3):332-340.
    [59] Schober W.The rat cortex in stereotaxic coordinates[J].J Hirnforsch. 1986;27(2):121-143.
    [60] Frautschy SA, Yang F, Calderón L, et al.Rodent models of Alzheimer's disease: rat A beta infusion approaches to amyloid deposits[J].Neurobiol Aging. 1996 Mar-Apr;17(2):311-321.
    [61] Giovannelli L, Casamenti F, Scali C,Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis[J].Neuroscience. 1995 Jun;66(4):781-792.
    [62] Alvarez XA, Miguel-Hidalgo JJ, Fernández-Novoa L, et al.Intrahippocampal injections of the beta-amyloid 1-28 fragment induces behavioral deficits in rats[J].Methods Find Exp Clin Pharmacol. 1997 Sep;19(7):471-479.
    [63] Adams JH, Doyle D, Ford I, et al.Diffuse axonal injury in head injury: definition, diagnosis and grading[J].Histopathology. 1989 Jul;15(1):49-59.
    [64] Maxwell WL, Watt C, Graham DI, et al.Ultrastructural evidence of axonal shearing as a result of lateralacceleration of the head in non-human primates[J].Acta Neuropathol. 1993;86(2):136-144.
    [65] Christman CW, Grady MS, Walker SA,Ultrastructural studies of diffuse axonal injury in humans[J].J Neurotrauma. 1994 Apr;11(2):173-186.
    [66]刘辉,陈俊抛,田时雨等.海马注射β淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用[J].中华神经科杂志.2000;(33)150-152.
    [67] Pettus EH, Christman CW, Giebel ML, et al.Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change[J].J Neurotrauma. 1994 Oct;11(5):507-522.
    [68] Games D, Adams D, Alessandrini R, et al.Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein[J].Nature. 1995 Feb 9;373(6514):523-527.
    [69] Forloni G, Tagliavini F, Bugiani O, et al.Amyloid in Alzheimer's disease and prion-related encephalopathies: studies with synthetic peptides[J].Prog Neurobiol. 1996 Jul;49(4):287-315.
    [70] Povlishock JT, Christman CW.The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts[J].J Neurotrauma.1995 Aug;12(4):555-564.
    [71] Fisher C, Kistler J, Davis J: Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980; 6:1-9.
    [1] Spillantini MG, Goedert M.Tau protein pathology in neurodegenerative diseases[J].Trends Neurosci.1998 Oct;21(10):428-433.
    [2] Franz G, Beer R, Kampfl A, et al.Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury[J].Neurology.2003 May 13;60(9):1457-1461.
    [3]崔行,郝建荣,张月强等.Tau蛋白与Alzheimer型老年痴呆[J].老年医学与保健.2001;7:136-138.
    [4] Dutcher SK.The tubulin fraternity: alpha to eta[J].Curr Opin Cell Biol.2001 Feb;13(1):49-54.
    [5] Dewar D,Yam PS,Dunn L,et a1.Oligodendrocyte pathology and its relation to axonal APP accumulation in white matter after focal cerebral ischemia in the cat[J].J Cereb Blood Flow Metab. 19(Supp1):S665.
    [6] Lee VM., Goedert M. Trojanowski JQ. Neurodegenerative tauopathies[J]. Annu. Rev. Neurosci. 24,1121–1159 (2001).
    [7]褚燕琦,李林.tau蛋白的磷酸化与Alzheimer病的神经元凋亡[J].中国老年学杂志.2005;25(3):351-354.
    [8] Lorío G, Avila J, Díaz-Nido J.Modifications of tau protein during neuronal cell death[J].J Alzheimers Dis. 2001 Dec;3(6):563-575.
    [9] Green SL, Kulp KS, Vulliet R.Cyclin-dependent protein kinase 5 activity increases in rat brain following ischemia[J].Neurochem Int. 1997 Oct;31(4):617-623.
    [10] Minger SL, Geddes JW, Holtz ML, et al.Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia[J].Brain Res. 1998 Nov 9;810(1-2):181-199.
    [11] Brott T, Broderick J, Kothari R, et al.Early hemorrhage growth in patients with intracerebral hemorrhage[J].Stroke. 1997 Jan;28(1):1-5.
    [12] Crawford F,Suo Z.Fang C, et al.Characteristics of the in vitro vasoactiviy of tau peptides[J]. Exp Neurol.1998,150(l):159-168.
    [13] Sutton ET, Hellermann GR, Thomas T.beta-amyloid-induced endothelial necrosis and inhibition of nitric oxide production[J].Exp Cell Res. 1997 Feb 1;230(2):368-376.
    [14] Busciglio J, Lorenzo A, Yeh J, et al.beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding[J].Neuron. 1995 Apr;14(4):879-888.
    [15] Olivieri G, Baysang G, Meier F, et al.N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and tau phosphorylation[J].J Neurochem. 2001 Jan;76(1):224-233.
    [16] Rapoport M, Ferreira A.PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons[J].J Neurochem. 2000 Jan;74(1):125-133.
    [17] Zemlan FP, Rosenberg WS, Luebbe PA, et al.Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins[J].J Neurochem. 1999 Feb;72(2):741-750.
    [18] Hart GW.Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J].Annu Rev Biochem. 1997;66:315-335.
    [19] Liu F, Iqbal K, Grundke-Iqbal I, et al.O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease.Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10804-10809. Epub 2004 Jul 12.
    [20] Lefebvre T, Ferreira S, Dupont-Wallois L, et al.Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization[J].Biochim Biophys Acta. 2003 Jan 20;1619(2):167-176.
    [21] Planel E, Miyasaka T, Launey T, et al.Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease[J].J Neurosci. 2004 Mar 10;24(10):2401-2411.
    [22]钱慰,刘飞,朱俐等.蛋白质O-GLcNAc糖基化修饰对tau蛋白磷酸化修饰的影响[J].生物化学与生物物理进展.2003;30:623-629.
    [23] Flament S, Delacourte A, Mann DM.Phosphorylation of Tau proteins: a major event during the process of neurofibrillary degeneration. A comparative study between Alzheimer's disease and Down's syndrome[J]. Brain Res. 1990 May 14;516(1):15-19.
    [24] Fasulo L, Ugolini G, Visintin M, et al.The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis[J].J Neurochem. 2000 Aug;75(2):624-633.
    [25] Raff MC, Whitmore AV, Finn JT.Axonal self-destruction and neurodegeneration[J].Science. 2002 May 3;296(5569):868-871.
    [26] Gabbita SP, Scheff SW, Menard RM, et al.Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury[J].J Neurotrauma. 2005 Jan;22(1):83-94.
    [27] Yan SD,Chen X,Fn J, et al.RAGE and tau peptide neurotoxicity in alzheimer’s disease (see comments) [J].Nature,1996,382:685-691.
    [28]孙瑞红,林世和,张艳.tau蛋白和中枢神经系统变性疾病[J].中华神经科杂志.2004;37:80-82.
    [29] Rong-Qiao He, Jian-Ying Luo, Wei Li.Effect of Alcohol on Aggregation of Human Neuronal Tau Protein[J]. Protein & Peptide Letters 1998,5(5):279-285.
    [30] Bramlett HM, Kraydieh S, Green EJ, et al.Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats[J].J Neuropathol Exp Neurol. 1997 Oct;56(10):1132-1141.
    [31] Gleckman AM, Evans RJ, Bell MD, et al.Optic nerve damage in shaken baby syndrome. Detection By beta-amyloid precursor protein immunohistochemistry. Arch pathol lab med 2000;124:251-256Am J Ophthalmol. 2000 Jun;129(6):831.
    [32]刘洪恩,孙晓川,β-淀粉样前体蛋白与弥漫性轴索损伤[J].创伤外科杂志.2005;7(1):73-75.
    [33] Otsuka N, Tomonaga M, Ikeda K.Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury[J].Brain Res. 1991 Dec 24;568(1-2):335-338.
    [34]唐文渊,孙晓川.颅脑损伤基础及临床研究的一些进展[J].创伤外科杂志.2002;4(2):65-67.
    [35] Leclercq PD, Stephenson MS, Murray LS, et al.Simple morphometry of axonal swellings cannot be used in isolation for dating lesions after traumatic brain injury[J]. Neurotrauma. 2002 Oct;19(10):1183-1192.
    [36] Tomimoto H, Akiguchi I, Wakita H, et al.Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain[J].Brain Res. 1995 Feb 20;672(1-2):187-195.
    [37]赵丽,韩威,陈嘉峰等.酒精中毒大鼠脑血管病变及相应脑组织损伤的病理观察[J].中风与神经疾病杂志.2005;22(1):51-54.
    [38] Yan SD, et al.An intracellular protein that binds tau peptide and mediates acurotoxicity in alzheimers[J].Nature,1997,389:689-695.
    [39] El Khoury J, Hickman SE, Thomas CA, et al.Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils[J].Nature. 1996 Aug 22;382(6593):716-719.
    [40] Webster S, Bonnell B, Rogers J.Charge-based binding of complement component C1q to the Alzheimer amyloid beta-peptide[J]. Am J Pathol. 1997 May;150(5):1531-1536.
    [41] Grabham PW, Monard D, Gallimore PH, et al.Modulation of Human Neurite Outgrowth by Serine Proteases: A Comparison of the Interaction of Thrombin and Prothrombin with Glia-Derived Nexin[J].Eur J Neurosci. 1991 Jul;3(7):663-668.
    [42] Smith-Swintosky VL, Zimmer S, et al.Opposing actions of thrombin and protease nexin-1 on amyloid beta-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons[J].JNeurochem. 1995 Sep;65(3):1415-1418.
    [43] Shea TB, Prabhakar S, Ekinci FJ.Beta-amyloid and ionophore A23187 evoke tau hyperphosphorylation by distinct intracellular pathways: differential involvement of the calpain/protein kinase C system[J].J Neurosci Res. 1997 Sep 15;49(6):759-768.
    [44] Ferreira A, Lu Q, Orecchio L.Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar A beta[J]. Mol Cell Neurosci. 1997;9(3):220-234.
    [45] Takashima A, Noguchi K, Michel G, et al.Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta[J]. Neurosci Lett. 1996 Jan 12;203(1):33-36.
    [46] Takashima A, Honda T, Yasutake K, et al.Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons[J]. Neurosci Res. 1998 Aug;31(4):317-23.
    [47]王忠诚.王忠诚神经外科学[M].武汉:湖北科学技术出版社.2005;3:366.
    [48]何朝晖,支兴刚.创伤性脑损伤后高血糖的发生机制及对预后的影响[J].创伤外科杂志.2004;6(2).149-151.
    [49] Pent elenyi T. Signif icance of endocrine studies in the general assessment and prediction of fatal outcome in head injury[ J] . Acta Neurochir Suppl( Wien).1992, 55: 21- 24.
    [50] Pentelényi T, Kammerer L.Changes in blood glucose after head injury and its prognostic significance[J]. Injury. 1977 May;8(4):264-268.
    [51]陈绍洋,朱萧玲,王强等.中华麻醉在线. http://www.csaol.cn. 2007sep.
    [52]赵珩,于振香,张海英等.去卵巢后痴呆大鼠模型β淀粉样蛋白及tau蛋白的变化及倍美力的干预作用[J].中国老年学杂志.2007;10(27):1853-1855.
    [53] Geller A. Neurological effects of drug and alcohol addiction. In: Miller N, ed. Comprehensive handbook of drug and alcohol addiction[J]. New York: Marcel Dekker Inc. 1991,599-624.
    [54] De Ferrari GV ,Inestrosa NC.Wnt signaling funtion in Alzheimer′s disease[J].Brain Res Brain Res Rev ,2000,33 (1):1-12.
    [55] Tong N, Sanchez JF, Maggirwar SB,Activation of glycogen synthase kinase 3 beta (GSK-3beta) by platelet activating factor mediates migration and cell death in cerebellar granule neurons[J]. Eur J Neurosci. 2001 May;13(10):1913-1922.
    [56] Deck JH, Jagadha V.Fatal subarachnoid hemorrhage due to traumatic rupture of the vertebral artery[J].Arch Pathol Lab Med. 1986 Jun;110(6):489-493.
    [57] Harland WA, Pitts JF, Watson AA.Subarachnoid haemorrhage due to upper cervical trauma[J]. J Clin Pathol. 1983;36(12):1335-1341.
    [58] Contostavlos DL.Massive subarachnoid hemorrhage due to laceration of the vertebral artery associated with fracture of the transverse process of the atlas[J]. J Forensic Sci. 1971 Jan;16(1):40-56.
    [59] Mas JL, Bousser MG, Hasboun D, et al. Extracranial vertebral artery dissections: a review of 13 cases[J]. Stroke.1987 Nov-Dec;18(6):1037-1047.
    [60] Mant A.K.Traumatic subarachnoid haemorrhage following blows to the neck[J]. Forensic Sci. Int.1972;12:567.
    [61] Plant J.R.Laceration of vertebral artery:A historic boxing death[J].Am J Forensic Med Pathol.1993;14:61.
    [62] Cameron J,Mant AK.Fatal subarachnoid hemorrrhages associated with cervical trauma[J]. MedSci Law.1972;12:66.
    [63]曹明莉.慢性酒精中毒所致的脑萎缩[J].湖北医学院学报.1991;12(1):68-70.
    [64] Elena García-Valdecasas-Campelo, Emilio González-Reimers, et al. Brain atrophy in alcoholics: Relationship with alcohol intake; liver disease; nutritional status, and inflammation[J] Alcohol and Alcoholism 2007;42(6):533-538.
    [65] ?elmíra Malatová, Da?a ?í?ková. Effect of ethanol on axonal transport of cholinergic enzymes in rat sciatic nerve[J].Alcohol 26 2002;115-120.
    [66] TUCK RR, Jackson M. Social and cognitive disorders in alcoholice[J]. Med J Avst, 1991, 155 (4):225.
    [67] Maxwell WL, Watt C, Graham DI, et al. Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates[J].Acta Neuropathol. 1993;86(2):136-144.
    [68] Pettus EH, Christman CW, Giebel ML, et al.Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change[J].J Neurotrauma. 1994 Oct;11(5):507-522.
    [69] Maxwell WL, Graham DI.Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers[J]. J Neurotrauma. 1997 Sep;14(9):603-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700