四旋翼飞行器控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题主要通过利用已有的相关技术,初步研究和设计了四旋翼飞行器控制系统。四旋翼飞行器属于旋翼式小型无人飞行器的一种,与传统的无人飞行器相比,四旋翼飞行器机动灵活性强,承载力高,适合于理想稳态和准稳态飞行条件下的全方位垂直起降,在军事和民用领域均有广阔的发展前景。
     本文工作目标是实现飞行器的平稳垂直起降和小角度内姿态调整。文中首先介绍了目前国内外四旋翼飞行器的发展状况和本课题的研究内容;其次对四旋翼飞行器的飞行原理从理论上进行了初步探讨,设计了飞行器系统的整体结构,采用结构模块化的思路,以AduC7026为主控制芯片,完成了系统主控模块、驱动模块、检测模块和执行模块的硬件电路设计;之后结合飞行器系统的硬件结构,采用C编程语言完成了系统软件编程部分的工作。
     作为一个MIMO欠驱动系统,四旋翼飞行器强耦合性,非线性和时变的动力学特征以及系统本身的不确定性等特点使得系统的控制变得十分复杂。针对这些问题,本文提出了一种基于H_∞控制理论的回路成型方法来进行系统控制器的设计,该方法将经典的回路成形法和带宽概念与现代的H_∞控制理论的鲁棒稳定性融合在一起,充分考虑系统不确定性的影响,保证控制系统的鲁棒稳定性,并优化性能指标。设计中首先对飞行器系统进行了动力学建模,之后采用H_∞回路成型法设计了系统鲁棒控制器,并通过仿真验证了控制器的控制效果。
     最后,进行了系统各个模块的调试,并在实验室条件下成功的实现了飞行器模型的离地飞行和垂直起降。通过飞行实验,验证了四旋翼飞行器控制系统设计方案的合理性。
In this paper, a new type of helicopter, Four-Rotor aircraft, has been designed and introduced. Four-rotor aircraft is a kind of Micro Unmanned Aerial Vehicle, compared with traditional unmanned aerial vehicle, the strong maneuverability and high bearing capability make it easy to achieve vertical take-off and landing under ideal stationary or quasi-stationary fight conditions, and provide the aircraft with a broad developing prospect in both military and civilian areas.
     The objective of the research is achieving the stable vertical take-off and landing of the aircraft and flying attitude adjustment in a small angle range. The present developing status of four-rotor aircraft at home and abroad and the main content of the research have firstly been introduced in the paper, then based on the investigation of four-rotor aircraft’s flight principle, an integral structure of the aircraft system has been designed by using a structure-modularizing method as designing concept and AduC7026 as the microcontroller, and the hardware circuit of the main control module, driving module, testing module and executive module have been accomplished with it. Combined with the hardware structure, the software programming of the system has also been fulfilled using C programming language.
     As an under-actuated multi-input and multi-output system, four-rotor aircraft has some unexpected dynamic features such as high coupling degree, non linearity and time-varying, this makes the controlling of the aircraft very complicated. To solve this problem, a loop shaping method based on H_∞control theory has been presented to realize the designing of system controller, the method combines classic loop shaping and the concept of bandwidth with the robust stability of modern H_∞control theory, and gives full consideration of the effect of system’s uncertainty to ensure robust stability of the system and optimizes the performance index. The dynamic module of the aircraft has been built for controller simulation, after simulating using Matlab, the control performance of the designed controller has been vertified.
     In the end, the performance of system modules has been tested, and the aircraft designed has completed its flying experiment under current laboratory codition successfully, which vertified the rationality of the designation.
引文
1 S. Park, D.H. Won, M.S. Kang, T.J. Kim, H.G. Lee. RIC (Robust Internal-loop Compensator) Based Flight Control of a Quad-Rotor Type UAV. IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005: 3543~3545
    2 E. B. Nice. Design of a Four Rotor Hovering Vehicle. Phd Thesis, University of Cornell. 2004: 47~55
    3 C. A. Clifton. Hybrid System Based design for the Coordination and Control of Multiple Autonomous Vehicles. Phd Thesis, University of Vanderbilt. 2005: 10~44
    4 Kong Wai Weng, Mohamad Shukri b. Zainal Abidin. Design and Control of a Quad-Rotor Flying Robot For Aerial Surveillance. IEEE Student Conference on Research and Development. 2006: 172~176
    5彭军桥,吴安德,陈慧宝.四桨碟形飞行器发展现状及其关键技术.中国航天. 2003, (8): 27~29
    6 P. McKerrow, "Modelling the Draganflyer four-rotor helicopter" Proceedings of the EEE International Conference on Robotics andAutomation, USA, 2004: 26~49
    7 Bruno Herisse, Francois-Xavier, ea tl. Hovering Flight and Vertial Landing Control of a VTOL Unmanned Aerial Vehicle Using Optical Flow. Proceding of IEEE International Conference on Intelligent Robots and Systems. 2008: 802~806
    8 E. B. Nice. Design of a Four Rotor Hovering Vehicle. Phd Thesis, University of Cornell. 2004: 1~10, 30~38
    9 N. Guenard, T. Hamel, and V. Moreau. Dynamic Modelling and Intuitive Control Strategy for an X4-Flyer. Proceding of IEEE International Conference on Control and Automation. 2005, 1: 1~6
    10 T. Hamel, R. Mahony, and A. Chriette. Visual Servo Trajectory Tracking for a Four Rotor VTOL Aerial Vehicle. IEEE Trans. on Robotics and Automation. 2002: 2782~2787
    11王永.“反电势法”无刷直流电机控制系统研究.东南大学硕士学位论文. 2003: 1~5
    12牛海清,谢运祥.无刷直流电动机及其控制技术的发展.微电机, 2002, 35(5):36~38
    13 S. Bouabdallah, A.Noth and R. Siegwart. Modeling of the“OS4”Quadrotor. EPFL. 2004: 2~15
    14 S. Bouabdallah and R. Siegwart. Backstepping and sliding-mode techniques appliedto an indoor micro quadrotor. Proceding of 2005 IEEE International Conference on Robotics and Automation, 2005: 2250~2252
    15 P. Castillo, A. Dzul, and R. Lozano. Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraft. IEEE Trans. on Control Systems Technology. 2004, 12(4): 511~515
    16 M. L. Civita, G. Papageorgiou. W. C. Messner. T. Kanade. Design and Flight Testing of a Gain-scheduled Loop Shaping Controller for Wide-envelope Flight of a Robotic Helicopter. Proceedings of the American Control Conference. 2003: 4194~4199
    17 M. Chen, M.Huzmezan. A Simulation Model and H_∞Loop Shaping Control of a Quad Rotor Unmanned Air Vehicle. Modelling and Simulation 2003, IASTED International Conference, Palm Springs, California, USA. 2003: 383~401
    18 S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin. Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode vs Reinforcement Learning. Proceding of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005: 3713~3715
    19杨明志,王敏.四旋翼微型飞行器控制系统设计.计算机测量与控制. 2008,16(4): 485~486
    20符冰,方宗德,侯宇.一种新型微旋翼飞行器的设计与控制.航空制造技术. 2006, (5): 91~92
    21宋子善,沈为群.无人直升机综合飞行控制系统设计.北京航空航天大学学报. 1996, 6(25): 279~280
    22陈平,罗晶. ADuC702x系列嵌入式系统原理及应用.北京航空航天大学出版社. 2009: 47~49
    23张琛.直流无刷电动机原理及应用.机械工业出版社. 2004: 4~8
    24刘瑾.无刷直流电机无位置传感器控制方法的研究.浙江大学硕士学位论文. 2007: 43~46
    25张代祥.无刷直流电机无位置传感器控制机理的研究.天津大学硕士论文. 2006: 10~13, 28~31
    26周托.无位置传感器无刷直流电机控制系统的设计与研究.西北工业大学硕士论文.2006: 6~23
    27杨光,李醒飞.无刷直流电机反电势过零点检测转子位置研究.电力电子技术. 2008, 42(10): 18~19
    28 J. X. Shen, K. J. Tseng. Analyses and compensation of rotor position detection error in sensor-less PM brushless DC motor drives. IEEE Transactions on Energy Conversion, 2003, 18(1): 88~91
    29郝晓辉,刘昌旭.无位置检测器无刷直流电机自寻最佳点切换法.微电机. 1998,31(1): 22~24
    30 Ahmcd Rubaai, Rai Kotaru, Masayuki Terashima. A Continually On-line-Trained Neural Network Controller for brushless DC motors Drives. IEEE Trans. on Industry Application.2000, 36(2): 477~482
    31 Abdelhamid Tayebi and Stephen McGilvray. Attitude Stabilization of a VTOL Quadrotor Aircraft. IEEE Trans. on Control Systems Technology. 2006, 14(3):562
    32 C. A. Clifton. Hybrid System Based design for the Coordination and Control of Multiple Autonomous Vehicles. Phd Thesis, University of Vanderbilt. 2005: 12~36
    33杨庆华,宋召青,时磊.四旋翼飞行器建模、控制与仿真.海军航空工程学院学报. 2009, 24(9): 499~500
    34 G. Papageorgiou, K. Glover. Taking Robust LPV Control into Flight on the VACC Harrier. Proceedings of the 39th IEEE conference. on Decision and Control. 2000: 4560~4564
    35 W. Rugh, J. S. Shamma. Research on Gain Scheduling. Automatica. 2000, 36: 1413~1420
    36 M. L. Civita, G. Papageorgiou. W. C. Messner. T. Kanade. Design and Flight Testing of a Gain-scheduled Loop Shaping Controller for Wide-envelope Flight of a Robotic Helicopter. Proceedings of the American Control Conference. 2003: 4197~4200
    37王德进. H2和H_∞优化控制理论.哈尔滨工业大学出版社. 2001: 92~147
    38穆向阳. H_∞控制系统理论与应用研究.西北工业大学硕士论文. 2001: 6~10
    39 F. Tadeo, O. P. Lopez, and T. Alvarez. Control of Neutralization Processes by Robust Loopshaping. IEEE Trans. Contr. Syst. Tech. 2000, 8(2): 239~245
    40 Y. Huang, Y. Xia, and Y. Wang. Robust H_∞Controller Design by Loop Shaping Approach. Proceedings of the 3rd World Congress on Intelligent Control and Automation. 2000: 3376~3379
    41 A. Nobakhti. Neil Munro. A New Method for Singular Value Loop Shaping in Design of Multiple-channel Controller. IEEE Trans. on Automatic Control. 2004, 49(2): 250~253
    42 L. Xia, W. Messner. Loop Shaping for Robust Performance Using R-bode Plot. American Control Conference .2005: 2869~2870
    43傅彩芬,谭文,刘吉臻.基于回路成形的鲁棒增益调度控制器设计.信息与控制. 2005, 34(2): 153~155
    44吴旭东,解学书. H_∞鲁棒控制中的加权阵选择.清华大学学报. 1997, 37(1): 28~30
    45张力军,肖颖越,程鹏. H_∞中的规范化LCF法在综合控制系统设计中的应用.航空学报. 2000, 21(3): 267~268
    46刘玉燕.基于H_∞环路成形的控制器设计及简化方法研究.华北电力大学硕士学位论文. 2004: 4~6
    47薛定宇.反馈控制系统设计与分析—MATLAB语言应用.清华大学出版社. 2000: 175~188
    48王正林,王胜开,陈国顺. MATLAB/Simulink与控制系统仿真.电子工业出版社, 2006: 51~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700