羧酸仲丁酯对映体在β-环糊精衍生物上的手性拆分及其量子化学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用气相色谱法在全甲基β环糊精手性色谱柱(PMBCD)和(2,3二O甲基6 O叔丁基二甲基硅基)β环糊精(MeTBDMSβCD)上考察了溶质结构、柱温及固定相结构等对羧酸仲丁酯对映体分离的影响;结果表明,随着羧酸仲丁酯中羧基基团的增大,羧酸仲丁酯对映体的分离因子(α)和分离度(Rs)先增大后减小,乙酸仲丁酯对映体分离效果最好。而且,羧酸仲丁酯对映体的容量因子(k′)和分离因子(α)的对数与羧基中烷基基团参数π和Es间具有良好的线性关系。随着柱温升高,羧酸仲丁酯对映体的容量因子(k′)、分离因子(α)和分离度(R)也随之减小。对映体在全甲基β环糊精手性色谱柱的分离效果好于在(2,3二O甲基6 O叔丁基二甲基硅基)β环糊精手性色谱柱上。通过对对映体分离过程中的热力学参数的计算,探讨光学异构体分离过程的驱动力;结果表明羧酸仲丁酯对映体在β环糊精衍生物手性色谱柱(CyclodexB和CycloSilB)上的分离过程是一个焓驱动过程并存在着焓熵补偿关系。
     运用量子力学PM3方法模拟乙酸仲丁酯((R/S) BAA)与全甲基β环糊(PMBCD)的主客相互作用,探讨(R/S) BAA在PMBCD上的手性识别机理。量子化学PM3方法模拟和热力学参数计算结果表明,客体(R/S) BAA对映体与主体PMBCD形成的最稳定结合物的几何结构明显不同,(R/S) BAA分子中手性碳(C*)接近葡萄糖甙单元中2 ,3位手性碳,(R) BAA与PMBCD结合比(S) BAA与PMBCD结合更紧密,(R) BAA PMBCD结合能小于(S) BAA PMBCD,前者比后者更稳定。这种模拟结果与气相色谱对映选择性结果完全一致。
     包结前后主体和客体分子的某些结构和性质,如主体腔体大小及形状、客体分子形变能发生了较为明显的变化,说明在环糊精与(R/S) BAA对映体的结合过程中,范德华作用对主客体包结物的稳定性及结构性质存在重要的影响。
     运用量子力学PM3方法模拟乙酸仲丁酯((R/S) BAA)与(2,3二O甲基6 O叔丁基二甲基硅基)β环糊精(MeTBDMSβCD)的主客相互作用,探讨(R/S) BAA在MeTBDMSβCD上的手性识别机理。量子化学PM3方法模拟和热力学参数计算结果表明,客体(R/S) BAA对映体与主体MeTBDMSβCD形成的最稳定结合物的几何结构明显不同,其中(R) BAA MeTBDMSβCD包结物中,客体分子整体相对垂直环糊精糖苷氧所成平面,(S) BAA MeTBDMSβCD包结物中,客体分子明显倾斜,与环糊精糖苷氧所成平面约成30°角。(R/S) BAA MeTBDMSβCD中,客体分子完全被包结在MeTBDMSβCD空腔内,且亲水基团均朝向环糊精窄口端, (R) BAA MeTBDMSβCD结合能小于(S) BAA MeTBDMSβCD,前者比后者更稳定。
The separation of enantiomers of sec butyl carboxylicates on theβcyclodextrin derivatives chiral column had been studied by gas chromatography. The effect of sec butyl carboxylicates structure and column temperature on the separation of enantiomers of sec butyl carboxylicates had been investigated. On the other hand, the thermodynamic parameters in the process of separation of enantiomers on theβcyclodextrin derivatives chiral column (Cyclodex B and CycloSil B) were determined in order to discuss driven power in the process of separation of optical isomers. Chiral recognization mechanism of (R/S) BAA enantiomers on PMBCD was investigated. The experiment results showed that the separation factor (α) and separation degree (Rs) of sec butyl carboxylicates decreased when the chain size of carboxyl group increase. The separation degree of enatiomers of sec butyl acecate was best. There is excellent linear relationship between the logarithms of capacity factor (k′) and separation factor (α) of enantiomers of sec butyl carboxylicates and alkyl group parameters on the carboxyl group such asπand Es. And, the capacity factor (k′), the separation factor (α) and separation degree (Rs) of the enatiomers of sec butyl carboxylicates decreased with the increasing of the column temperature. It was demonstrated that the separation of enatiomers of sec butyl carboxylicates on theβcyclodextrin derivatives chiral column (Cyclodex B and CycloSil B) was enthalpy driven process and there was enthalpy entropy compensation.
     Host guest complexation of permethlatedβcyclodextrin (PMBCD) and with enantiomers of sec butyl acecates ((R/S) BAA) was simulated by Quantum Mechanics PM3 method. The Modeling results showed the stabilization complexation structures which formed with (R/S) BAA enantiomers and PMBCD were different. The stabilization energy of (R) BAA PMBCD complex was less than that of (S) BAA PMBCD. The chiral carbon in BAA for (R/S) BAA PMBCD complexes was closed to C(2) and C(3) in glucose unit. The former is stabler than the latter. The results correspond to the experimental findings from enantioselective gas chromatography.
     The structures and properties of the houst and the guest before and after inclusion,such as the size and shape of the houst cavity, the deformation energe of the guest molecular can be more significant changes, indicating that in the process of inclusion with CDs and (R/S) BAA enantiomers, the Van der Waals interaction plays an important role on the host guest inclusion process.
引文
[1] Chiral drug analysis[J].Chemical&Engineering News ,1990 ,68 (12) :38~44.
    [2]Caldwell J .‘Chiral pharmacology’and the regulation of new drugs[J]. Chemistry & Industry ,1995 , (5) :176~179.
    [3]刘凤艳,庞小,郑轶群.手性物质及其拆分方法[J].辽宁化工2007,36(11),784 786
    [4] Lipkowitz K ,Landwer J , Parden T. Theoretical studies of a chiral stationary phase used in column chromatography[J]. Anal Chem ,1986 ,58 :1611.
    [5]梁会,彭彩虹.手性拆分技术的研究进展[J].精细石油化工,2004, (6),65 70.
    [6]刘峻,韩小茜,李军.效液相色谱手性固定相拆分手性化合物[J].化学试剂, 2006, 28 (3) , 172 174.
    [7]尹国,刘振华,曾姗姗.手性异构体拆分方法的研究进展[J].中国药物化学杂志, 2001,11(1):57 62
    [8]曾苏,章立,沈向忠.光学异构体的气相色谱拆分法[J],色谱,1997,12(4):259 262
    [9]罗维早,李章万,张志荣.手性药物的色谱分离进展[J].华西药学杂志,2000,15(4):295 298
    [10]申睿.手性选择剂及其在手性药物分离[J].分析中的应用进展国外医学药学分册,2005 .32(6):413 418.
    [11]施介华,严巍,江峰.分子模型及其在手性识别机理研究上的应用[J].分析化学,2004.32(11):1421 1425
    [12] W.J.Hehre,L.R adom,P.V.R.Schleyer.Ab initio Molecular Orbital Theory[M]. Wiley&Sons,1986.
    [13] Bersuker I B,Leong M K,Boggs J E et al. Int’J.Quantum Chem.[M].1997,1051.
    [14] W.J.Hehre,L.R adom,P.V.R.Schleyer.,Ab initio Molecular Orbital Theory[M]. New York:John Wiley&Sons,1986.
    [15]林梦海.量子化学计算方法与应用[M].北京:科学出版社.2004.
    [16] R.G Parr and W.yang.Density functional theory of atoms and molecules[M].Oxford University Press,O xford,1991.
    [17]笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用[J].淮南师范学院学报,2007,9(3):101.
    [18] Dewar M.J.S, The semipirical Approach to Chemistry[J].Int’J Quantum Chem. 1992,44:427.
    [19] Bersuker I B,Leong M K,Boggs J E. Int’J.Quantum Chem.[M].1997,1051.
    [20] Lipkowitz K B. J . Chrom atogr. A, 1994 , 666 : 493 503
    [21] Lipkowitz K B. J . Chrom atogr. A, 1995 , 694 : 15 37
    [22]仇缀百,万维勤,叶德泳,曹观坤.药物设计学[M].高等教育出版社, 1999 , 10 : 211 224
    [23] Lipkowitz K B , Demeter D A , Zegarra R , Larter R , Darden T. J . A m . Chem . Soc., 1988 , 110 (11) : 3446 3452
    [24] Lipkowitz K B , Demeter D A , Landwer J M , Parish C A , Darden T. J . Com put . Chem . 1988 , 9 (1) : 63 66
    [25] Lipkowitz K B , Demeter D A , Parish C A. A nal . Chem . 1987 , 59 (13) : 1731 1733
    [26] Isaksson R , Wennerstrom H , Wennerstrom O. Tet rahedron , 1988 , 44 (6) : 1697 1705
    [27]郭瑞萍,刘旭光.量子化学软件的应用研究[J].量子化学软件的应用研究,2009,22(8):72 74
    [28]李光源,李宝惠,张卉,陈鸿琪.β环糊精及其包结物作为气相色谱固定相分离混合物研究[J].理化检验一化学分册,2001,8:360 363
    [29]黄春宝,汪阳.利用β环糊精及其衍生物分离手性化合物[J].黄冈师范学院学报.2001,10:54 57
    [30] TanakaY,TerabeS.Enantionmer separation of acidic racemates by capi1lary electrophoresis using cationic and amphotericβcyclodextrins as chiral selector. J.Chromatogr [A].1997,781:151 160
    [31]童林荟.环糊精化学基础与应用(M).北京:科学出版社, 2001
    [32] Connors K A. The stability of cyclodextrin complexes in solution [J]. Chem Rev, 1997, 97(5): 1325—1358
    [33] Croft,A.P.; BartSch,R.A. Synthesis of chemically modified cyclodextrins. Tetrahedron. 1983,39,1417 1474.
    [34] Khan,A.R.;Forgo,P.;Stine,K.J.; D’Souza,VT. Methods for se1ective modificationsof cyclodextrins.Chem.Rev.1998,98,1977 1996.
    [35] Engeldinger E, Armspach D, Matt D. Capped cyclodextrins [J]. Chem Rev, 2003, 103(11): 4147 4174
    [36] Hapiot F, Tilloy S, Monflier E. Cyclodextrins as supramolecular hosts for organometallic complexes [J]. Chem Rev, 2006, 106(3): 767 781
    [37] Scharwachter K P, Kranz O, Voss J,et al. Separation of chlorophenols by cyclodextrin supported capillary zone electrophoresis Monitoring of the electrochemical dehalogenation of pentachlorophenol. J Microcolumn Sep, 2000, 12(2): 68 74
    [38] Berthod A, Li WY, Armstrong DW. MultiPle enantioselective retention mechanisms on derivatized cyclodexirtn gas chromatographic chiral stationary phases[J]. Ana1.Chem., 1992,64(8):873 879.
    [39] Venema A, Henderiks H, Geest R V.The enantioselectivity of modified eyeledextrins:Studies on interaction mechanisms[J].HRC Journal of High Resolution Chromatography, 1991,14(10):676 680.
    [40] K?nig WA,Icheln D,Runge T,et a1.Cyclodextrins as chiral stationary phases in capillary gas chromatography.7.Cyciodextrins with an inverse substitution pattern synthesis and enantioselectivity[J] . HRC Journal of High Resolution Chromatography, 1990,13(10):702 707.
    [41] Zhang, Q.; Liu, Y. Chem. J. Chin. Univ., 2004, 25(3): 458 [张强,刘育.高等学校化学学报, 2004, 25(3): 458]
    [42] You, C. C.; Zhao, Y. L.; Liu, Y. Chem. J. Chin. Univ., 2001, 22(2): 218 [尤长城,赵彦利,刘育.高等学校化学学报, 2001,22(2): 218]
    [43] Qi, A. D.; Li, L.; Liu, Y. J. Chin. Pharm. Sc., 2003, 12(2): 15
    [44]邓芳,兰支利,尹笃林.α取代丙酸酯化合物在全甲基环糊精固定相上的手性拆分[J].分析化学,2006,34(8),1122 1124
    [45]周良模,蒋艳杰,王清海.仲醇类对映体衍生物在全甲基β环糊精上的拆分研究[J].化学学报,2000,58(2),240 242
    [46]申刚义,杨新玲,崔箭. 3种拟除虫菊酸甲酯在环糊精气相色谱固定相上的手性拆分及热力学研究[J].分析测试学报,2008,27(12),1303 1307
    [47]周良模,赵春霞,王清海.除虫剂二氯菊酸甲酯的手性分离[J].分析化学,2000,28 (2): 172– 175
    [48] Liu, L., Quo, Q. X.PM3 molecular orbital calulations on the complexation ofαcyclodextrin with acetophenone.Chem.Phys.Len.1999,307,117 120
    [49] Liu, L., Li X.S, PM3 studies on the complexation ofαcyclodextrin with benzaldehyde and acetophenoe.J.Mol.Struct.THEOCHEM.2002,531,127 134.
    [50] Sakurai,M.;Kitagawa,M.;Hoshi,H.I.Y;Chujo,R.A molecular orbital study of cyclodextrin inclusion complexes.III.Dipole moments of cyclodextrins in varioust types of inclusion complexes.Carbohydr.Res.1990,198,181 191.
    [51] Botsi,A.;Yannakopoulou,K.;Hadjoudis,E.;Waite,J.AM1 calculations on inclusion complexes of cyclomaltoheptaose(βcyclodextrin) with l,7 dioxaspiro undecane and nonanal,and comparison with expcrimental results Carbohyd Res.1996,283,l 16.
    [52] Bodor,N.S.;Huang,M.J.;Watts,J.D.theoretical Studies on the stmctures of natural and alkylated cyclodextrins.J.Pharm.Sci.1995,84,330 336.
    [53] Liu,L.;Guo,Q.X.Use of Quantum Chemical Methods to study Cyclodextrin Chemistry.Inclusion phenom.Macrocyclic Chem.2004,50,95 103
    [54] K?nig W A, Lutz S, Wenz G, et al. Cyclodextrins as Chiral Stationary Phases in Capillary Gas Chromatography Part II: Heptakis (3 O acetyl 2,6 di O pentyl)βcyclodextrin [J]. HRC & CC, 1988, 11: 506–512.
    [55]赖国华,周仁贤,韩晓祥.焓熵补偿的热力学解释[J].化学通报,2005,12,928 934
    [56]聂孟言,周良模,王清海.扁桃酸及其类似物在全甲基环糊精固定相上的手性拆分[J].分析化学,2000,28(11):1366 1370
    [57] Doughertywetal.Stereoselective addition ofαchloro allylic chromium reagents to aldehydes Tetrahedron.Lett.1990,30:4389~4390
    [58]张健,张汉邦,傅若农.乳酸烷基酷在接枝聚硅氧烷β环糊精固定相的手性拆分[J].分析测试学报,2000,19(1):68 70
    [59]李继文,王川.气相色谱法测定仲丁醇的纯度及杂质含量[J].石油化工, 2006,35(6):587-590.
    [60] Zheng ZX, Lin JM, Chan WH, Lee AWM, Huie CW. Separation of enantiomers in microemulsion electrokinetic chromatography using chiral alcohols ascosurfactants[J]. Electrophoresis, 2004,25(18 19):3263 3269.
    [61] Guidoni AG, Paladini A, Piccirillo S, Rondino F, Satta M, Speranza M. Modelling neurotransmitter functions: a laser spectroscopic study of (1S,2S) N methyl pseudoephedrine and its complexes with achiral and chiral molecules. Organic & Biomolecular Chemistry, 2006,4(10):2012 2018.
    [62] Dwivedi P, Wu C, Matz LM, et al. Gas phase chiral separations by ion mobility spectrometry[J]. Analytical Chemistry, 2006,78(24):8200 8206.
    [63]周良模,蒋艳杰,王清海.直链仲醇类对映体衍生物在全甲基β环糊精上的拆分机理[J].2000,28(1),106 110.
    [64] Min Li, Junmin Huangl, Tingyu Li. Enantiomeric separation of alcohols and amines on a prolinechiral stationary phase by gas chromatography[J]. Journal of Chromatography A, 2008,1191:199–204.
    [65] Smith ID, Simpson CF. Investigation into the GC separation of Enantiomers on a trifluoroacetylated cyclodextrin.[J].HRC Journal of High Resolution Chromatography, 1992,15(12):800 806.
    [66] WANG Er Hua(王尔华) translate and edit(编译). Quantitative Drug Design(定量药物设计). Beijing(北京):People’s Medical Publishing House(人民卫生出版社), 1983:34~60
    [67]于谦,顾峻岭.三种新的环糊精衍生物气相色谱固定相的研究[J].北京理工大学学报.2001,21(4):514 517
    [68] Kobor F, Angermund K, Schomburg .Molecular modelling experiments on chiral recognition in GC with specially derivatized cyclodextrins as selectors.J. High Res. Chromatog,, 1993,16(5) :299~311.
    [69] Li J., Carr P.W.Extra thermodynamic relationships in chromatograpgy enthalpy entropy compensation in gas chromatography[J].Journal of chromatography A,1994,670(1 2):105 116
    [70] Krug R R, HunterW G, Grieger R A. Enthalpy entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data J. Phys. Chem., 1976, 80 (21) : 2335~2341
    [71] Krug R R, HunterW G, Grieger R A. Enthalpy entropy compensation. 2.Separation of the chemical from the statistical effect.J. Phys. Chem., 1976, 80 (21): 2341~2351
    [72] Jose Manuel Madrid, Javier Pozuelo,Francisco Mendicuti, Wayne L. Mattice . Molecular Mechanics Study of the Inclusion Complexes of 2 Methyl Naphthoate withαandβCyclodextrins . J.Colloid and interface science ,1997,193,112 120
    [73]聂孟言,周良模,王清海,.α溴丙酸甲酯与β环糊精衍生物手性识别过程的模拟研究[J].化学学报,2001, 59(2): 268 273
    [74] Ko|¨hler,J . E. H. ; Hohla , M. ; Richters , M. ; Kênig , W. A. Angew. A molecular Dynamics simulation of the Complex Formation between Methyl (R)/(S) 2 Chloropropionate and Heptakis(3 O acetyl 2,6 di O pentyl)βCyclodextrin[J]. Chem. Ber. 1994 ,127(1): 119. 126
    [75] Ko|¨hler,J. E. H. ; Hohla , M. ; Richters , M. ; Cyclodextrin Derivatives as chiral Selectors investigation of the interaction with (R)/(S)–methyl 2 chloropropionate by enantioselective Gas Chromatography,NMR Spectroscopy and Molecular Dynamics simulation[J]. Angew. Chem. Int . Ed. Engl . 1992 , 31(3):319 320
    [76]李代禧,黄强,陈正隆,杨波,王慧荣,纪兰兰. 2苯乙醇α环糊精包合物的分子模拟研究.计算机与应用化学[J].2008.25(3):261 264
    [77] Kitagawa, M.; Hoshi, H.; Sakurai, M.. The large dipole moment of cyclomaltohexaose and its role in determining the guest orientation in inclusion complexes[J].Carbohydr. Res., 1987, 163(1): c1 c3
    [78]钟宇.β环糊精分离萘普生对映异构体的量子化学研究.化学试剂[J],2006,28 (2),118 120
    [79]施介华,肖科科,吕园园.α氯丙酸乙酯对映体与β环糊精的主客体相互作用[J].物理化学学报, 2009, 25(7): 1273 1278
    [80] Yan, C. L.; Li, X. H.; Xiu, Z. L.; Hao, C. Molecular modeling study of b cyclodextrin complexes with (+) catechin and ( ) epicatechin[J].J. Mol. Graph. 2007, 26(2):420 428
    [81]曹玉娟,鲁润华.1萘酚β环糊精包合物结构的理论研究[J].广东化工,2009,36(6):8 10
    [82] Huang, M. J.; Watts, J. D.; Bodor, N. Theroetical studies of inclusion complexes ofβcyclodextrin with methylated benzonic acids[J]. Int. J. Quantum Chem., 1997,64(6): 711
    [83] Steiner, T.; Koellner, G. Crastallineβcyclodextrin Hydrate at various Humidites:Fast,Continuous,and Reversible Dehydration Studied by X ray Diffraction[J]. J. Am. Chem. Soc., 1994, 116(12): 5122 5128
    [84]高海翔,鲁润华,曹玉娟,汪汉卿.含氮基团修饰β环糊精量子化学研究[J].化学物理学报, 2002, 15(5):375 378
    [85] Saenger, W.; Noltemeyer, M.; Manor, P. C.”Induced fit”type complex formation of the model enzyme a cyclodexrin[J].Bioorg. Chem., 1976, 5(2): 187 195
    [86] Chunli Yan,Xiaohui Li, Zhilong Xiu. A quantum mechanical study on the complexation of b cyclodextrin with quercetin[J]. Journal of Molecular Structure: THEOCHEM 764 (2006) 95–100
    [87] Vetter W, Klobes U, Hummert K,. Gas Chromatographic Separation of Chiral Organochlorines on Modified Cyclodextrin Phases and Results of Marine Biota Samples [J]. J. High Resolut.Chromatogr., 1997, 20: 85–93.
    [88] Magnusson J, Blomberg L G, Claude S,.Gas chromatographic enantiomer separation of atropisomeric PCBs using modified cyclodextrins as chiral phases. J High Resolut Chromatogr, 2000, 23(11): 619—627
    [89] Jaus A, Oehme M. Enantioselective HRGC separation of toxaphene congeners by ethylatedγcyclodextrins. J High Resolut Chroma togr, 2000, 23(4): 304 308
    [90] Takahisa E, Engel K H. 2,3 Di O methoxymethyl 6 O tert butyldimethylsilylβcyclodextrin, a useful stationary phase for gas chro matographic separation of enantiomers. J Chromatogr A, 2005, 1076(1 2): 148 154
    [91] Takahisa E, Engel K H. 2,3 Di O methoxymethyl 6 O tert butyldimethylsilylγcyclodextrin: A new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers. J Chromatogr A, 2005, 1063 (1 2): 181 192
    [92]Aroonsiri Shitangkoona, Jirawit Yanchindaa, Juwadee Shiowatana. Thermodynamic study on the gas chromatographic separation of the enantiomers of aromatic alcohols using heptakis(2,3 di O methyl 6 O tert butyldime thylsilyl)βcyclodextrin as a stationary phase[J]. Journal of Chromatography A, 2004,1049 : 223–226
    [93] Modi?ed cyclodextrins as chiral selectors: molecular modelling investigations on the enantioselective binding properties of heptakis(2,3 di O methyl 6 O tert butyldimethylsilyl)βcyclodextrin[J]. Journal of Chromatography B, 1998,708 1–20
    [94] Natthapol Issaraseriruk,Aroonsiri Shitangkoon,Thammarat Aree.Molecular docking study for the prediction of enantiodifferentiation of chiral styrene oxides by octakis(2,3 di O acetyl 6 O tert butyldimethylsilyl)βcyclodextrin[J]. Journal of Molecular Graphics and Modelling 2010,28:506–512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700