人工富氧环境对急进高原缺氧防护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展和军队远距投送能力的增强,人们由平原进入高原的速度明显加快,尤其是飞行员、考察或旅游等乘飞机进入高原的人群,不仅会在几个小时内突然暴露于高原低压缺氧环境,机体出现急性高原缺氧,而且需要马上展开工作或次日又要投入飞行,如何保障他们的工作能力和战斗力成为人们关注的热点。权威且成熟的高原阶梯习服和预缺氧训练等措施,由于耗时较长,不适用这种情况。高原供氧则可以通过提高吸入气氧浓度,增加氧分压,改善人体高原缺氧状况,并且具有高效、速效的特点,是急进高原人员较理想的缺氧防护措施。目前采用的高原供氧方式以鼻饲供氧为主,该方法具有节氧、节能的特点,但吸入气氧浓度波动大,而且对鼻黏膜有强烈刺激,舒适性差,影响夜间睡眠。高原富氧室则是通过弥散供氧方式增加室内空气氧浓度来提供人工富氧环境,由于不需佩戴任何吸氧装置,尤其适用于飞行员等,不仅要保证其供氧效果,更要保证其夜间休息和睡眠质量,维持机体体能与功效,确保次日飞行驾驶安全的人群。
     采用弥散供氧方式的供氧防护效果是肯定的,但由于缺乏针对不同高度和人群的适宜供氧水平、供氧时间等相关研究,至今没有权威的供氧标准和规范,而且目前国内科研多以高压或液氧储气瓶作为富氧室的氧源,这远远不能满足富氧室长时间使用的要求,急需研制出适合高原富氧室使用,可持续、大量弥散供给富氧气体的供氧系统。为此,本文根据西藏自治区高原弥散供氧系统研究和空军高原供氧建设项目的要求和委托,开展了不同供氧水平和供氧方式富氧环境对大鼠急性高原肺水肿防护效果的实验研究。并研究提出了在海拔3500m高原,急进第一天飞行员供氧防护供氧浓度为25%±0.5%〔吸入气氧分压(75±2)mmHg,生理等效高度(2200±150)m〕的标准,并以分子筛变压吸附制氧技术为基础,研制了高原分体式弥散供氧系统,建立了高原富氧室,然后通过人体高原现场实验,对符合该标准富氧室的供氧防护效果进行了评估。研究结果为高原富氧室的推广提供了应用研究基础,为西藏自治区高原弥散供氧系统的技术鉴定和空军高原供氧建设提供了医学实验依据。
     方法
     1.动物实验50只雄性Wistar大鼠随机分为地面对照组(C)、缺氧组(H)及富氧组1(OⅠ)、富氧组2(OⅡ)、富氧组3(OⅢ),每组l0只。除C组外,各实验组均以10m/s的速度上升至气压高度6000m,上升同时H组输入空气,OⅠ组和OⅡ组分别输入氧浓度35%和30%的富氧气体,OⅢ组则每4h空气与35%富氧气体交替输入,流量均为7L/min。24h后实验舱下降至地面,处死大鼠,取左肺测含水率,右肺前叶进行病理切片观察,右肺中后叶分别检测肺组织匀浆中的内皮素-1浓度和一氧化氮合酶活力。
     2.高原现场人体实验研制高原分体式弥散供氧系统,并利用该系统在海拔3500m高原建立氧浓度25.49%±0.26%富氧室(生理等效高度约2100m)。将18名世居平原人员分为平原组(P)、缺氧组(H)和富氧组(O)各6人。P组不进入高原,O组和H组人员乘飞机到达高原后,首先在未供氧情况下记录2组受试人员的心率和SaO2。晚22时至次日9时2组人员分别进入富氧室和普通房间休息,通过睡眠监护仪对受试人员休息期间的SaO2、脉搏波和手动信号进行监测。高原实验同时对P组各项数据在平原进行监测。监测结束后填写睡眠质量调查问卷。
     结果
     1.动物实验大鼠肺含水率C组最低(0.80%±0.006%, P<0.01),H组最高(0.83%±0.010%, P<0.01),3个供氧组居中,其中OⅢ组以0.81%±0.007%显著低于OⅠ组和OⅡ组(P<0.05)。一氧化氮合酶活力C组最高〔(1.49±0.24) U/mgpro, P<0.01〕,H组最低〔(0.78±0.28) U/mgpro, P<0.01〕,与H组比较,OⅠ组和OⅢ组NOS活力较强〔(1.06±0.17)mgpro,(1.09±0.20) mgpro, P<0.01〕,OⅡ组差异无显著性。内皮素-1浓度各组间差异无统计学意义。病理结果表明各实验组出现了不同程度肺水肿表现,由重至轻依次为H组、OⅡ组、OⅠ组、OⅢ组。
     2.高原现场人体实验O组供氧后SaO2为92.3%±1.0%,显著高于供氧前的82.9%±4.2%和H组的79.3%±5.9%(P<0.01),但低于P组的97.3%±0.8%(P<0.05)。睡眠期间呼吸紊乱低通气指数由低至高依次为P组、O组和H组(P<0.05)。心率在O组供氧前后及H组间无显著差异,但均高于P组(P<0.01)。心率变异性分析结果O组和H组的LFn和LF/HF分别为(89.3±2.9) ms2、9.4±2.8和(90.2±1.8) ms2、9.9±1.9,组间无明显差异,但均显著高于P组的(85.8±2.9)ms2和6.4±1.4(P<0.05),同时HFn明显降低。睡眠调查结果显示睡眠质量主观感觉P组最好,O组次之,H组最差。
     结论
     在6000m停留24h后大鼠出现了高原肺水肿。氧浓度接近35%富氧环境(生理等效高度约2500m)能够有效预防该肺水肿,而氧浓度30%左右的富氧环境(生理等效高度约3500m)防护效果一般。另外,4h间断供给含氧35%气体同样可以有效预防大鼠在6000m出现的高原肺水肿。如果经过进一步研究能够证实该结论,可以据此制定急进高原人员每天进入富氧室的必要时间,既预防高原病又不影响户外活动。
     利用我们研制的高原分体式弥散供氧系统在海拔3500m地区成功建立了生理等效高度约2100m的富氧室。该富氧环境能够有效缓解急进高原人员第一天的缺氧反应,提高睡眠质量。同时我们也观察到供氧后O组心率和交感神经兴奋性还处于较高水平,说明人体仍然在进行活跃的代偿反应,仍然在高原习服的进程中。据此,我们认为,一定氧浓度人工富氧环境的应用与高原习服并不矛盾,甚至可以按照个人进入高原的时间长短和习服情况适当调整富氧室氧浓度,既有效对抗缺氧又促进高原习服。
With the development of the science and technology as well as the improvement of long distance transport capacity of PLA, the speed that people enter the high altitude has been progressively accelerated, especially those who enter high altitude by air, such as pilots, investigators or travelers, etc., will suddenly expose to the low-pressure and hypoxia environment of high altitude within several hours while have to work immediately or put into flying again next day. To ensure their capacity of work and fighting has become the focus that people pay close attention to. In this situation, the authoritative and traditionary anti-hypoxia methods that laddered high altitude acclimatization and hypoxic training have been already no longer suitable in the case of taking too much time. However, there is a high-efficient and immediate effect anti-hypoxia method that supplying oxygen on high altitude for preventing hypoxia effectively through increasing the oxygen concentration and partial pressure of indoor air, which is suitable for people who enter high altitude emergently. Nowadays, nasal feeding oxygen is the main form of high altitude oxygen supplying for its economy of oxygen and energy. While, the oxygen concentration of inspired air is instable and the stimulant to the mucous membrane of nose is serious, as a result it is so unbearable that people couldn’t get to sleep well at night. The oxygen artificial oxygen enriched environment(AOEE) at high altitude can protect people from high altitude hypoxia without any appliance through improving the oxygen concentration of indoor air, which is especially suitable for the people, such as pilots, because they not only need to guarantee the effect of oxygen supply, but also insure the sleep quality and the efficiency of human body for flight security.
     It is confirmed that supplying oxygen in diffusion way has extensively effected anti-hypoxia, however, there is no authoritative regulation of it, more research on the suitable oxygen concentration and supplying oxygen time are still on the way. Moreover, domestic study usually takes up with the gas cylinders with the high pressure or the liquid oxygen as the oxygen source of the oxygen enriched room, but it is hardly to meet the request of the oxygen enriched room for long-time usage, so the oxygen-supply system that can continually supply a large amount of oxygen is urgently needed. Consequently, according to the request and commission of the development of the diffusion oxygen-supply system of Tibet Autonomous Region and Air Force contribution project of the high altitude oxygen-supply, we have studied the preventing high altitude pulmonary edema (HAPE) effect of oxygen enriched room that had different oxygen concentration and different time to supply oxygen through the animal model of HAPE. According to the results of animal experiment and our experience of aviation medicine study in decades, we have made the preliminary standard that the oxygen concentration of the oxygen enriched room to prevent pilots who enter 3500m high altitude above sea level emergently from high altitude hypoxia should be 25%±0.5%, which is resulted from oxygen partial pressure of inspired air〔(75±2) mmHg〕and physiologically equivalent altitude〔(2200±150)m〕. Meanwhile, based on the technology of pressure swing adsorption oxygen making of molecular sieve, a new high altitude diffusion oxygen-supply system has been developed. Then, the human subjects experimentation in an oxygen enriched room at high altitude has been taken to evaluate anti-hypoxia effect. The results of this study have offered the foundation of the application of the oxygen enriched room as well as the medical experimental basis for the technical evaluation of the diffusion oxygen-supply system of Tibet Autonomous Region and the high altitude oxygen-supply contribution of Air Force.
     METHODS
     1. Animal experiment 50 male Wistar rats were randomly divided into five groups, ground contrasted group(C), hypoxia group (H) , rich oxygen group 1(OⅠ), rich oxygen group 2(OⅡ) and rich oxygen group 3(OⅢ), 10 rats of each group, which were raised to 6000m at the speed of 10m/s in the low-pressure rich oxygen experiment chambers, except group C. Meanwhile, group H was supplied with air, group OⅠand OⅡwere supplied with gas that contain 35% and 30% oxygen respectively, group OⅢwas alternatively supplied air or gas that contain 35% oxygen every 4h with the flow rate of 7L/min. The experiment chambers were put down after 24h, and put the rats to death. The left lung was fetched to examine the water ratio of it, the frontal lobe of right lung was used for pathological observing, the middle and posterior lobe of the right lung were used to detect the concentration of endothelin-1(ET-1) and nitricoxide synthase (NOS) vigor respectively.
     2. Human subjects experimentation on the high altitude scene At high altitude of 3500m above sea level, the oxygen enriched room with the oxygen concentration of 25.49%±0.26 % (physiologically equivalent altitude about 2100m) was built by utilizing high altitude diffusion oxygen-supply system. 18 plain residents were divide into three groups with 6 people for each, the rich oxygen group (O), hypoxia group (H) and plain group (P). After the group O and group H reached the high altitude by air, the HR and SaO2 were recorded before oxygen was supplied while group P was stay on the plain. From 22:00 to 9:00 of the next day, when group O and group H have a rest at the oxygen enriched room and normal room respectively, SaO2, pulse wave and hand move signals were monitored by the sleep monitors while all data of group P were monitored on the plain. The sleep quality questionnaire of three groups was asked to complete at the morning.
     RESULTS
     1. Animal experiment The water ratio of lung among every group presented the remarkable difference. It is the lowest of ground C’s (0.80%±0.006%, P <0.01), the water ratio of group H was the highest (0.83%±0.010%, P <0.01) and those of the 3 oxygen supplied groups were between two parties. The water ratio of group OⅡwas 0.81%±0.007%, which was obviously lower than group OⅠand OⅢ(P <0.05). Group C was highest〔(1.49±0.24) U/mgpro, P <0.01〕on the vigor of NOS, the NOS vigor of group H was the lowest〔(0.78±0.28 )U/mgpro, P <0.01〕. Compared with the group H, the NOS vigor of group OⅠand OⅢwere more strengthened〔(1.06±0.17)mgpro, (1.09±0.20) mgpro, P <0.01〕, but there were no significant strength of group OⅡ. The ET-1 concentration among every group was no significant difference. The pathology result showed that the rat lung of all the experiment groups obviously presented different degrees of interstitium pulmonary edema for serious degree to light degree was group H, group OⅡ, group OⅠand group OⅢin sequence.
     2. Human subjects experimentation on the high altitude scene The SaO2 of group O was 92.3%±1.0% after the oxygen was supplied, which was higher than 82.9%±4.2% that before oxygen was supplied and 79.3%±5.9% (P <0.01 ) of group H, but lower than 97.3%±0.8% (P <0.05 ) of the group P. There was no significant difference of HR before and after oxygen was supplied as well as group H, but the HR of group H and group O was higher than that of group P (P <0.01). There was no significant difference of the sleep structure of group O and group H, but compared with group P, the group H and group O had more light sleep and less deep sleep(P <0.01 ). The result of heart rate variability presented that the LFn and LF/HF of group O and group H were (89.3±2.9) ms2, 9.4±2.8 and (90.2±1.8) ms2, 9.9±1.9 respectively, which was no significant difference but higher than (85.8±2.9) ms2 and 6.4±1.4 of group P (P <0.05 ), and the HFn was significant decreased. The results of questionnaire showed that group P had the best sleep quality and group H had the worst one while group O was ordinary.
     CONCLUSION
     Through the animal experiment, it was observed that rats stayed at 6000m for 24h got serious HAPE and 35% oxygen concentration of oxygen enriched room with oxygen partial pressure of inspired air 70mmHg, physiologically equivalent altitude of 2500m could effectively prevent the HAPE, but it was not obvious of the protection effect of the oxygen enriched room with 30% oxygen concentration (oxygen partial pressure of inspired air of 56mmHg, physiologically equivalent altitude of 3500m). In addition, intermittent supplying of 35% oxygen every 4h could prevent the HAPE of rat effectively as well. If this conclusion could be verified through further research, it would be the basis to determine how long people who enter high altitude emergently should keep in oxygen enriched room on the first day.
     According to the human subjects experimentation at the 3500m high altitude, the oxygen enriched room with physiologically equivalent altitude of 2500m was successfully built by utilizing the new-type high altitude diffusion oxygen-supply system. It could protect the people who enter high altitude emergently from serious hypoxia, and effectively improve the sleep quality in the first day. But the HR and the sympathetic nerve excitability were still on relatively high-level, which was proved that the compensation and the acclimatization to high altitude was still taken on the body. According the above, it was supposed that oxygen enriched environment and high altitude acclimatization were not contradictory, so that the oxygen concentration of oxygen enriched room could be adjusted according to different situation of individual in order to assure that both the prevention of high altitude hypoxia and the improvement of high altitude acclimatization were effective.
引文
1. Windsor JS, Firth PG, Grocott MP. Mountain mortality: a review of deaths that occur during recreational activities in the mountains. Postgrad Med J, 2009, 85(1004): 316-321.
    2.吴天一.我国高原医学研究进展.高原医学杂志, 2005, 15(1): 1-8.
    3.肖华军.航空供氧防护装备生理学.北京:军事医学科学出版社, 2005, 43-64.
    4. Andrew J Peacock. ABC of oxygen: Oxygen at high altitude. BMJ, 1998, 317: 1063-1066.
    5. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol, 2009, 8(2):175-191.
    6.蒋春华,黄庆愿,高钰琪,刘福玉,翟羽,周其全,牟信兵.急进高原对新兵脑功能的影响.中华航空航天医学杂志,2005,16(3):195-197.
    7.隆敏,覃军,黄岚,田开新,于世勇,喻杨.急进高原初期自主神经系统功能变化.中华航空航天医学杂志,2006,17(3):196-199.
    8.杨金升,石向群,谷有全,张晓燕.急进高原部队官兵抑郁和焦虑的评估.解放军预防医学杂志,2006,24(5):355-356.
    9. Nadine Messerli-Burgy, Katharina Meyer, Andrew Steptoe, Kurt Laederach-Hofmann. Autonomic and Cardiovascular Effects of Acute High Altitude Exposure after Myocardial Infarction and in Normal Volunteers. Circulation Journal, 2009, 73:1485-1491.
    10. Domej W, Trapp M, Miggitsch EM. Arterial hypertension due to altitude. Wien Med Wochenschr. 2008, 158(17-18): 503-508.
    11.高钰琪.高原军事医学.重庆:重庆出版社,2005,35-89.
    12. A Mark E. Hypoxic pulmonary vasoconstriction. Essays Biochem, 2007,43:61-76.
    13. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009, 8(2):175-191.
    14. Philip N Ainslie, Shigehiko Ogoh, Katie Burgess, Leo Celi, Ken McGrattan, Karen Peebles, Carissa Murrell, Prajan Subedi, Keith R Burgess. Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia. J Appl Physiol, 2008, 104:490-498.
    15.吴丹,张锋.高原脑水肿研究进展.人民军医,2008,51(12):813.
    16. Marco Maggiorini. High altitude-induced pulmonary edema. Cardiovascular Research, 2006, 72: 41-50.
    17. Peter Bartsch, Heimo Mairbaurl, Marco Maggiorini, Erik R. Swenson. Pulmonary Circulation and Hypoxia Physiological aspects of high-altitude pulmonary edema. J Appl Physiol, 2005, 98:1101-1110.
    18. G Zhou, LA Dada, J I Sznajder. Regulation of alveolar epithelial function by hypoxia. Eur Respir J, 2008, 31: 1107–1113
    19.张西洲,王引虎.高原肺水肿.新疆:新疆人民卫生出版社,2007,11-17.
    20.高钰琪,黄缄,黄庆愿,高文祥.高原军事医学基础研究进展.西南国防医药,2003, 13(5),561-564.
    21. Gudmundsson G, Gudbjartsson T. High altitude sickness– review. Laeknabladid, 2009, 95(6): 441-447.
    22.李联恒.急进高原120例上消化道出血病因分析.高原医学杂志, 2007, 17(3):50-51.
    23.马福良,姬爱云.急进高原87例胃、十二指肠穿孔病因分析.高原医学杂志,2008,18(2):50-51.
    24. Przybylowski T, Ashirbaev A, Le Roux J. Sleep and breathing at altitude of3800 m the acclimatization efect. Pneumonol Alergol Pol, 2003, 71(5-6): 213-220.
    25. Plvwaczewski R, Wu TY, Wang XQ. Sleep structure and periodic breathing in Tibetans and Han at simulated altitude of 5000 m. Respir Physiol Neurobiol, 2003, 136(2-3): 187-197.
    26. Sutton JR, Gray GW, Houston CS, Allison DB, Glen EF, Henry JD, Richard L, Marc JP. Effects of duration at altitude and acetazolamide on ventilation and oxygenation during sleep. Sleep, 1980, 3:455-464.
    27.闰俊强,杨金升,王为民,杜旭辉,王艳,安敏,来海鸥.缺氧对急进高原外训官兵睡眠状况的影响.第四军医大学学报,2008,29(5):428-430.
    28. Perrey S, Rupp T. Altitude-induced changes in muscle contractile properties. High Alt Med Biol, 2009, 10(2):175-182.
    29.高钰琪,黄庆愿,刘福玉,周其全,翟羽,蒋春华,牟信兵,肖德全,王福永.预缺氧复合锻炼改善新兵急进高原后的体力劳动能力.解放军预防医学杂志,2004,22(4):242-244.
    30.牛文忠,徐敏,蒲永高,茅晓玉,乔睛,李江,谢建福,丁浩.铁运与空运人员进入高原后高原反应的对比研究.西南国防医药, 2007,17(6):822-823.
    31.汤传福,陶峰.空降兵部队急进高原急性高原反应的情况调查.国防卫生论坛, 2003,12(2):98.
    32.江平,王桂兰,李越,符中明.进藏新兵急性高原病发病情况调查.高原医学杂志,2002,12(3):54-55.
    33.曹祯吾,牟信兵,冯玉兰.大批空运进藏新兵急性高原病发病调查.高原卫生资料,1992, 23:1-3.
    34.柴自杰,鱼敏,曾艳,杨淑娟,杨华,胡东风,司相山.快速反应部队急性高原反应研究.第四军医大学学报, 2004,25(8):749-751.
    35.王丽莉.长居海平面试飞人员进入高原工作的机体变化.航空航天医药,2002,13(1):3-5.
    36.毛玉明.美军山地部队卫生人员的训练.军事医学动态,2007,18(3):1-7.
    37.张西洲.国外高原病防治研究概况.人民军医,2008,51(7):428-429.
    38.张西洲.我国高原病防治研究概况.人民军医,2008,51(8):499-450.
    39. Purkayastha SS, Ray US, Arora BS.Acclimatization at high altitude in gradual and acute induction.J Appl Physiol, 1995, 79(2): 487.
    40. Muza SR. Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc, 2007, 39(9): 1625-1631.
    41. Schlau&aff KU. Intracutancous oxygen concentration in normal and ischemic skin is increased after intermittent hypoxia training. High Alt Med Biol, 2002, 3(4): 433-435.
    42. Robach P, Dechaux M, Jarrot S.Operation Everest III: role of plasma volume expansion on V02max during prolonged high-altitude exposure.J Appl Physiol, 2000, 89(1): 29.
    43. Miller BA, Perez RS, Shah AR. Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia - reperfusion. Neurorepert, 2001, 12(8): 1663.
    44. Luo Gang, Liu Fuyu, Xie Zengzhu. Efects of hypoxic preconditioning on myocardial mitoc hondrial energy metabolism during acute hypoxia in rats. J Med CoLL PLA, 1998, 13(1): 22.
    45.吕国蔚.急性重复缺氧对小鼠缺氧耐受性的影响及机制的初步探讨.中国病理生理杂志,1992,4:425.
    46.吕永达.高原医学与生理学.天津:天津科技翻译出版公司,1995, 599.
    47.蒋春华,黄庆愿,高钰琪,刘福玉,翟羽,周其全,牟信兵,肖德全.预适应锻炼对急进高原新兵脑功能的保护作用.解放军预防医学杂志,2005,23(5):323-326.
    48. Casas M, Casas H, Pages. Intermittent hypebaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat Space Environ Med, 2000, 71(2): 12.
    49. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol, 2000, 203(8):1253.
    50.孙胜,高钰琪,高文详,范明.缺氧预处理保护机制的研究进展.国际病理科学与临床杂志,2005,25(4):304-306.
    51.孙秉庸,谢增柱,毛长琪.阶梯式间断缺氧复合体育锻炼的适应过程及其效果.解放军医学杂志,1985,10(1):46-48.
    52.高钰琪,黄庆愿,刘福玉.促进高原习服措施的研究进展.解放军预防医学杂志,2002,20(4):306-309.
    53. Singh I, Khanna PK, Srivastava MC,Lal M, Roy SB, Subramanyam CS. Acute mountain sickness. N Engl J Med, 1969, 280(4): 175-184.
    54. Luc J Teppema, George M, Balanos, Craig D, Steinback. Effects of Acetazolamide on Ventilatory, Cerebrovascular, and Pulmonary Vascular Responses to Hypoxia. Am J Respir Crit Care Med, 2007, 175: 277-281.
    55. Hohne C, Krebs MO, Seiferheld M. Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs. Appl Physiol, 2004, 97: 515-521.
    56. Balanos GM, Teppema LJ, Steinback CD. Acetazolamide reduces hypoxic pulmonary vasoconstriction in humans. FASEB, 2006, 20: LB138.
    57. Zell SC, Goodman PH. Acetazolamide and dexamethasone in the prevention of acute moontain sickness. West Med J, 1988, 148:541-544.
    58. Dehnert Ch, Schneider M, Mairb?url H. Acute mountain sickness and high-altitude pulmonary edema. How to protect the mountain climber from the effects of the "altitude haze". MMW Fortschr Med, 2003, 145(8): 33-35.
    59. Novak CP, Friedman P, Anholm JD. Nifedipine prophylaxis of pulmonaryedema after intense at altitude. Textbook of the Hypoxia Symposium, l999.
    60. Perimenis P. Sildenafil for the treatment of altitude-induced hypoxaemia. Expert Opin Pharmacother, 2005, 6(5):835-837.
    61. Hossein A Ghofrani, Frank Reichenberger, Markus G Kohstall, Eike H Mrosek, Timon Seeger,Horst Olschewski, Werner Seeger, Friedrich Grimminger. Sildenafil Increased Exercise Capacity during Hypoxia at Low Altitudes and at Mount Everest Base Camp. Annals of Internal Medicine, 2004, 141(3): 169-178.
    62. Jeremy Cornolo, Pascal Mollard, Julien V Brugniaux, Paul Robach, Jean-Paul Richalet. Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil. J Appl Physiol, 2004, 97: 935-940.
    63. Andrew R Hsu, Kimberly E Barnholt, Nicolas K Grundmann, Joseph H Lin, Stewart W McCallum, Anne L Friedlander1. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol, 2006, 100: 2031-2040.
    64. Gertsch J, Seto TB, Gnopa J. Does ginkgo biloba prevent acute mountain sickness if begun l-day before rapid aseent? High Altitude Medicine & Biology, 2001, 2(1): 109.
    65. Roncin JP, Schwartz F, Arbigny P. EGb 761 in control of acute mountain sickness and vascular reactivity to cold exposure. Aviat Space Environ Med, 1996, 67(5): 445-452.
    66. Moraga FA, Flores A, Serra J, Esnaola C, Barriento C. Ginkgo biloba decreases acute mountain sickness in people ascending to high altitude at Ollagüe (369 m) in northern Chile. Wilderness Environ Med, 2007, 18(4): 251-257.
    67.哈振德,何通晗,张西洲,崔建华,王伟,马勇,简新琼.复方红景天对居住海拔5380m 1年青年睡眠呼吸障碍的调节.临床军医杂志,2004,32(2):14-16.
    68.张西洲,崔建华,王引虎,马勇,王伟,张素萍,谢印芝,张东祥.红景天复方和乙酰唑胺对进驻高原官兵睡眠剥夺及力竭运动后自由基代谢的影响.解放军预防医学杂志,2001,19(4):266-268.
    69.马勇,张西洲,陈秀山,张素萍,崔建华.红景天与乙酰唑胺改善高原脑一体功效能力的对比研究.巾国心理卫生杂志,2001,15(2):117-118.
    70.郑必海,李素芝,周小波,李尚师,文新,陈坤,王洪斌.高原康胶囊对大部队急进高原急性高原病预防作用的观察.第三军医大学学报,2005,27(2):166-167.
    71.张西洲,陈占诗,马勇.高原西氏胶囊防治急性高原病的疗效观察.西北国防医学,1999,20(2):83-85.
    72.杨梅,格日力,周晓梅等.藏药抗缺氧作用的初步研究.中国中药杂志, 2004, 29(11):117-118.
    73. West JB. Oxygen enrichment of room air to improve well-being and productivity at high altitude. Int J Occup Environ Health. 1999, 5(3): 187-193.
    74.周亚军,郑晓惠,何铁春.小型医用制氧机高原性能定量评价方法.中华航空航天医学杂志,1999,10(4):246-247.
    75.叶任高,陆再英.内科学(第6版),北京:人民卫生出版社,140.
    76.陆保革,郭志坚,黄慧群,于文莹,马宝林,王生昭.高原地区使用富氧装置与鼻导管给氧.对血氧饱和度和心率的影响.交通医学,2008,22(5):578-579.
    77.王伟,王引虎,张西洲,崔建华,马勇,张芳,哈振德,邢国祥.液态氧对高原移居青年体力作业效率的影响.中国临床康复,2004, 8(24):4984-4985.
    78.王先鹤,王纯.青藏高原野外施工供氧装备-便携式液氧呼吸器.医疗卫生装备,2005,26(3):57-58.
    79. West JB. Improving oxygenation at high altitude: acclimatization and O2 enrichment. High Alt Med Biol, 2003, 4(3): 389-398.
    80.余志斌.航空航天生理学.西安:第四军医大学出版社,2008,62.
    81. McElroy MK, Gerard A, Powell FL, Prisk GK, Sentse N, Holverda S, West JB. Nocturnal O2 enrichment of room air at high altitude increases daytime O2 saturation without changing control of ventilation. High Alt Med Biol, 2000, 1(3): 197-206.
    82. Gerard AB, McElroy MK, Taylor MJ, Grant I, Powell FL, Holverda S, Sentse N, West JB. Six percent oxygen enrichment of room air at simulated 5000 m altitude improves neuropsychological function. High Alt Med Biol. 2000, 1(1):51-61.
    83. West JB. Potential use of oxygen enrichment of room air in mountain resorts. High Alt Med Biol. 2002, 3(1): 59-64.
    84. West JB. Commuting to high altitude: value of oxygen enrichment of room air. High Alt Med Biol, 2002, 3(2): 223-235.
    85.崔建华,张建林.富氧室对海拔5380m高原人体运动血气及心率的影响.临床军医杂志,2003,31(1): 9-11.
    86.张芳,崔建华,张西洲,哈振德,王伟朱永,马勇.富氧对海拔3700m高原人体血液流变学的影响.中国血液流变学杂志,2004,14(1):76-77.
    87. West JB. Completion of the railroad to Lhasa. High Alt Med Biol. 2006, 7(4): 263-264.
    88. West JB. A new approach to very-high-altitude land travel: the train to Lhasa, Tibet. Ann Intern Med. 2008, 149(12): 898-900.
    89. West JB. Safe upper limits for oxygen enrichment of room air at high altitude. High Alt Med Biol. 2001, 2(1): 47-51.
    90. NFPA.NFPA 99B-2002. Standard for Hypobaric Facilities. 14.
    91. Dehnert C, Berger MM, Mairbaurl H. High altitude pulmonary edema: a pressure-induced leak. Respir Physiol Neurobiol,2007, 158(2-3):266-273.
    92. Peter Bartsch, Heimo Mairbaurl, Marco Maggiorini, Erik RSwenson.Pulmonary Circulation and Hypoxia Physiological aspects of high-altitude pulmonary edema. J Appl Physiol, 2005, 98: 1101-1110.
    93 . Peter Bartscb, Heimo Mairbaurl, Erik R Swenson, Marco Maggiorinic.High altitude pulmonary edema.SWISS MED WKLY, 2003, 133:377-384.
    94.李福祥,夏前明,李鸿雁.低氧习服对模拟高原低氧大鼠肺组织的影响.中国呼吸与危重监护杂志,2008,7(3):199-205.
    95.赵贵锋,葛德.高原肺水肿研究进展.心血管病学进展,2008,29(5):757-760.
    96. Cremona G,Asnaghi R,Badema P.Pulmonary extra vascular fluid accumulation in recreational climbers:a prospective study.Lancet,2002,359:303-309.
    97.李诗冬,杨升辉,余军,魏银花,雷应权.一氧化氮、内皮素在高原肺水肿形成中的作用探讨.中华综合医学杂志,2003,5(8):12-13.
    98. Scherrer U, Turini P, Thalmann S. Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors. Adv Exp Med Biol, 2006, 588: 277-291.
    99. Aarif Ahsan MSc, Ghulam Mohd MD, Tsering Norboo M; et al, Masroor A Baig, MA. Qadar Pasha. Heterozygotes of NOS3 Polymorphisms Contribute to Reduced Nitrogen Oxides in High-Altitude Pulmonary Edema. CHEST, 2006, 130(5): 1511-1519.
    100. Ross CM, DV Frank, C Xue. Chronic inhaled nitric oxide: effects onpulmonary vascular endothelial function and pathology in rats. J Appl Physiol, 1996, 80: 252-260.
    101. Modesti PA,Vanni S,Morabito M ,Modesti A, Marchetta M, Gamberi T, Sofi F, Savia G, Mancia G, Gensini GF, Parati G. Role of endothelin-1 in exposure to high altitude: acute mountain sickness and endothelin-1 study.Circulation, 2006, 114(13): 1410-1416.
    102. Kolluru GK,Tamilarasan KP, Rajkumar AS, Geetha Priya S, Rajaram M, Saleem NK, Majumder S, Jaffar Ali BM, Illavazagan G, Chatterjee S. Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. Eur J Cell Biol, 2008, 87(3): 147-161.
    103. Marc M. Berger, Christiane Hesse, Christoph Dehnert, Heike Siedler, Petra Kleinbongard, Hubert J Bardenheuer, Malte Kelm, Peter Bartsch, Walter E Haefeli. Hypoxia Impairs Systemic Endothelial Function in Individuals Prone to High-Altitude Pulmonary Edema. Am J Respir Crit Care Med, 2005, 172: 763-767.
    104. Comellas AP,Briva A, Dada LA, Butti ML, Trejo HE, Yshii C, Azzam ZS, Litvan J, Chen J, Lecuona E, Pesce LM, Yanagisawa M, Sznajder JI. Endothelin-1 impairs alveolar epithelial function via endothelial ETB receptor. Am J Respir Crit Care Med, 2009, 179(2): 113-122.
    105.杨军,俞梦孙,苏琳.睡眠中的心率变异性.北京生物医学工程,1998,17(1):61-64.
    106.庄志,高上凯,高小榕.基于心率变异分析的睡眠分期方法.生物医学工程学杂志,2006,23(3): 499-504.
    107. Bosco G, Ionadi A, Panico S. Efects of hypoxia on the circadian patterns in men. High Alt Med Biol, 2003, 4(3): 305-318.
    108. Luks AM, van Melick H, Batarse RR. Room oxygen enrichment improves sleep and subsequent day-time performance at high altitude. Respir Physiol, 1998, 113(3): 247-258.
    109.哈振德,何通晗,张西洲,王伟,马勇,简新琼.富氧对高原移居者睡眠结构的影响.中华内科杂志,2004,43(5):368-370.
    110. Fowler AC, Kalamangalam GP. Periodic breathing at high altitude. IMA JMath Appl Med Biol, 2002, 19(4): 293-313.
    111. Whitelaw W. Mechanisms of sleep apnea at altitude. Adv Exp Med Biol, 2006, 588: 57-63.
    112.张东颖,王昆鹏,王俊科.心率变异性的临床应用和研究进展. Review and CME Lecture, 2008, 15(1):20-23.
    113. Lombardi F. Chaos theory, heart variability, and arrhythmic. Circulation, 2000, 101(1):8-10.
    114.刘向昕,鲁力立,仲崇发.急性缺氧调节下的心率变异性分析.航天医学与医学工程,2001,14(5):328.
    115. Melin A, Fauchier L, Dubuis E. Heart rate variability in rats acclimatized to high altitude. High Ail Med Biol, 2003, 4(3): 375-387.
    116. Hansen J, Sander M.Sympathetic neural overactivity in healthy human after prolonged exposure to hypobarie hypoxia.J Physiol, 2003, 546: 921-929.
    117.邓昌磊,肖华军,臧斌,付丽珊,顾昭.急进高原人员供氧标准研究.中国应用生理学杂志,2009,25(3):2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700